1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:
|
|
- Miina Nurminen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 TL61, Näytejonosysteemit (K00) Harjoitus 1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) 1 (t) = cos(000πt) + sin(6000πt) + cos(00πt) ja ) (t) = cos(00πt)cos(000πt). a) 1 (t) = cos(000πt) + sin(6000πt) + cos(00πt) = cos(π00t)+sin(π000t)+cos(π6000t) f ma = 6000 Hz,min = f ma = 00 Hz = 1 khz ) (t) = cos(00πt)cos(000πt) = {0. cos(00πt-000πt)+ 0. cos(00πt+000πt)} =. cos(-000πt)+. cos(000πt) =. cos(000πt)+. cos(000πt) =. cos(π0t)+. cos(π00t) f ma = 00 Hz,min = f ma = 000 Hz = khz 1 *cos(000*pi*t)+*sin(6000*pi*t)+*cos(00*pi*t) t [s] *cos(00*pi*t)cos(000*pi*t) t [s] Kuvassa on esitetty signaaleista ms pituinen osa. Ylemmästä signaalista on siis kuvan aikana otettava vähintään näytepistettä ja alemmasta vastaavasti vähintään 0 näytepistettä. Huomaa, että -kohdan ratkaisussa on hyödynnetty trigonometrian kaavaston kaavoja. Jyrki Laitinen 1
2 TL61, Näytejonosysteemit (K00) Harjoitus. Millainen on näytejonon spektri, kun näytteistetään analogista signaalia, jonka taajuuskaista on 0... khz? Tarkastele erikseen tapaukset = khz, = khz ja = khz. Millaisella suotimella alkuperäinen signaali voidaan kussakin tapauksessa rekonstruoida (eli suodattaa näytejonosta)? Analogisesta signaalista muodostetun näytejonon spektrin hahmottelemisessa on kaksi perussääntöä, jotka pätevät aina: 1) Alkuperäinen spektri näkyy myös näytejonon spektrissä. ) Alkuperäisen spektrin monikerrat näkyvät näytejonon spektrissä näytetaajuuden välein. Piirretään tämän perusteella spektrit. - = khz: - = khz: - = khz: - Kuvassa ylimpänä alkuperäisen analogisen signaalin spektri sekä näytejonojen spektrit. Kun näytetaajuus = khz, tapahtuu laskostuminen (spektrin minikerrat menevät päällekkäin), eikä alkuperäistä signaalia voida enää suodattaa näytejonosta. Näytetaajuuksilla = khz ja = khz alkuperäinen signaali voidaan suodattaa alipäästösuotimella (LPF), jonka päästökaistan rajataajuus on khz. Näytejonojen spektreihin on hahmoteltu katkoviivalla tällaisen suotimen amplitudispektri. Jyrki Laitinen
3 TL61, Näytejonosysteemit (K00) Harjoitus. Järjestelmän lähdössä on signaali-kohinasuhteen oltava vähintään 0 db. Määritä vaadittava kvantisointitasojen lukumäärä ja tarkka SQNR lähdössä, kun oletetaan, että signaalin keskimääräinen teho on 0.. Merkitään = kvantisoijan ittimäärä L = kvantisointitasojen lukumäärä SQNR = log σ = 0. σ σ n log ( σ ) [ db] SQNR = 6 L = SQNR = tarkka 6 = 6 [ db] =.9 db 7 :1 Jyrki Laitinen
4 TL61, Näytejonosysteemit (K00) Harjoitus. Analogiasignaali kvantisoidaan ja koodatut näytearvot siirretään vastaanottajalle, jonka on tunnettava näytearvot tarkkuudella ±0.% V fs (kvantisoitava jännitealue). Kuinka monella itillä näytteet on vähintään koodattava? Kvantisoinnissa syntyvä maksimivirhe on puolet kvantisointivälistä. Jos sallittu maksimivirhe on nyt 0.% V fs = 0.00 V fs, on suurin sallittu kvantisointivälin suuruus 0.00 V fs. Kvantisointivälien lukumäärälle L pätee tällöin L V fs 0.00 V fs = 0 Toisaalta tiedetään L = = 7 Näytteet on siis koodattava vähintään seitsemän itin tarkkuudella. Jyrki Laitinen
