Alipäästösuotimen muuntaminen muiksi perussuotimiksi
|
|
- Mikko Hänninen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Alipäästösuotimen muuntaminen muiksi perussuotimiksi Usein suodinsuunnittelussa on lähtökohtana alipäästösuodin (LPF), josta voidaan yksinkertaisilla operaatioilla muodostaa ylipäästö- (HPF), kaistanpäästö- (BPF) ja kaistanestosuotimia (BSF). LPF -> HPF FIR-alipäästösuodin voidaan muuntaa ylipäästösuotimeksi vaihtamalla joka toisen suodinkertoimen etumerkki. Teoreettisesti tässä moduloidaan alipäästösuotimen spektrillä fs/2-taajuista kantoaaltoa, jolloin suotimen spektri siirtyy taajuuden fs/2 ympäristöön. Näin ylipäästösuotimen rajataajuus (f s /2 f c ) määräytyy suoraan lähtökohtana olevan alipäästösuotimen rajataajuudesta f c (kuva ). h[n].4 H(f) f2/2 fs/2 h2[n].4 H2(f)] fs/2 fs/2 Kuva. Alipäästö- (h) ja vastaavan ylipäästösuotimen (h2) impulssivasteet (vasemmalla) ja amplitudispektrit (oikealla). Ylipäästösuodin on tässä muodostettu vaihtamalla alipäästösuotimen impulssivasteessa joka toisen arvon etumerkki. LPF -> BPF Kaistanpäästösuodatus voidaan toteuttaa suorittamalla sopivilla rajataajuuksilla alipäästö- (h ) ja ylipäästösuodatus (h 2 ) peräkkäin (kaskadissa). Tarvittaessa peräkkäiset suotimet voidaan korvata yhdellä suotimella (kaistanpäästösuodin h 3 ) konvoloimalla impulssivasteet (kuva 2). Konvoluution tuloksena syntyvän suotimen asteluku on Q + Q 2, missä Q on alipäästösuotimen h asteluku ja Q 2 on ylipäästösuotimen h 2 asteluku. Jotta peräkkäiset suotimet toteuttaisivat kaistanpäästösuodatuksen on alipäästösuotimen rajataajuuden (f c ) oltava suurempi
2 kuin f s /4 ja vastaavasti ylipäästösuotimen rajataajuuden (f s /2 f c ) pienempi kuin f s /4. Kaistanpäästösuotimen rajataajuudet määräytyvät suoraan lähtökohtana olevien ali- ja ylipäästösuotimen rajataajuuksista (kuva 3). LP HP x[n] h [n] h 2 [n] y[n] BP x[n] h 3 [n] = h [n]* h 2 [n] y[n] Kuva 2. Kaistanpäästösuodatuksen toteuttaminen peräkkäisellä ali- (h) ja ylipäästösuotimella (h2). Tarvittaessa suotimet voidaan yhdistää yhdeksi kaistanpäästösuotimeksi (h3) konvoloimalla ali-ja ylipäästösuotimen impulssivasteet keskenään. h[n].5 H(f) h2[n] h3[n] = h[n] * h2[n] fs/2 fs/2.5.5 H2(f) -fs/2 fs/2.5.5 H3(f) -fs/2 fs/2 Kuva 3. Alipäästö- (h) ja vastaavan ylipäästösuotimen (h2)sekä näistä muodostetun kaistanpäästösuotimen (h3) impulssivasteet (vasemmalla) ja amplitudispektrit (oikealla). Kaistanpäästösuodin on tässä muodostettu konvoloimalla ali- ja ylipäästösuotimen impulssivasteet. LPF -> BSF
3 Kaistanestosuodatus voidaan toteuttaa sopivan rajataajuuden omaavilla rinnakkaisilla alipäästö- (h ) ja ylipäästösuotimella (h 2 ). Tarvittaessa rinnakkaiset suotimet voidaan korvata yhdellä suotimella (kaistanestosuodin h 3 ) laskemalla impulssivasteet yhteen (kuva 4). Yhteenlaskun tuloksena syntyvän suotimen asteluku on sama kuin yhteenlaskettavien suotimien asteluku. LP BS h [n] x[n] y[n] x[n] h 3 [n] = h [n] + h 2 [n] h 2 [n] y[n] HP Kuva 4. Kaistanestosuodatuksen toteuttaminen