Luento 7. LTI-järjestelmät

Koko: px
Aloita esitys sivulta:

Download "Luento 7. LTI-järjestelmät"

Transkriptio

1 Luento 7 Lineaaristen järjestelmien analyysi taajuustasossa Taajuusvaste Stabiilisuus..7 LTI-järjestelmät u(t) h(t) y(t) Tarkastellaan lineaarista aikainvarianttia järjestelmää n n m m d d d d yt () = an yt () ayt () bm ut () bm ut () but (), n m n + + n m + + m dt dt dt dt Käytetään pyörivää osoitinta herätteenä i t ut () = e π ja arvataan, että vaste on muotoa yt () = H( ) e i π t..7

2 LTI-järjestelmät Sijoittamalla heräte sekä arvattu vaste dierentiaaliyhtälöön saadaan ( iπ ) + al( i π ) H( ) e π = bk ( iπ ) e H( ) = n m n l i t k iπ t l= k= m k bk ( iπ ) k = n n l ( iπ ) + al ( iπ ) k = Siirtounktio Joten taajuudella pyörivää osoitin generoi vasteeksi samalla taajuudella pyörivän osoittimen, jonka amplitudi ja vaihe ovat muuttuneet iπ t iπ t+ iarg H( ) yt ( ) = H( ) e = H( ) e..7 3 Taajuusvaste Järjestelmän taajuusvaste saadaan syöttämällä sisään eri taajuisia sini-muotoisia signaaleja ja katsomalla kuinka niiden amplitudi ja vaihe muuttuvat kulkiessaan järjestelmän läpi. iπ t iπ t ut () = cos( π t) = ( e + e ) i π t * iπ t yt () = H( ) e + H ( ) e iπ t+ iarg( H( )) iπ t iarg( H( )) yt () = H( ) e + H( ) e y( t) = H( ) cos π t+ arg H( ) ( ) Lineaarinen järjestelmä ei aiheuta taajuuden muuntumista...7 4

3 Esimerkki (/). asteen dierentiaali yhtälö d yt () = ayt () + but () dt i t Ratkaisu syötteelle ut () = e π : b iπ t yt () = e iπ + a iπ t Ratkaisu syötteelle ut () = e : b i t yt () = π e iπ + a Ratkaisu syötteelle ( ) ( iπ t iπ t ut () = cos π t = e + e ) : b iπ t b iπ t yt () = e + e iπ + a iπ + a..7 5 Esimerkki (/) Ratkaisu voidaan kirjoittaa muotoon ( π ) ( π ) ( π ) ( π ) b i + a b i + a yt () = e + e + a + a iπ t iπ t π π iπ t+ iarctan iπ t iarctan + a a ( π ) ( π ) ( π ) + a + a e + + a e = π π iπ t arctan iπ t+ arctan a a e = + e ( π ) + a π = cos π t arctan ( π ) + a a + arg ( H( )) H( ) a ib = a+ ib a + b b arg ( a+ ib) = arctan a

4 Taajuusvaste Taajuusvaste on järjestelmän vaste sini-muotoiseen herätteeseen. Siirtounktio jarg ( H( )) jφ ( ) H( ) = H( ) e = A( )e Amplitudivaste (amplitudi unktio) A( ) = H( ) Vaihevaste (vaiheunktio) φ ( ) = arg ( H( ) ) Vaiheviive (kantoaallon viive) [phase/carrier delay] Vaihesiirto vastaa aikatasossa signaalin viivästymistä t d ()=φ()/π iπ t F{ δ ( t t )} d d = e..7 7 Taajuusvaste Vasteen y(t) Fourier-muunnos: Y()=H()U() Vasteen y(t) spektritiheys saadaan impulssivasteen ja herätteen spektritiheyksien tulona: Y( ) = H( ) U( ) U( ) Y( ) H ( ) H ( ) Tehonsiirtounktio Järjestelmä suodattaa signaalia u(t)

5 Boden käyrät Vahvistuskäyrä Tehonsiirtounktio logaritmi kulmataajuuden =π (rad/s) unktiona log ( H(/(π)) ) Vaihekäyrä Vaihevaste asteina φ() 8 /(π) kulmataajuuden =π (rad/s) unktiona φ(/(π)) Phase (deg) Magnitude (db) Bode Diagram Frequency (rad/sec)..7 9 Amplitudi ja vaihevääristymät Halutaan siirtää signaali u(t) järjestelmän läpi, ilman että signaalin muoto vääristyy. Ideaalitapauksessa y(t)=a u(t-τ d ), missä a> on vakio Tätä vastaa taajuusvaste Y()=a U() e -iπτ d Tällöin järjestelmän siirtounktion pitää olla vakio H()=a e -iπτ d koko signaalin u(t) kaistalla Käytännössä näin ei tapahdu, vaan signaali vääristyy Amplitudi vääristymä: A() A Vaihevääristymä: φ() πτ..7 5

