SG-00 Signaalinkäsittelyn menetelmät, Tentti 6.3.006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen jälkeen erilliselle konseptille, jota voit pyytää valvojalta. Laskinta saa käyttää, mutta muistin tulee olla tyhjä. Rastita vielä alle mistä löytyy merkintä pakollisista harjoituksista. Osallistuin harjoituksiin syksyllä 005 keväällä 006. Osallistuin harjoituksiin vuonna: syksyllä kesällä Palautin harjoitustehtäväpaketin vuonna: En ole vielä suorittanut pakollisia harjoituksia ja otan yhteyttä luennoitsijaan.. Ovatko seuraavat väittämät tosia vai epätosia? (Perusteluja ei tarvita. Oikea vastaus: p, väärä: p, ei vastausta 0 p.) (a) Suotimen stabiilius tarkistetaan selvittämällä ovatko sen siirtofunktion napojen itseisarvot pienempiä kuin yksi. (b) Signaalin x(n)y(n) DFT on X(n)Y(n). (c) Kaksiulotteinen diskreetti Fourier-muunnos voidaan laskea yksiulotteisten diskreettien Fourier-muunnosten avulla. (d) Järjestelmä, jonka impulssivaste on h(n) =δ(n)+0.5δ(n ) 0.5δ(n 3) on stabiili. (e) Laskostuminen estetään A/D-muunnoksessa asettamalla näytteenottotaajuus vähintään samaksi kuin analogisen signaalin suurin taajuus. (f) FIR-suotimen siirtofunktio voidaan päätellä sen impulssivasteesta. Suodintyyppi Impulssivaste kun n 0 n = 0 Alipäästö f c sinc(n πf c ) f c Ylipäästö f c sinc(n πf c ) f c Kaistanpäästö f sinc(n πf ) f sinc(n πf ) (f f ) Kaistanesto f sinc(n πf ) f sinc(n πf ) (f f ) Ikkuna- Siirtymäkaistan Päästökaistan Estokaistan Ikkunan lauseke funktion leveys värähtely minimi- w(n),kun nimi (normalisoitu) (db) vaimennus (db) n ( )/ Suorakulmainen 0.9/ 0.746 Bartlett 3.05/ 0.475 5 n Hanning 3./ 0.0546 44 0.5 + 0.5 cos πn Hamming 3.3/ 0.094 53 0.54 + 0.46cos πn Blackman 5.5/ 0.007 74 0.4 + 0.5cos πn + 0.08cos 4πn
. (a) Analoginen signaali koostuu yksittäisestä siniaallosta, jonka taajuus on 00 Hz. Signaalista otetaan näytteitä.5 0 4 sekunnin välein. Tapahtuuko laskostumista? Jos vastauksesi on myönteinen, miksi taajuudeksi mainittu sinitaajuus tulkitaan, ts. mille taajuudelle se laskostuu? (p) (b) Laske jaksollisen lukujonon x(n) =(, 4, 5, ) diskreettifourier-muunnos. (p) (c) Suodin suunnitellaan ikkunamenetelmällä seuraavien määrittelyjen mukaiseksi. Estokaista Päästökaista Päästökaistan maksimivärähtely Estokaistan minimivaimennus äytteenottotaajuus [ khz,6khz] [0 khz,0khz] 0.06 db 48 db 3 khz Kertoimia saat käyttää enintään 0 kappaletta. Millä ikkunoilla tämä onnistuu (vai onnistuuko millään)? (3p)
3. Tarkastellaan alla olevan lohkokaavion esittämää LTI-järjestelmää. x(n) y(n) z 8 (a) Määritä järjestelmän siirtofunktio H(z). (b) Piirrä napa-nollakuvio. (c) Onko järjestelmä stabiili? Miksi / miksi ei?
4. Suunnittele ikkunamenetelmällä ylipäästösuodin (selvitä käsin impulssivasteen lauseke), jonka vaatimukset ovat seuraavat: Päästökaista Estokaista Päästökaistan maksimivärähtely Estokaistan minimivaimennus äytteenottotaajuus [.5 khz,6khz] [0 khz,.5 khz] 0.06 db 48 db 3 khz Käytä etusivun taulukoita hyväksesi.
5. (a) LTI-järjestelmä (siirtofunktio H(z)) onminimivaiheinen, jos se on stabiili ja sillä on käänteisjärjestelmä (siirtofunktio H(z) ), joka on myös stabiili. Molemmat järjestelmät oletetaan kausaalisiksi. Onko järjestelmä H(z) = (z.)(z 0.5) z 4 z 3 + 0.5z minimivaiheinen? Perustele. (p) (b) Erään LTI-järjestelmän amplitudivaste taajuudella ω 0 = π 8 on ( H e π i) 4 =. Lisäksi tiedetään, että järjestelmän vaihevaste on jatkuva ja saa nollataajuudella arvon arg(h(e 0i )) = 0. Ryhmäviive on vakio: τ(ω) = kaikilla ω [0, π].mikäon järjestelmän vaste y(n) herätteelle x(n) =u(n) cos(ω 0 n)? (4p)