rinnakkaisella ali- (h) ja ylipäästösuotimella (h2). Tarvittaessa suotimet voidaan yhdistää yhdeksi kaistanestosuotimeksi (h3) laskemalla yhteen ali-ja ylipäästösuotimen impulssivasteiden arvot. h[n].5 H(f) h2[n] h3[n] = h[n] + h2[n] fs/2 fs/2.5.5 H2(f) -fs/2 fs/2.5.5 H3(f) -fs/2 fs/2 Kuva 5. Alipäästö- (h) ja vastaavan ylipäästösuotimen (h2)sekä näistä muodostetun kaistanestosuotimen (h3) impulssivasteet (vasemmalla) ja amplitudispektrit (oikealla). Kaistanestosuodin on tässä muodostettu laskemalla yhteen ali- ja ylipäästösuotimen impulssivasteet. Jotta peräkkäiset suotimet toteuttaisivat kaistanestosuodatuksen on alipäästösuotimen rajataajuuden (f c ) oltava pienempi kuin f s /4 ja vastaavasti ylipäästösuotimen
4 rajataajuuden (f s /2 f c ) suurempi kuin f s /4.. Kaistanestosuotimen rajataajuudet määräytyvät suoraan lähtökohtana olevien ali- ja ylipäästösuotimen rajataajuuksista (kuva 5). Esimerkki. Kaistanestosuotimen muodostaminen alipäästösuotimesta lähtien. Määritetään suodinsuunnitteluohjelmalla alipäästösuodin h (n), kun rajataajuus f c = Hz, siirtymäkaistan leveys f = Hz ja näytetaajuus f s = 2 Hz. Suunnittelun tuloksena syntyvä suodin on esitetty kuvassa 6. Kuva 6. Matlabin sptool-ohjelmistolla suunniteltu alipäästösuodin. Impulssivasteeksi saadaan nyt: h (n) = {.866,.7698,.27,.2466,.3927,.4446,.3927,.2466,.27,.7698,.866} Suodin h [n] on FIR-alipäästösuodin, jonka asteluku on. Suodinkertoimia on siis yhteensä. Impulssivaste on symmetrinen, joten suotimen vaihe on lineaarinen. Impulssivasteen arvot ovat FIR-suotimen tapauksessa myös suodinkertoimien arvoja. Suodinkertoimet ovat nyt a =.866, a =.7698, a 2 =.27, a 3 =.2466, a 4 =.3927, a 5 =.2466, a 6 =.3927, a 7 =.2466, a 8 =.27, a 9 =.7698 ja a =.866. Suodatus tapahtuu impulssivasteen ja suodatettavan signaalin konvoluutiona y(n) = h(n) * x(n).
5 Alipäästösuodin voidaan muuntaa ylipäästösuotimeksi h 2 (n) vaihtamalla joka toisen impulssivasteen arvon etumerkki: h 2 (n) = {-.866,.7698, -.27,.2466, ,.4446, ,.2466, -.27,.7698, -.866} Ylipäästösuotimen rajataajuudeksi tulee nyt Hz Hz = 9 Hz (huomaa nyt f s /2 = Hz). Spektrin muoto määräytyy myös suoraan alipäästösuotimen spektrin muodosta. Suotimilla voidaan toteuttaa kaistanestosuodatus, jonka rajataajuudet ovat Hz ja 9 Hz. Kaistanestosuodatus voidaan toteuttaa joko asettamalla ali- ja ylipäästösuodin peräkkäin tai muodostamalla erillinen kaistanestosuodin h3(n) laskemalla yhteen impulssivasteet h (n) ja h 2 (n): h 3 (n) =,.5396,,.24932,,.28892,,.32932,,.5396, } Suotimen h 3 (n) impulssivasteessa on nyt vain viisi nollasta poikkeavaa kerrointa. Kuvassa 7 on esitetty suotimien h (n), h 2 (n) ja h 3 (n) impulssivasteet ja näistä diskreetillä Fourier-muunnoksella muodostetut amplitudispektrit..2 h[n].5 H(f) h2[n] h3[n] = h[n] + h2[n] fs/2 fs/2.5.5 H2(f) -fs/2 fs/2.5.5 H3(f) -fs/2 fs/2 Kuva 7. Alipäästö-( h ), ylipäästö- (h 2 ) ja vastaavan kaistanestosuotimen (h 3 ) impulssivasteet ja näistä diskreetillä Fourier-muunnoksella muodostetut amplitudispektrit.