6 Amplitudi ja vaihevääristymät Ryhmäkulkuaika d tg ( ) = ( ) π d φ kuvaa vaiheen muutosta taajuuden unktiona. Ideaalisessa tapauksessa t g on taajuudesta riippumaton vakio. Vaihevääristymä kaistanpäästösignaalille u(t) kaistalla ( c -B/, c +B/), c kantoaallon taajuus Δ tg = max tg( ) tg( c) ( B, + B ) c c +Δ Δ φ = dφ πδtg Δ Vaiheen muutos taajuuden muutoksen suhteen..7 Vaihevääristymät Tarkastellaan lineaarisesti moduloitua signaalia, jonka kaistanleveys on B ut () = xt ()cos( π t c ) U( ) = X( + c) + X( c) Signaali kulkee kanavan (järjestelmän) läpi. Kanavan siirtounktio on i( π τg + φ sgn ) H( ) = ae A( ) = a Amplitudivaste φ( ) = π τg + φ, > Vaihevaste Vaiheviive φ t ( ) d = τ g + π Ryhmäviive dφ( ) t ( ) = = τ π d..7 g g 6

7 Vaihevääristymät Ulostulosignaali taajuustasossa cos( ) Y( ) = H( ) U( ) = X( + c) ae + X( c) e ja aikatasossa ( ( ) ) ( π ( ( ))) yt () = xt ( τ )cos π t τ φ g c g d i i F { π t c + φ } = δ ( + c) e φ + δ ( c) e i π τ g + i φ d i π τ g i φ d yt () = xt ( τg)cos c t td φ c t ( ) d = τ g + π φ Ryhmäviive Vaiheviive / kantoaallon viive..7 3 Vaihevääristymät Pelkkä vakio vaiheensiirto φ voi aiheuttaa signaalin vakavaa vääristymistä 4 Kantataajuinen signaali 4 Moduloitu signaali x(t) u(t) t t Vaihesiirretty moduloitu signaali 4 x(t-τ g ) y(t) t..7 yt () = xt ( τ g)cos π c( t τd) 4 ( ) 7

8 Esimerkki I (/4) Tarkastellaan T:n mittaista jännitepulssia u in (t), jonka amplitudi on A. T t u () in t = AΠ T RC-suodattimen impulssivaste h(t)=/τe -t/τ, τ=rc A /τ T Ratkaistaan suodattimen ulostulo u out (t)..7 5 Esimerkki I (/4) Jännitepulssin Fourier-muunnos T t π i { } π e Uin( ) = F uin( t) = F AΠ = ATsinc( T) e = A T iπ i F x( t τ ) = X( ) e T i T { } π τ Impulssivasteen Fourier-muunnos τ t H( ) = F{ h( t) } = F{ τ e } = iπ τ + Suodatettu signaali iπ T e Uout ( ) = H( ) Uin( ) = A H( ) iπ t F AΠ = ATsinc( T) T

9 Esimerkki I (3/4) Ulostulojänniteen Fourier-muunnos i Uout ( ) = H( ) Uin( ) = A H( ) e iπ π T ( ) iπ T = X( ) X( ) e, X( ) = A H( ) X ( ) iπ F x() t dt Ratkaistaan X():n käänteismuunnos iπ t t t τ τ A e dt A e t = xt () = F { X( ) } = F A H( ) = τ iπ t <+ Ulostulojänniteen lausekkeeksi saadaan i { } { π T out } u t F U F X X e x t x t T out ( ) = ( ) = ( ) ( ) = ( ) ( ) i { ( τ )} = X( ) e F x t π τ..7 7 Suodatettu pulssi t < t τ uout () t = A e t T ( t T) t τ τ A e e t > T Esimerkki I (4/4)

10 in () ~ Esimerkki II (/6) Tarkastellaan RC-suodinta d R it () = C uout () t it () dt u t C u () t Impulssivaste d ht () = ( δ () t ht ()) dt RC i π H( ) = H( ) RC H( ) = RC iπ + RC ( ) out u () t = Ri() t + u () t..7 9 in out d u out () t = u in() t u out () t dt RC = = iπ + RC RC ( ) t RC ht () F RC e Jos RC=, niin h(t) Esimerkki II (/6) A( ) = Magnitude (db) Bode Diagram { } φ( ) = arg H( ) = arctan( π ) Phase (deg) Frequency (rad/sec) =π..7