5 TL61, Näytejonosysteemit (K00) Harjoitus. (Kotitehtävä) Tarkastellaan analogista signaalia, jonka amplitudispektri on seuraava f/khz Hahmottele signaalista muodostetun näytejonon spektri, kun 1) = khz, ) = khz ja ) = 0 khz. Määritä myös millaisella suotimella alkuperäinen signaali voidaan kussakin tapauksessa rekonstruoida (eli suodattaa näytejonosta). = khz: - 0 = khz: - 0 = 0 khz: - 0 = khz: Monikertaspektrit laskostuvat nollataajuuden ympäristöön. Alkuperäinen signaali voidaan kuitenkin rekonstruoida kaistanpäästösuotimella. = khz: Monikertaspektrit laskostuvat. Alkuperäistä signaalia ei voida rekonstruoida. = 0 khz: Näytetaajuus on nyt kaksinkertainen signaalin suurimpaan taajuuteen verrattuna. Alkuperäinen signaali voidaan rekonstruoida (ideaalisella) alipäästösuotimella. Jyrki Laitinen
1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:
1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) x 1 (t) = cos(πt) + sin(6πt) + 1cos(1πt) ja b) x (t) = cos(1πt)cos(πt). a) x 1 (t) = cos(πt) + sin(6πt) +
IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.
TL536DSK-algoritmit (J. Laitinen)..5 Välikoe, ratkaisut Millaisia ongelmia kvantisointi aiheuttaa signaalinkäsittelyssä? Miksi ongelmat korostuvat IIR-suodatinten tapauksessa? Tarkastellaan Hz taajuista
Alipäästösuotimen muuntaminen muiksi perussuotimiksi
Alipäästösuotimen muuntaminen muiksi perussuotimiksi Usein suodinsuunnittelussa on lähtökohtana alipäästösuodin (LPF), josta voidaan yksinkertaisilla operaatioilla muodostaa ylipäästö- (HPF), kaistanpäästö-
Tuntematon järjestelmä. Adaptiivinen suodatin
1 1 Vastaa lyhyesti seuraaviin a) Miksi signaaleja ylinäytteistetään AD- ja DA-muunnosten yhteydessä? b) Esittele lohkokaaviona adaptiiviseen suodatukseen perustuva tuntemattoman järjestelmän mallinnus.
TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja SPDemo-ohjelmistoja käyttäen. Kokoa
1 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu päästökaistavärähtely on 0.05 db ja estokaistalla vaimennus on 44 db.
TL5362DSK-algoritmit (J. Laitinen) 2.2.26 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu äästökaistavärähtely on.5 db ja estokaistalla vaimennus on 44 db. 6 Kuinka suuri maksimioikkeama vahvistusarvosta
Alla olevassa kuvassa on millisekunnin verran äänitaajuisen signaalin aaltomuotoa. Pystyakselilla on jännite voltteina.
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki 1 Kirjan lukuun 3 liittyvää lisäselitystä ja esimerkkejä Kirjan luvussa 3 (Signals Carried over the Network) luodaan katsaus siihen, minkälaisia
SGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
SGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti 6.3.006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja
Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):
TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a
Puheenkoodaus. Olivatpa kerran iloiset serkukset. PCM, DPCM ja ADPCM
Puheenkoodaus Olivatpa kerran iloiset serkukset PCM, DPCM ja ADPCM PCM eli pulssikoodimodulaatio Koodaa jokaisen signaalinäytteen binääriseksi (eli vain ykkösiä ja nollia sisältäväksi) luvuksi kvantisointitasolle,
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen
Kapeakaistainen signaali
Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi
Laskuharjoitus 4 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 4 (2.10.2013): Tehtävien vastauksia 1. Tutkitaan signaalista näytteenotolla muodostettua PAM (Pulse Amplitude Modulation) -signaalia.