6 Tehtävä Tiedetään, että FIR-suodatin, jonka kertoimet ovat a = -.7, a =.25, a 2 =.84, a 3 =.25 ja a 4 = -.7 toteuttaa oheisessa kuvassa esitetyn alipäästösuodatuksen (f s = 8 Hz, rajataajuus -6 db kohdalla) a) Esitä suodattimen impulssivaste ja differenssiyhtälö. b) Muunna a-kohdan suodatin ylipäästösuodattimeksi. Esitä suodattimen impulssivaste ja differenssiyhtälö. Hahmottele amplitudispektri. c) Yhdistä a- ja b-kohdan suodattimet siten, että niistä muodostuu kaistanpäästösuodatin. Hahmottele kaistanpäästösuodattimen amplitudispektri. Ratkaisu a) h LPF (n) = {-.7,.25,.84,.25, -.7} y(n) = -.7 x(n) +.25 x(n-) +.84 x(n-2) +.25 x(n-3) -.7 x(n-4) b) h HPF (n) = {.7,.25, -.84,.25,.7} y(n) =.7 x(n) +.25 x(n-) -.84 x(n-2) +.25 x(n-3) +.7 x(n-4)
7 c) Kaistanpäästösuodatus syntyy, kun ali- ja ylipäästö toteutetaan peräkkäin Huomaa: Tarvittaessa kaistanpäästösuodattimelle voidaan laskea kertoimet konvoluution kaavalla: h BPF ( n) = hlpf ( n) hhpf ( n) = h 4 k = LPF ( k) h HPF ( n k) = {.29,,.35,,.64,,.35,,.29}
8 Tehtävä 2 Tiedetään, että FIR-suodatin, jonka kertoimet ovat a = 5, a =.22, a 2 =.25, a 3 =.22 ja a 4 =.5 toteuttaa oheisessa kuvassa esitetyn alipäästösuodatuksen (f s = 8 Hz, rajataajuus -6 db kohdalla) a) Esitä suodattimen impulssivaste ja differenssiyhtälö. b) Muunna a-kohdan suodatin ylipäästösuodattimeksi. Esitä suodattimen impulssivaste ja differenssiyhtälö. Hahmottele amplitudispektri. c) Yhdistä a- ja b-kohdan suodattimet siten, että niistä muodostuu kaistanpäästösuodatin. Hahmottele kaistanpäästösuodattimen amplitudispektri. Ratkaisu a) h LPF (n) = {.5,.22,.25,.22,.5} y(n) =.5 x(n) +.22 x(n-) +.25 x(n-2) +.22 x(n-3) -.5 x(n-4) b) h HPF (n) = {-.5,.22, -.25,.22, -.5} y(n) = -.5 x(n) +.22 x(n-) -.25 x(n-2) +.22 x(n-3) -.5 x(n-4)
9 c) Kaistanestosuodatus syntyy, kun ali- ja ylipäästö toteutetaan rinnakkain Huomaa: Tarvittaessa kaistanestosuodattimelle voidaan laskea kertoimet laskemalla impulssivasteet yhteen: h BSF ( n) = h ( n) + h ( n) = {,.44,,.44, } LPF HPF
SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet
SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:
SGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 5.5.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
SGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 18.3.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
1 Vastaa seuraaviin. b) Taajuusvasteen
Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti 6.3.006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen
SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen
SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5
Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons.
Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Sisältö:! Johdanto! IIR vai FIR äänten suodattamiseen?!
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:
TL61, Näytejonosysteemit (K00) Harjoitus 1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) 1 (t) = cos(000πt) + sin(6000πt) + cos(00πt) ja ) (t) = cos(00πt)cos(000πt).
IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.