11 Ryhmäviive Esimerkki II (3/6) dφ( ) d tg ( ) = = arctan( π ) = π d π d + ( π ) Ryhmäviiveen muutos kaistalla [/(π), 3/(π)] Δ tg = max tg( ) tg.3 3 π, π π t g ()-t g ( c ) π* Esimerkki II (4/6) Vaihevääristymä +Δ +Δ Δ φ = dφ Δ φ = tg ( )πd +Δ d = arctan( π ) πd = arctan( π +Δ arctan π π d ( ( )) ( ) Vaihevääristymä kaistalla [/(π), 3/(π)] Δ φ = arctan 3 arctan.4636 rad ( ) ( ) Ryhmäviiveen avulla laskettu yläraja Δφ πδtg Δ = πi.3i =.6 rad π..7

12 Esimerkki II (5/6) Δ φ = arctan 3 arctan.4636 rad ( ) ( ) Bode Diagram.5 Magnitude (db) Δt g -4 t g ().3.5 Δφ Phase (deg) Frequency (rad/sec) π* Β..7 3 Esimerkki II (6/6) Tarkastellaan herätettä ut () = cos() t + cos(3) t Suodattomen vast on tällöin yt () = H cos t argh π + π 3 + H cos 3t arg H π + π = cos ( t arctan () ) + cos ( 3 t arctan ( 3 )) Amplitude u(t) y(t) Original signal Filtered signal Time. s viive..7 4

13 Taajuusvasteen tekijät Taajuustasossa osoittajan tekijöiden itseisarvot kerrotaan keskenään ja ne jaetaan nimittäjän tekijöiden itseisarvoilla. Osoittajan tekijöiden napakulmat lasketaan yhteen ja niistä vähennetään nimittäjän tekijöiden napakulmat. s-tason siirtounktio -tason siirtounktio s a iπ a Gs () = Gi ( π ) G( ) = ( s b)( s c) ( i π b)( i π c) iπ a ( iπ ) + a ( ) = = π π ( π ) ( π ) { G( ) } { iπ a} { iπ b} { iπ c} G i b i c i + b i + c = kompleksi luvun kulma (arg)..7 5 Taajuusvasteen tekijät Tehonsiirtounktio esitetään usein desibeleinä pp = + ( p ) ( p ) ( p ) log log log log 3 p3 ( G ) = ( G ) log ( ) log ( ) iπ a = log ( G ( ) ) = log iπ b iπ c ( i π a i π b i π c) = log log log

14 Taajuusvasteen tekijät Desibelin yksikkö db on suhteellinen yksikkö Tehonsiirron tapauksessa yksikkö on dbw (db verrattuna W:iin) dbm (db verrattuna mw:iin) dbp (db verrattuna pw:iin) db (db verrattuna W:iin) 3 mw = W 3 W = log 3log dbw W = 3dBW mw =.W.W mw log log 3 = W mw = log dbm 3 dbm ( ).W log = log ( ) dbw 7 dbw W..7 7 Taajuusvasteen tekijät Jännitesignaalin tapauksessa amplitudivasteen G() :n yksikkö on volttia V dbv (db verrattuna V:iin) dbmv(db verrattuna mv:iin) log ( G() ) dbv mutta log ( G() ) dbw

15 Vakiokerroin Siirtounktio on reaalinen ja vakio G( ) = G( ) = K = = { G( ) }, { G( ) } π rad =-8 Im Im K Re -K Re lgk Boden vahvistuskäyrä deg Boden vaihekäyrä =π Boden vahvistuskäyrä deg Boden vaihekäyrä lgk Integraattori ja derivaattori Im G ( ) = iπ Derivaattorin siirtounktio j Re G ( ) = = i Integraattorin siirtounktio iπ π G( ) = π, G( ) = Im π π π { G( j) }, { G( j) } rad = -9 -j Re Boden vahvistuskäyrä deg Boden vaihekäyrä db/dek 9 Boden vahvistuskäyrä deg Boden vaihekäyrä db/dek -9 5

16 Viive Viive aikatasossa vastaa vaihesiirtoa taajuustasossa G ( ) = e iπ τ = cos( π τ) j sin( π τ) G π τ π τ ( ) = cos ( ) + sin ( ) = = Im sin( π τ) { G ( )} = arctan = arctan ( tan( π τ) ) = π τ cos( π τ) Re Boden vahvistuskäyrä deg Boden vaihekäyrä..7 3 Ensimmäisen kertaluvun termit. kertaluvun siirtounktiot G ( ) = iπ T+, T > G ( ) = iπ T+ Approksimaatio Boden diagrammille Boden vahvistuskäyrä deg Boden vaihekäyrä db/dek 9 /T./T /T Boden vahvistuskäyrä deg Boden vaihekäyrä /T -db/dek./t /T

17 Ensimmäisen kertaluvun termit. kertaluvun järjestelmän Boden kuvaaja G ( ) = iπ + Bode Diagram Magnitude (db) Phase (deg) Frequency (rad/sec) Toisen kertaluvun termit Toisenkertaluvun siirtounktio n n Gs () = G( ) = s + ζ s+ π + i π ζ ( ) ( ) ( ( ) ) ( ) n n n n = Resonanssitaajuus: r = n ζ ( π ) + ζ( π ) j n n Boden vahvistuskäyrä (ζ=) n -4 db/dec Boden vaihekäyrä (ζ=). n -8 n

18 w=; w=logspace(-,,); zeta=.:.:; Toisen kertaluvun termit or k=:length(zeta) sys{k}=t([ w^],[ *zeta(k)*w w^]); [mag(k,:),pha(k,:)]=bode(sys{k},w); end; subplot(,,) semilogx(w/w,*log(mag)) xlabel('\omega/\omega_') ylabel('db') subplot(,,) semilogx(w/w,pha,w/w,- 8*ones(size(w)),'k--') xlabel('\omega/\omega_') ylabel('deg') db deg / ζ= ζ= ζ=. ζ=. - - / Esimerkki (/) Tarkastellaan järjestelmää s iπ Gs () = + G( ) = i( iπ + ) = + s+ iπ + iπ + / + = / 5 /

19 Esimerkki / Bode Diagram - Magnitude (db) Phase (deg) Frequency (rad/sec) Stabiilisuus Tarkastellaan stabiilin järjestelmää H( ) = A( ) e φ i ( ) U( ) Y( ) H() Tarkastellaan sini-muotoista herätettä H( ) = A( ) e ut () = cos iφ ( ) ( π ) ( π φ ) yt ( ) = A( )cos ( )

20 Stabiilisuus Myötäkytkentä U( ) + H() E( ) - E( ) = U( ) + H( ) U( ) ( π ) ( π φ ) et ( ) = cos A( )cos ( ) Jos vaihesiirtoa on 8 erosignaali e(t) intereroi konstruktiivisesti (merkki vaihtuu) ( ) ( π ) et () = + A( ) cos et () > ut () Stabiilisuus Tehdään negatiivinen takaisinkytkentä E ( ) + - H() U ( ) Y ( ) E( ) = U( ) Y( ) Y( ) = H( ) E( ) H( ) Y( ) = U( ) + H( ) Jos järjestelmän H vaihesiirto on -8, niin signaaliin u(t) summautuu se itse A():llä skaalattuna rekursiivisesti e () t = u() t et () = Ae ( ) () t+ ut () = ( A ( ) + ) ut () e() t = A( ) e() t + ut () = ( A( ) + A( ) + ) ut () k k e () t = ( A ( ) + A ( ) A( ) + ) u() t k Summa +A()+A() +.. konvergoi arvoon /(-A()), jos A()<, jolloin y(t) pysyy rajoitettuna..7 4

21 Stabiilisuus kriteeri Sillä taajuudella, jolla vaihe leikkaa -8 vahvistuksen pitää olla log(a())< db Vahvistusvara: Kuinkapaljon vahvistusta voidaan kasvattaa ennen kuin takaisinkytketystä db järjestelmästä tulee epästabiili Vaihevara: Kuinkapaljon vaihetta voidaan jätättää ennen kuin järjestelmästä tulee epästabiili Boden vahvistuskäyrä Vahvistusvara -8 Vaihevara..7 4 Esimerkki I (/) Ensimmäisenkertaluvun systeemi voidaan tulkita takaisinkytketyksi integraaliksi K K iπ H( ) G ( ) = = = iπ + K K + + H( ) iπ Avoimen silmukan siirtounktio H( ) = K i π..7 4

22 Esimerkki I (/) Jos K< se vastaa -8 vaihesiirtoa ja log( K ) vahvistusta Jos K> se vastaa vaihesiirtoa ja log( K ) vahvistusta K > K < -8 K> K< Jos K< vaihe on -7 kaikilla, koska H(), ei takaisinkytketty järjestelmä ole stabiili Jos K> vaihe on -9 kaikilla, joten takaisinkytketty järjestelmä on stabiili Esimerkki II (/) Tarkastellaan 3. kertaluvun suodatinta H( ) = K i U ( ) E( ) Y( ) ( π + ) + H() - Ratkaistaan suurin mahdollinen K:n arvo, jolla takaisinkytketty järjestelmä on stabiili..7 44