Mitä on signaalien digitaalinen käsittely
Mitä on signaalien digitaalinen käsittely Signaalien digitaalinen analyysi: mitä sisältää, esim. mittaustulosten taajuusanalyysi synteesi: signaalien luominen, esim. PC:n äänikortti käsittely: oleellisen
T140103 Sähkömittaustekniikka
T140103 Sähkömittaustekniikka Pekka Rantala Kevät 2015 (9.3.2015) Vaadittavat suoritukset Välikokeiden tai tentin hyväksytty suorittaminen Harjoituksissa/labrassa läsnäolo (100 %) Harjoitusten/labrojen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 18.3.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus
L1: Audio Prof. Vesa Välimäki ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely Luennon sisältö Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus Lyhyt FIR-suodin
ELEC-C5070 Elektroniikkapaja (5 op)
(5 op) Luento 5 A/D- ja D/A-muunnokset ja niiden vaikutus signaaleihin Signaalin A/D-muunnos Analogia-digitaalimuunnin (A/D-muunnin) muuttaa analogisen signaalin digitaaliseen muotoon, joka voidaan lukea
Laskuharjoitus 2 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti
Tietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Signaalien datamuunnokset. Digitaalitekniikan edut
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena
Signaalien datamuunnokset
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan
TL5231, Signaaliteoria (S2004) Matlab-harjoituksia
1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista
3. Pulssimodulaatiojärjestelmät
3.1. Yleistä 3. Pulssimodulaatiojärjestelmät kappaleessa käsitellään pääasiassa analogisesta digitaaliseen tietoliikenteeseen siirtymiseen liittyviä asioita: näytteenotto, joka on kaikkien pulssimodulaatiomenetelmien
puheen laatu kärsii koodauksesta mahdollisimman vähän. puhe pakkautuu mahdollisimman pieneen määrään bittejä.
Luku 1 Puheen koodaus Puheen koodauksella tarkoitetaan puhesignaalin esittämiseen tarvittavan bittimäärän pienentämistä sillä tavalla, että puhesignaalin laatu ja ymmärrettävyys kärsivät mahdollisimman
20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10
Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste
1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen
AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (008). Digital audio signal processing (nd ed). Reiss. (008), Understanding sigma-delta modulation: The solved and
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 5.5.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Spektrianalysaattori. Spektrianalysaattori
Mittaustekniikan perusteet / luento 9 Spektrianalysaattori Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien
11. kierros. 1. Lähipäivä
11. kierros 1. Lähipäivä Viikon aihe AD/DA-muuntimet Signaalin digitalisointi Kvantisointivirhe Kvantisointikohina Kytkinkapasitanssipiirit Mitoitus Kontaktiopetusta: 6 tuntia Kotitehtäviä: 4 tuntia Tavoitteet:
AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (1997). Digital audio signal processing
AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (1997). Digital audio signal processing Sisältö: Näytteistys, laskostuminen Kvantisointi, kvantisointivirhe, kvantisointisärö,
SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet
SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:
SIGNAALITEORIAN KERTAUSTA OSA 2
1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman
TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT
3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään
Analogiapiirit III. Keskiviikko , klo , TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet
Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 8. Keskiviikko 5.2.2003, klo. 12.15-14.00, TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet 1. Mitoita kuvan 1 2. asteen G m -C
Signaalinkäsittelyn sovellukset
Signaalinkäsittelyn laitos. Opetusmoniste 26: Institute of Signal Processing. Lecture Notes 26: Heikki Huttunen Signaalinkäsittelyn sovellukset Tampere 26 Tampereen teknillinen yliopisto. Signaalinkäsittelyn
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons.
Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Sisältö:! Johdanto! IIR vai FIR äänten suodattamiseen?!