TL536DSK-algoritmit (J. Laitinen)..5 Välikoe, ratkaisut Millaisia ongelmia kvantisointi aiheuttaa signaalinkäsittelyssä? Miksi ongelmat korostuvat IIR-suodatinten tapauksessa? Tarkastellaan Hz taajuista
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
1 Olkoon suodattimen vaatimusmäärittely seuraava:
Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus
T Digitaalinen signaalinkäsittely ja suodatus
T-63 Digitaalinen signaalinkäsittely ja suodatus 2 välikoe / tentti Ke 4528 klo 6-9 Sali A (A-x) ja B (x-ö)m 2 vk on oikeus tehdä vain kerran joko 75 tai 45 Tee välikokeessa tehtävät, 2 ja 7 (palaute)
Tuntematon järjestelmä. Adaptiivinen suodatin
1 1 Vastaa lyhyesti seuraaviin a) Miksi signaaleja ylinäytteistetään AD- ja DA-muunnosten yhteydessä? b) Esittele lohkokaaviona adaptiiviseen suodatukseen perustuva tuntemattoman järjestelmän mallinnus.
TL5231, Signaaliteoria (S2004) Matlab-harjoituksia
1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista
T SKJ - TERMEJÄ
T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä
Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu
Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,
Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):
TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a
1 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu päästökaistavärähtely on 0.05 db ja estokaistalla vaimennus on 44 db.
TL5362DSK-algoritmit (J. Laitinen) 2.2.26 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu äästökaistavärähtely on.5 db ja estokaistalla vaimennus on 44 db. 6 Kuinka suuri maksimioikkeama vahvistusarvosta
Kompleksiluvut signaalin taajuusjakauman arvioinnissa
Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos
Katsaus suodatukseen
Katsaus suodatukseen Suodatuksen perustaa, ideaaliset suotimet, käytännön toteutuksia Suodatus Suodatusta käytetään yleensä signaalin muokkaukseen siten, että 2 poistetaan häiritsevä signaali hyötysignaalin
1 Johdanto. 2 Kriittinen näytteistys 2:lla alikaistalla. 1.1 Suodatinpankit audiokoodauksessa. Johdanto
Suodinpankit ja muunnokset* Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Spanias et al. Audio signal processing and coding. Wiley & Sons Smith, Spectral audio signal processing, online
FIR suodinpankit * 1 Johdanto
FIR suodinpankit * Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Saramäki. Multirate signal processing. TTKK:n kurssi 80558. * ) Aihealue on erittäin laaja. Esitys tässä on tarkoituksellisesti
Luento 8. Suodattimien käyttötarkoitus
Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..007 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden
SIGNAALITEORIAN KERTAUSTA OSA 2
1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman
1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:
1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) x 1 (t) = cos(πt) + sin(6πt) + 1cos(1πt) ja b) x (t) = cos(1πt)cos(πt). a) x 1 (t) = cos(πt) + sin(6πt) +
Remez-menetelmä FIR-suodinten suunnittelussa
Luku Remez-menetelmä FIR-suodinten suunnittelussa Remez-menetelmä, eli optimaalinen menetelmä etsii minimax-mielessä optimaalista suodinta. Algoritmi johdetaan seuraavassa (täydellisyyden vuoksi) melko
Suodinpankit ja muunnokset*
Suodinpankit ja muunnokset* Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Spanias et al. Audio signal processing and coding. Wiley & Sons Smith, Spectral audio signal processing, online
Spektri- ja signaalianalysaattorit
Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden
Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons.
Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Sisältö: Johdanto IIR vai FIR äänten suodattamiseen? Suodatinrakenteita
SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen
SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla
SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen
SGN-5 Signaalinkäsittelyn sovellukset Välikoe.. Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla - on. Sivuilla 4-6 on. Vastaa
Luento 8. tietoverkkotekniikan laitos
Luento 8 Luento 8 Signaalien suodatus 8. Ideaaliset suodattimet Ideaaliset alipäästö-, ylipäästö-, kaistanpäästö- ja kaistanestosuodattimet Oppenheim 6.3 8. Käytännön suodattimet Käytännön suodattimet,
Vastekorjaus (ekvalisointi)
Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Sisältö: Johdanto IIR vai FIR äänten suodattamiseen? Diskreettien IIR:ien suunnittelu jatkuva-aikaisista yllykorjaimet
Kapeakaistainen signaali
Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi
Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006
Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien
LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN
LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet
SUODATTIMET. Suodatinteorian perusteita
SUODATTIMET Suodatinteorian perusteita Suodattimen Q arvo Jyrkkyys Vaihesiirto Suodinapproksimaatiot ja niiden ominaisuudet suodattimet - suodattimet Keraamiset suotimet esonaattorit Aktiivisuodattimet
1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus.
TL536DSK-algoritmit (J. Laitinen) 6.4.5 Määrittele lyyeti euraavat käitteet a) Kvantiointivire. b) äytetaajuuden interpolointi. ) Adaptiivinen uodatu. a) Kvantiointivire yntyy, kun ignaalin ykittäinen
Mitä FIR suodin on oikeastaan. Pekka Ritamäki. Esittely. Esimerkki
Mitä FIR suodin on oikeastaan Pekka Ritamäki Esittely...1 Esimerkki...1 Mikä FIR suodin on?...3 Mitkä ovat FIR suotimen huonot ominaisuudet verrattuna IIR suotimiin?...5 Millä termeillä FIR suodinta kuvataan?...5
SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi. Äänitaajuusjakosuodintyö (2013-2014)
TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn laitos SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi Äänitaajuusjakosuodintyö (2013-2014)
Suomenkielinen käyttöohje www.macrom.it
MA.00D Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 0 Ω 0 RCA-tuloliitäntä matalatasoiselle signaalille Tasonsäätö Alipäästösuotimen säätö Sub Sonic -suotimen säätö Bassokorostuksen
Harjoitustyö 1. Signaaliprosessorit Sivu 1 / 11 Vähämartti Pasi & Pihlainen Tommi. Kaistanestosuodin, estä 2 khz. Amplitudi. 2 khz.
Signaaliprosessorit Sivu 1 / 11 Harjoitustyö 1 Kaistanestosuodin, estä 2 khz Amplitudi f 2 khz MATLAB koodi: clear; close all; w=[0 1900 1950 2050 2100 4000]/4000; m=[1 1 0 0 1 1]; h=remez(800,w,m); [H,w]=freqz(h,1);
1 Johdanto. 2 Diskreettien IIR-suodattimien suunnittelu jatkuva-aikaisista suodattimista. 1.1 IIR vai FIR äänten suodattamiseen?
Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal proessing. Wiley & Sons. Regalia, Mitra. (987). Tunable digital frequeny response equalization filters. IEEE Trans. ASSP-35 No., Jan. 987.
SÄÄTÖJÄRJESTELMIEN SUUNNITTELU
ENSO IKONEN PYOSYS SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Teknillinen tiedekunta Älykkäät koneet ja järjestelmät helmikuu
T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9
T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 1 / 9 T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9 T-61.246 Digitaalinen signaalinkäsittely ja suodatus Versio 5.01 (29.9.2003) T-61.246 Harjoitustyö
ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus
L1: Audio Prof. Vesa Välimäki ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely Luennon sisältö Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus Lyhyt FIR-suodin
Säätötekniikan ja signaalinkäsittelyn työkurssi
Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio
5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z
5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon
Radioamatöörikurssi 2013
Radioamatöörikurssi 2013 Polyteknikkojen Radiokerho Radiotekniikka 21.11.2013 Tatu, OH2EAT 1 / 19 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus
1 Äänisignaalin tallentaminen ja analysointi... 2 Q Q Q Q Häiriönpoisto... 5 Q Q Q2.3...
1 Äänisignaalin tallentaminen ja analysointi... 2 Q1.1... 2 Q1.2... 2 Q1.3... 3 Q1.4... 4 2 Häiriönpoisto... 5 Q2.1... 5 Q2.2... 8 Q2.3... 9 3 FIR- ja IIR-suotimien vertailu... 10 Q3.1... 10 Q3.2... 11
Perusmittalaitteet 2. Spektrianalyysi. Mittaustekniikan perusteet / luento 4. Spektrianalyysi. Logaritmiasteikko ja db (desibel) Spektrianalysaattori
Mittaustekniikan perusteet / luento 4 Perusmittalaitteet Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien
Yksinkertaisin järjestelmä
Digitaalinen Signaalinkäsittely T05 Luento 5 -.04.006 Jarkko.Vuori@evtek.fi Yksinkertaisin järjestelmä Differenssiyhtälö [ n] x[ n] y Lohkokaavio X() Y() Siirtofunktio H ( ) Nolla-napa kuvio Ei nollia
Spektrianalysaattori. Spektrianalysaattori
Mittaustekniikan perusteet / luento 9 Spektrianalysaattori Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien
Luento 8. Suodattimien käyttötarkoitus
Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden
Numeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
Radioamatöörikurssi 2015
Radioamatöörikurssi 2015 Polyteknikkojen Radiokerho Radiotekniikka 5.11.2015 Tatu Peltola, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus,
T Signaalinkäsittelyjärjestelmät Kevät 2005 Pakolliset ja lisäpistelaskarit
T-61.14 SKJ (Pakolliset ja lisäpistetehtävät 5) Sivu / 16 T-61.14 Signaalinkäsittelyjärjestelmät Kevät 5 Pakolliset ja lisäpistelaskarit HUOM! Kurssi luennoidaan todennäköisesti viimeistä kertaa keväällä
Signaalinkäsittelyn sovellukset
Signaalinkäsittelyn laitos. Opetusmoniste 26: Institute of Signal Processing. Lecture Notes 26: Heikki Huttunen Signaalinkäsittelyn sovellukset Tampere 26 Tampereen teknillinen yliopisto. Signaalinkäsittelyn
Elektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
FYSP105 / K3 RC-SUODATTIMET
FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä
Kuvien ehostus taajuustasossa
Luku 4 Kuvien ehostus taajuustasossa Ranskalainen matemaatikko Jean Babtiste Joseph Fourier esitti 1807, että mikä tahansa jaksollinen funktio voidaan esittää eritaajuisten sinien ja kosinien painotettuna
20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10
Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste
SEBASTIAN RINTALA SIGNAALIN DOMINOIVAN TAAJUUDEN ARVIOINTI
SEBASTIAN RINTALA SIGNAALIN DOMINOIVAN TAAJUUDEN ARVIOINTI Kandidaatintyö Tarkastaja: yliopistonlehtori Heikki Huttunen ii TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn ja tietoliikennetekniikan
Synteesi-analyysi koodaus
Luku 2 Synteesi-analyysi koodaus Tärkein koodausmenetelmä puheenkoodausstandardeissa 9-luvulta alkaen on ollut synteesi-analyysi koodaus (engl. analysis-by-synthesis). Tässä lähestymistavassa optimaaliset
Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset
Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset valintakriteerit resoluutio ja nopeus Yleisimmät A/D-muunnintyypit:
M2A.4000. Suomenkielinen käyttöohje. www.macrom.it
M2A.4000 Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 20 2 22 23 24 25 26 2 3 4 5 6 7 8 9 0 2 3 4 RCAtuloliitäntä (kanavat /2) High Level
Suomenkielinen käyttöohje
M1A.4150 Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Esipuhe. Tampereella, 9. toukokuuta 2003, Heikki Huttunen heikki.huttunen@tut.fi
Esipuhe Käsillä oleva moniste on tarkoitettu opetusmateriaaliksi Tampereen teknillisen yliopiston signaalinkäsittelyn laitoksen kurssille "8253: Johdatus signaalinkäsittelyyn 2". Materiaali on kehittynyt
8000253: Johdatus signaalinkäsittelyyn 2
TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan osasto Signaalinkäsittelyn laitos TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology Institute of Signal Processing Opetusmoniste 2-23
TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja SPDemo-ohjelmistoja käyttäen. Kokoa
Signaalit ja järjestelmät aika- ja taajuusalueissa
Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)
Kompleksianalyysi, viikko 7
Kompleksianalyysi, viikko 7 Jukka Kemppainen Mathematics Division Fourier-muunnoksesta Laplace-muunnokseen Tarkastellaan seuraavassa kausaalisia signaaleja eli signaaleja x(t), joille x(t) 0 kaikilla t
Laskentaa kirjaimilla
MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien
KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma
KON-C34 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma Mitattava suure Tarkka arvo Mittausjärjestelmä Mitattu arvo Ympäristö Mitattava suure Anturi Signaalinkäsittely
5. Kuvanennallistus. Kuvanennallistus 269
5. Kuvanennallistus Ennallistus eroaa korostamisesta edellisen ollessa objektiivista ja jälkimmäisen pikemmin subjektiivista käsittelyä, vaikka niiden menetelmissä on päällekkäisyyttä. Objektiivinen tarkoittaa,
TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT
TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan
4. Taajuusalueen suodatus 4.1. Taustaa Perusteita
4. Taajuusalueen suodatus 4.1. Taustaa Fourier esitti v. 1807 idean, että laskien yhteen jaksollisia painotettuja funktioita voidaan esittää kuinka tahansa monimutkainen jaksollinen funktio. Kuva 4.1.