23 Esimerkki II (/) Boden diagrammi - Bode Diagram Vahvistusvara 6 db Magnitude (db) Phase (deg) Frequency (rad/sec) 6 log( K) K = 6.3 3

Luento 7. tietoverkkotekniikan laitos

Luento 7. tietoverkkotekniikan laitos Luento 7 Luento 7 LTI järjestelmien taajuusalueen analyysi II 7. LTI järjestelmän taajuusvaste Vaste kompleksiselle eksponenttiherätteelle Taajuusvaste, Boden diagrammi 7.2 Signaalin muuntuminen LTI järjestelmässä

Lisätiedot

Luento 7. Järjestelmien kokoaminen osista

Luento 7. Järjestelmien kokoaminen osista Luento 7 Lineaaristen järjestelmien analyysi Järjestelmä yhdistelmät, takaisinkytkentä Taajuusvaste Stabiilisuus analyysi taajuustasossa 8..6 Järjestelmien kokoaminen osista Lineaaristen järjestelmien

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu. Vinkit 1 a

Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu. Vinkit 1 a ELEC-C3 Säätötekniikka 9. laskuharjoitus Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu Vinkit a 3. Vaiheenjättökompensaattorin siirtofunktio: ( ) s W LAG s, a. s Vahvistus

Lisätiedot

ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi

ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi ELEC-C123 Säätötekniikka Luku 7: Taajuusanalyysi Taajuusanalyysi Aikaisemmilla luennoilla on tarkasteltu systeemien käyttäytymistä aikatasossa (differentiaaliyhtälöt, herätteet ja vasteet) tai Laplace-tasossa

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..007 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

3. kierros. 2. Lähipäivä

3. kierros. 2. Lähipäivä 3. kierros. Lähipäivä Viikon aihe (viikko /) Takaisinkytketyt vahvistimet Takaisinkytkentä, suljettu säätöluuppi Nyquistin kriteeri, stabiilisuus Taajuusanalyysi, Boden ja Nyquistin diagrammit Systeemin

Lisätiedot

Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi

Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi Taajuusanalyysi ELEC-C1230 Säätötekniikka Luku 7: Taajuusanalyysi Aikaisemmilla luennoilla on tarkasteltu systeemien käyttäytymistä aikatasossa (differentiaaliyhtälöt, herätteet ja vasteet) tai Laplace-tasossa

Lisätiedot

Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi

Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi Taajuusanalyysi ELEC-C1230 Säätötekniikka Luku 7: Taajuusanalyysi Aikaisemmilla luennoilla on tarkasteltu systeemien käyttäytymistä aikatasossa (differentiaaliyhtälöt, herätteet ja vasteet) tai Laplace-tasossa

Lisätiedot

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU ENSO IKONEN PYOSYS 1 SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Älykkäät koneet ja järjestelmät helmikuu 2019 ENSO IKONEN PYOSYS

Lisätiedot

Osatentti

Osatentti Osatentti 2.8.205 Nimi: Opiskelijanumero: Ohjeet: Vastaa kysymyspaperiin ja kysymyksille varattuun tilaan. Laskin ei ole sallittu. Tenttikaavasto jaetaan. Kaavastoon EI merkintöjä. Palauta kaavasto tämän

Lisätiedot

ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit

ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit ELEC-C3 Säätötekniikka Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit Hyvyyskriteerit Aikaisemmilla luennoilla on havainnollistettu, miten systeemien

Lisätiedot

1 Vastaa seuraaviin. b) Taajuusvasteen

1 Vastaa seuraaviin. b) Taajuusvasteen Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?

Lisätiedot

Tehtävä 1. Vaihtoehtotehtävät.

Tehtävä 1. Vaihtoehtotehtävät. Kem-9.47 Prosessiautomaation perusteet Tentti.4. Tehtävä. Vaihtoehtotehtävät. Oikea vastaus +,5p, väärä vastaus -,5p ja ei vastausta p Maksimi +5,p ja minimi p TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA

Lisätiedot

Luento 4 Fourier muunnos

Luento 4 Fourier muunnos Luento 4 Luento 4 Fourier muunnos 4. F muunnos F muunnos Oppenheim 4. 4. Energiaspektri (spektritiheys) Rayleigh'n energia teoreema, energiaspektri Kaistanleveys Boden diagrammi 4.3 F muunnoksen ominaisuudet,

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Analogiatekniikka. Analogiatekniikka

Analogiatekniikka. Analogiatekniikka 1 Opintojakson osaamistavoitteet Opintojakson hyväksytysti suoritettuaan opiskelija: osaa soveltaa ja tulkita siirtofunktiota, askelvastetta, Bodediagrammia ja napa-nolla-kuvaajaa lineaarisen, dynaamisen

Lisätiedot

Osatentti

Osatentti Osatentti 3 1.4.016 Nimi: Opiskelijanumero: Ohjeet: Kirjoita vastaukset paperissa annettuun tilaan. Lisävastaustilaa on paperin lopussa. Käytä selvää käsialaa. Laskin EI ole sallittu. Tenttikaavasto jaetaan.

Lisätiedot

Elektroniikka, kierros 3

Elektroniikka, kierros 3 Elektroniikka, kierros 3 1. a) Johda kuvan 1 esittämän takaisinkytketyn systeemin suljetun silmukan vahvistuksen f lauseke. b) Osoita, että kun silmukkavahvistus β 1, niin suljetun silmukan vahvistus f

Lisätiedot

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU ENSO IKONEN PYOSYS SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Teknillinen tiedekunta Älykkäät koneet ja järjestelmät helmikuu

Lisätiedot

Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit

Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit Hyvyyskriteerit ELEC-C1230 Säätötekniikka Aikaisemmilla luennoilla on havainnollistettu, miten systeemien käyttäytymiseen voi vaikuttaa säätämällä niitä. Epästabiileista systeemeistä saadaan stabiileja,

Lisätiedot

ELEC-A7200 Signaalit ja järjestelmät

ELEC-A7200 Signaalit ja järjestelmät ELEC-A700 Signaalit ja järjestelmät Professori Riku Jäntti Luento 3. Lineaariset aikainvariantit (LTI) järjestelmät taajuusalueessa Signaalin suodattaminen Epälineaariset muistittomat järjestelmät Satunnaissignaalit

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

12. Stabiilisuus. Olkoon takaisinkytketyn vahvistimen vahvistus A F (s) :

12. Stabiilisuus. Olkoon takaisinkytketyn vahvistimen vahvistus A F (s) : 1. Stabiilisuus Olkoon takaisinkytketyn vahvistimen vahvistus A F (s) : AOL ( s) AF ( s) (13 10) 1+ T ( s) A OL :n ja T:n määrittäminen kuvattiin oppikirjan 1-7 kappaleessa. Näiden taajuus käyttäytyminen

Lisätiedot

järjestelmät Luento 8

järjestelmät Luento 8 DEE-111 Lineaariset järjestelmät Luento 8 1 Lineaariset järjestelmät Risto Mikkonen 7.8.214 Luento 7 - Recap Z-muunnos ja sen ominaisuudet Lineaaristen dierenssiyhtälöiden käsittely Alku- ja loppuarvot

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

1 PID-taajuusvastesuunnittelun esimerkki

1 PID-taajuusvastesuunnittelun esimerkki Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + )

Lisätiedot

spektri taajuus f c f c W f c f c + W

spektri taajuus f c f c W f c f c + W Kaistanpäästösignaalit Monet digitaaliset tiedonsiirtosignaalit ovat keskittyneet jonkin tietyn kantoaaltotaajuuden f c ympäristöön siten, että signaali omaa merkittäviä taajuuskomponetteja vain kaistalla

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

S Signaalit ja järjestelmät

S Signaalit ja järjestelmät dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä

Lisätiedot

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla 4.1 Näytteenottolause 4. Fourier-analyysin sovelletuksia Näyttenottosignaali (t) = k= δ(t kt). T on näytteenottoväli, ja ω T = 1 T on näyttenottotaajuus. Funktion (signaalin) f(t) näytteistäminen tapahtuu

Lisätiedot

Dynaamisten systeemien identifiointi 1/2

Dynaamisten systeemien identifiointi 1/2 Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

Lisätiedot

2. kierros. 2. Lähipäivä

2. kierros. 2. Lähipäivä 2. kierros 2. Lähipäivä Viikon aihe Vahvistimet, kohina, lineaarisuus Siirtofunktiot, tilaesitys Tavoitteet: tietää Yhden navan vasteen ekvivalentti kohinakaistaleveys Vastuksen terminen kohina Termit

Lisätiedot

Katsaus suodatukseen

Katsaus suodatukseen Katsaus suodatukseen Suodatuksen perustaa, ideaaliset suotimet, käytännön toteutuksia Suodatus Suodatusta käytetään yleensä signaalin muokkaukseen siten, että 2 poistetaan häiritsevä signaali hyötysignaalin