Signaalien generointi
Signaalinkäsittelyssä joudutaan usein generoimaan erilaisia signaaleja keinotekoisesti. Tyypillisimpiä generoitavia aaltomuotoja ovat eritaajuiset sinimuotoiset signaalit (modulointi) sekä normaalijakautunut
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen
TL553 DSK, laboraatiot (.5 op) Kuvasignaalit Jyrki Laitinen TL553 DSK, laboraatiot (.5 op), K25 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja VCDemo-ohjelmistoja käyttäen. Kokoa erilliseen mittauspöytäkirjaan
Spektri- ja signaalianalysaattorit
Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden
Jaksollisen signaalin spektri
Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta
A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)
ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari
Signaalien digitaalinen käsittely
Signaalien digitaalinen käsittely Antti Kosonen Syksy 25 LUT Energia Sähkötekniikka Alkulause Luentomoniste pohjautuu kirjaan Digital Signal Processing: Principles, Algorithms, and Applications, Proakis
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma
KON-C34 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma Mitattava suure Tarkka arvo Mittausjärjestelmä Mitattu arvo Ympäristö Mitattava suure Anturi Signaalinkäsittely
nykyään käytetään esim. kaapelitelevisioverkoissa radio- ja TVohjelmien
2.1.8. TAAJUUSJAKOKANAVOINTI (FDM) kanavointi eli multipleksointi tarkoittaa usean signaalin siirtoa samalla siirtoyhteydellä käyttäjien kannalta samanaikaisesti analogisten verkkojen siirtojärjestelmät
S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä
S-18.18 Elektroniset mittaukset ja elektroniikan häiriökysymykset 1. Vastaa lyhyesti: a) Mitä on kohina (yleisesti)? b) Miten määritellään kohinaluku? c) Miten / missä syntyy raekohinaa? Vanhoja tenttitehtäviä
Digitaalinen signaalinkäsittely Johdanto, näytteistys
Digitaalinen signaalinkäsittely Johdanto, näytteistys Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn
Esipuhe. Tampereella, 9. toukokuuta 2003, Heikki Huttunen heikki.huttunen@tut.fi
Esipuhe Käsillä oleva moniste on tarkoitettu opetusmateriaaliksi Tampereen teknillisen yliopiston signaalinkäsittelyn laitoksen kurssille "8253: Johdatus signaalinkäsittelyyn 2". Materiaali on kehittynyt
Virheen kasautumislaki
Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain
8000253: Johdatus signaalinkäsittelyyn 2
TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan osasto Signaalinkäsittelyn laitos TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology Institute of Signal Processing Opetusmoniste 2-23
Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7
MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet
SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen
SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5
S Signaalit ja järjestelmät
dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä
LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI
LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI Päivitetty: 25/02/2004 MV 2-1 2. SPEKTRIANALYSAATTORI Työn tarkoitus: Työn tarkoituksena on tutustua spektrianalysaattorin käyttöön, sekä oppia tuntemaan erilaisten
Kotitehtävät 1-6: Vastauksia
/V Integraalimuunnokset Metropolia/. Koivumäki Kotitehtävät -6: Vastauksia. Merkitse kompleksitasoon näiden kompleksilukujen sijainti: a = 3 j b = 3 35 (3 kulmassa 35 ) jπ / c = d = 3 e j 9.448 e cos(
Luento 8. Suodattimien käyttötarkoitus
Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..007 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden
Alias-ilmiö eli taajuuden laskostuminen
Prosessiorientoituneet mallit Todellista hybridijärjestelmää ELEC-C1230 Säätötekniikka Luku 12: Näytteenottoteoreema ja jatkuvien säätimien diskreetit approksimaatiot Prosessiorientoituneet mallit katsotaan
1 Olkoon suodattimen vaatimusmäärittely seuraava:
Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus
LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi
LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...
SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1
SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 7 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus R L = 10 ς. Kyllästysalueella kollektori-emitterijännite
Remez-menetelmä FIR-suodinten suunnittelussa
Luku Remez-menetelmä FIR-suodinten suunnittelussa Remez-menetelmä, eli optimaalinen menetelmä etsii minimax-mielessä optimaalista suodinta. Algoritmi johdetaan seuraavassa (täydellisyyden vuoksi) melko
Elektroniikka, kierros 3
Elektroniikka, kierros 3 1. a) Johda kuvan 1 esittämän takaisinkytketyn systeemin suljetun silmukan vahvistuksen f lauseke. b) Osoita, että kun silmukkavahvistus β 1, niin suljetun silmukan vahvistus f
Perusmittalaitteet 2. Spektrianalyysi. Mittaustekniikan perusteet / luento 4. Spektrianalyysi. Logaritmiasteikko ja db (desibel) Spektrianalysaattori
Mittaustekniikan perusteet / luento 4 Perusmittalaitteet Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien
Heikki Huttunen Signaalinkäsittelyn sovellukset
Tampereen teknillinen yliopisto. Signaalinkäsittelyn laitos. Opetusmoniste 2: Tampere University of Technology. Department of Signal Processing. Lecture Notes 2: Heikki Huttunen Signaalinkäsittelyn sovellukset
D-LUOKAN AUDIOVAHVISTIMEN MODULOINTIMENETELMIEN VERTAILU JA VALINTA
LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT energia, Sähkötekniikan koulutusohjelma, Sovelletun elektroniikan laboratorio KANDIDAATIN TYÖ D-LUOKAN AUDIOVAHVISTIMEN MODULOINTIMENETELMIEN VERTAILU JA VALINTA
Kompleksiluvut signaalin taajuusjakauman arvioinnissa
Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos
SIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset
Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset valintakriteerit resoluutio ja nopeus Yleisimmät A/D-muunnintyypit:
12. Laskostumisen teoria ja käytäntö
12.1. Aliakset eli laskostuminen ja näytteistys 12. Laskostumisen teoria ja käytäntö Monet seikat vaikuttavat kuvien laatuun tietokonegrafiikassa. Mallintamisesta ja muista tekijöistä syntyy myös artefakteja,
1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus.