S Signaalit ja järjestelmät
dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä
Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42
Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien
LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi
LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...
Akustisen emission anturin signaalin esikäsittelypiirin selvittäminen ja prototyypin toteuttaminen
Akustisen emission anturin signaalin esikäsittelypiirin selvittäminen ja prototyypin toteuttaminen Marko Kupiainen Kandidaatintyö 11.3.21 LUT Energia Sähkötekniikan koulutusohjelma TIIVISTELMÄ Lappeenrannan
LAUSEKKEET JA NIIDEN MUUNTAMINEN
LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua
OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.
Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme
Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja:
TL56, Näytejoosysteemit (K5). Kausaali suodati käyttää laskeassaa vai ykyisiä ja aiempia ajaetkiä (= pieemmillä ideksiarvoilla) mitattuja tai laskettuja sigaaliarvoja, jotka suodati lukee muistista. Kausaalisuus
Heikki Huttunen Signaalinkäsittelyn sovellukset
Tampereen teknillinen yliopisto. Signaalinkäsittelyn laitos. Opetusmoniste 2: Tampere University of Technology. Department of Signal Processing. Lecture Notes 2: Heikki Huttunen Signaalinkäsittelyn sovellukset
AS Automaatio- ja systeemitekniikan projektityöt S09-18 Langaton anturijärjestelmä rakenteiden kunnonvalvontaan
AS-.32 Automaatio- ja systeemitekniikan projektityöt S9-8 Langaton anturijärjestelmä rakenteiden kunnonvalvontaan Joni Silvo Johdanto Tässä työssä tutkitaan rakenteiden kunnonvalvontaan käytettävään langattomaan
nykyään käytetään esim. kaapelitelevisioverkoissa radio- ja TVohjelmien
2.1.8. TAAJUUSJAKOKANAVOINTI (FDM) kanavointi eli multipleksointi tarkoittaa usean signaalin siirtoa samalla siirtoyhteydellä käyttäjien kannalta samanaikaisesti analogisten verkkojen siirtojärjestelmät
ILKKA HULKKO TAAJUUDEN MITTAUS PAINESIGNAALISTA. Kandidaatintyö
ILKKA HULKKO TAAJUUDEN MITTAUS PAINESIGNAALISTA Kandidaatintyö Tarkastaja: Konsta Koppinen Työ jätetty tarkastettavaksi: 8.5.2009 II TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Automaatiotekniikan koulutusohjelma
ELEC-A7200 Signaalit ja järjestelmät
ELEC-A7200 Signaalit ja järjestelmät Professori Riku Jäntti ELEC-A7200 Signaalit ja järjestelmät Mitä kurssilla käsitellään? signaalien ja järjestelmien peruskäsitteitä signaali- ja järjestelmäanalyysin
Helsinki University of Technology
Helsinki University of Technology Laboratory of Telecommunications Technology S-38.11 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications ( ov) Syksy 1997. Luento: Pulssinmuokkaussuodatus
Perusmittalaitteet 2. Spektrianalyysi. Mittaustekniikan perusteet / luento 4. Spektrianalyysi. Logaritmiasteikko ja db (desibel) Spektrianalysaattori
Mittaustekniikan perusteet / luento 4 Perusmittalaitteet Spektrianalyysi Jean Bapiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien
Luku 3. Data vektoreina
1 / 4 Luku 3. Data vektoreina T-61.21 Datasta tietoon, syksy 211 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 3.11.211 2 / 4 Tämän luennon sisältö 1 Data vektoreina Datamatriisi
Tämän luennon sisältö. Luku 3. Data vektoreina. Datamatriisi (2) Datamatriisi. T Datasta tietoon, syksy 2011
Tämän luennon sisältö Luku 3. T-6.2 Datasta tietoon, syksy 2 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto Datamatriisi Piirreirrotus: ääni- ja kuvasignaalit Dimensionaalisuuden