Lisätiedot

Luento 8. tietoverkkotekniikan laitos

Luento 8. tietoverkkotekniikan laitos Luento 8 Luento 8 Signaalien suodatus 8. Ideaaliset suodattimet Ideaaliset alipäästö-, ylipäästö-, kaistanpäästö- ja kaistanestosuodattimet Oppenheim 6.3 8. Käytännön suodattimet Käytännön suodattimet,

Lisätiedot

1. Annettu siirtofunktio on siis G(s) ja vastaava systeemi on stabiili. Heräte (sisäänmeno) on u(t) = A sin(ωt), jonka Laplace-muunnos on

1. Annettu siirtofunktio on siis G(s) ja vastaava systeemi on stabiili. Heräte (sisäänmeno) on u(t) = A sin(ωt), jonka Laplace-muunnos on Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-419 Systeemien Identifiointi 8 harjoituksen ratkaisut 1 Annettu siirtofunktio on siis G(s) ja vastaava systeemi

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-00 Signaalinkäsittelyn menetelmät, Tentti 6.3.006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja

Lisätiedot

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006 Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien

Lisätiedot

T SKJ - TERMEJÄ

T SKJ - TERMEJÄ T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot Missä mennään systeemi mallin mallin käyttötarkoitus, reunaehdot käyttö- (fysikaalinen) mallintaminen luonnonlait yms. yms. identifiointi kokeita kokeita + päättely päättely vertailu mallikandidaatti validointi

Lisätiedot

Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P

Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P Säädön kotitehtävä vk3 t. 1 a) { Y =G K P E H E=R K N N G M Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. G R s = Y R = GK P s 1 = KK 1 GK P K N G P M s 2 3s 2

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

ELEC-C1230 Säätötekniikka 10. laskuharjoitus Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu

ELEC-C1230 Säätötekniikka 10. laskuharjoitus Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu ELEC-C23 Säätötekniikka. laskuharjoitus Taajuustason tekniikat: Boden ja Nyquistin diagrait, kopensaattorien suunnittelu Quiz: Alla olevassa kuvassa on esitetty vaiheenjohtokopensaattorin siirtofunktio,

Lisätiedot

Sinin muotoinen signaali

Sinin muotoinen signaali Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x

Lisätiedot

Taajuus-, Fourier- ja spektraalianalyysi

Taajuus-, Fourier- ja spektraalianalyysi Taajuus-, Fourier- ja spektraalianalyysi Transientti- ja korrelaatioanalyysi tähtäävät impulssivasteen (askelvasteen) mallintamiseen Kuvaus aikatasossa Taajuus- Fourier- ja spektraalianalyysi tähtäävät

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Kotitehtävät 1-6: Vastauksia

Kotitehtävät 1-6: Vastauksia /V Integraalimuunnokset Metropolia/. Koivumäki Kotitehtävät -6: Vastauksia. Merkitse kompleksitasoon näiden kompleksilukujen sijainti: a = 3 j b = 3 35 (3 kulmassa 35 ) jπ / c = d = 3 e j 9.448 e cos(

Lisätiedot

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7 MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 5.5.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

4. kierros. 1. Lähipäivä

4. kierros. 1. Lähipäivä 4. kierros 1. Lähipäivä Viikon aihe Taajuuskompensointi, operaatiovahvistin ja sen kytkennät Taajuuskompensaattorit Mitoitus Kontaktiopetusta: 8 h Kotitehtäviä: 4 h + 0 h Tavoitteet: tietää Operaatiovahvistimen

Lisätiedot

Taajuus-, Fourier- ja spektraalianalyysi

Taajuus-, Fourier- ja spektraalianalyysi Taajuus-, Fourier- ja spektraalianalyysi Impulssi- ja askelvastetekniikat sekä korrelaatioanalyysi tähtäävät impulssivasteen mallintamiseen aikataso Taajuus- Fourier- ja spektraalianalyysi tähtäävät systeemin

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Taajuus-, Fourier- ja spektraalianalyysi

Taajuus-, Fourier- ja spektraalianalyysi Taajuus-, Fourier- ja spektraalianalyysi Transientti- ja korrelaatioanalyysi tähtäävät impulssivasteen (askelvasteen) mallintamiseen Taajuus- Fourier- ja spektraalianalyysi tähtäävät systeemin taajuusominaisuuksien

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt.

Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt. Harjoitus Malliratkaisut Tehtävä L[f(t)] ˆ f(t) e (t α) cos(ω t + β) f(t)e st dt ˆ e st t+α cos(ω t + β)dt cos(ω t + β) 2 (ej(ωt+β) + e j(ωt+β) ) L[f(t)] 2 eα 2 ˆ ˆ e st t+α (e j(ω t+β) + e j(ω t+β) )

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 18.3.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

1 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu päästökaistavärähtely on 0.05 db ja estokaistalla vaimennus on 44 db.

1 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu päästökaistavärähtely on 0.05 db ja estokaistalla vaimennus on 44 db. TL5362DSK-algoritmit (J. Laitinen) 2.2.26 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu äästökaistavärähtely on.5 db ja estokaistalla vaimennus on 44 db. 6 Kuinka suuri maksimioikkeama vahvistusarvosta

Lisätiedot

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,

Lisätiedot

3. kierros. 1. Lähipäivä

3. kierros. 1. Lähipäivä 3. kierros 1. Lähipäivä Viikon aihe (viikko 1/2) Takaisinkytketyt vahvistimet Takaisinkytkentä, suljettu säätöluuppi Nyquistin kriteeri, stabiilisuus Taajuusanalyysi, Boden ja Nyquistin diagrammit Systeemin

Lisätiedot

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

MATEMATIIKAN JAOS Kompleksianalyysi

MATEMATIIKAN JAOS Kompleksianalyysi MATEMATIIKAN JAOS Kompleksianalyysi Harjoitustehtäviä, syksy 00. Määrää kompleksiluvun a) = 3 j + 3j, b) = j, + j c) = ( 3 3 3 j)( j) itseisarvo ja argumentti.. Määrää sellaiset reaaliluvut x ja y, että

Lisätiedot

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU ENSO IKONEN PYOSYS 1 SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Älykkäät koneet ja järjestelmät / systeemitekniikka Jan 019

Lisätiedot

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2. 2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x

Lisätiedot

Lineaarialgebra MATH.1040 / Piirianalyysiä 2

Lineaarialgebra MATH.1040 / Piirianalyysiä 2 Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα

Lisätiedot

LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI

LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI Päivitetty: 25/02/2004 MV 2-1 2. SPEKTRIANALYSAATTORI Työn tarkoitus: Työn tarkoituksena on tutustua spektrianalysaattorin käyttöön, sekä oppia tuntemaan erilaisten

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

Kapeakaistainen signaali

Kapeakaistainen signaali Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi

Lisätiedot

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri Luento 4 Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 9 Oppenheim 3.3, 3.4 4.1 Fourier-sarja Kompleksi F-sarja F-sinisarja Sinc-funktio 4. Viivaspektri, tehospektri Viivaspektri Parsevalin teoreema

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Laplace-muunnos: määritelmä

Laplace-muunnos: määritelmä Laplace-muunnos: määritelmä Olkoon f : [, [ R funktio. Funktion f Laplacen muunnos määritellään yhtälöllä F(s) = L(f) := f(t)e st dt edellyttäen, että integraali f(t)e st dt suppenee. Riittävä ehto integraalin

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan

Lisätiedot

Remez-menetelmä FIR-suodinten suunnittelussa

Remez-menetelmä FIR-suodinten suunnittelussa Luku Remez-menetelmä FIR-suodinten suunnittelussa Remez-menetelmä, eli optimaalinen menetelmä etsii minimax-mielessä optimaalista suodinta. Algoritmi johdetaan seuraavassa (täydellisyyden vuoksi) melko

Lisätiedot

Boost-hakkuri. Hakkurin tilaesitykset

Boost-hakkuri. Hakkurin tilaesitykset Boost-hakkuri Boost-hakkurilla on toiminnassaan kaksi tilaa. Päällä, jolloin kytkimestä virtapiiri on suljettu ja pois silloin kun virtapiiri on kytkimestä aukaistu. Kummallekin tilalle tulee muodostaa

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo

Lisätiedot

Kompleksianalyysi, viikko 7

Kompleksianalyysi, viikko 7 Kompleksianalyysi, viikko 7 Jukka Kemppainen Mathematics Division Fourier-muunnoksesta Laplace-muunnokseen Tarkastellaan seuraavassa kausaalisia signaaleja eli signaaleja x(t), joille x(t) 0 kaikilla t

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

H(s) + + _. Ymit(s) Laplace-tason esitykseksi on saatu (katso jälleen kalvot):

H(s) + + _. Ymit(s) Laplace-tason esitykseksi on saatu (katso jälleen kalvot): ELEC-C3 Säätötekniikka 5. laskuharjoitus Vastaukset Quiz: Luennon 4 luentokalvojen (luku 4) lopussa on esimerkki: Sähköpiiri (alkaa kalvon 39 tienoilla). Lue esimerkki huolellisesti ja vastaa seuraavaan:

Lisätiedot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima. Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia 1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista

Lisätiedot