TL536DSK-algoritmit (J. Laitinen) 6.4.5 Määrittele lyyeti euraavat käitteet a) Kvantiointivire. b) äytetaajuuden interpolointi. ) Adaptiivinen uodatu. a) Kvantiointivire yntyy, kun ignaalin ykittäinen
N:o 294 2641. Liite 1. Staattisen magneettikentän (0 Hz) vuontiheyden suositusarvo.
N:o 94 641 Liite 1. Staattise mageettiketä (0 Hz) vuotiheyde suositusarvo. Altistumie Koko keho (jatkuva) Mageettivuo tiheys 40 mt Tauluko selityksiä Suositusarvoa pieemmätki mageettivuo tiheydet saattavat
L/M = 16.9/9.1 = 169/91 = 13/7.
TL56DSK-algoritit J. Laitinn 7.. TTES5, TTES5Z Väliko, ratkaisut Signaali x[n], onka näyttaauus on 9. khz, pitää uuntaa signaaliksi, onka näyttaauus on 6.9 khz. Esitä uunnoksn vaiht lohkokaaviona skä tarvittavin
b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)
Matematiikan TESTI, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/017 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
LASKOSTUMISEN HAVAITSEMINEN SAHA-AALLOSSA
Heidi-Maria Lehtonen 1, Jussi Pekonen 2 ja Vesa Välimäki 1 1 Aalto-yliopisto Sähkötekniikan korkeakoulu Signaalinkäsittelyn ja akustiikan laitos PL 13, 76 AALTO heidi-maria.lehtonen@aalto.fi 2 Itsenäinen
a) Määritä signaalin x[n] varianssi (keskimääräinen teho) σ x c) Määritä signaalikvantisointikohinasuhde SQNR, kun tiedetään, että
TL, DSK-lgoritmit S rjoitus. Trkstll kosiisigli [] cosπt s. Määritä sigli [] vrissi kskimääräi to. b Määritä sigli [] jot c Määritä siglikvtisoitikoisud SQNR, ku tidtää, ttä.79. b SQNR log Kvss b o kvtisoij
TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.
TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.
Tekniikka ja liikenne (5) Tietoliikennetekniikan laboratorio
Tekniikka ja liikenne 4.4.2011 1 (5) Tietoliikennetekniikan laboratorio Työ 1 PCM-työ Työn tarkoitus Työssä tutustutaan pulssikoodimodulaation tekniseen toteutustapaan. Samalla nähdään, miten A/Dmuunnin
SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi. Äänitaajuusjakosuodintyö (2013-2014)
TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn laitos SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi Äänitaajuusjakosuodintyö (2013-2014)
Suomenkielinen käyttöohje www.macrom.it
MA.00D Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 0 Ω 0 RCA-tuloliitäntä matalatasoiselle signaalille Tasonsäätö Alipäästösuotimen säätö Sub Sonic -suotimen säätö Bassokorostuksen
Numeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN
LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet
Perusmittalaitteet 2. Spektrianalyysi. Mittaustekniikan perusteet / luento 4. Spektrianalyysi. Logaritmiasteikko ja db (desibel) Spektrianalysaattori
Mittaustekniikan perusteet / luento 4 Perusmittalaitteet Spektrianalyysi Jean Bapiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien
Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.
Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden
3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
Algebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
y + 4y = 0 (1) λ = 0
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN
ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy
Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu
Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,
MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2
BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden