Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Koko: px
Aloita esitys sivulta:

Download "Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi."

Transkriptio

1 / Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma, Kovergessiäsiee, Masimi, Miimi, Momei, Momeiemäfuio, Muuos, Odousarvo, Poisso-jaauma, Soasie overgessi, Summa jaauma, Variassi 6.. Geomerise jaauma Geom(p) piseodeäöisyysfuio o x f( x) Pr( x) q p,< p<, q p, x,,3, Johda jaauma momeiemäfuio ja se avulla jaauma odousarvo ja variassi. Sauaismuuuja oudaaa geomerisa jaaumaa Geom(p), jos se piseodeäöisyysfuio o muooa x f( x) Pr( x) q p,< p<, q p, x,,3, Sauaismuuuja momeiemäfuio o x m () E( e ) e f( x) x x x e pq x x x pe e q pe x x pe qe ( qe ) x Sauaismuuuja. origomomei α E( ) saadaa määräämällä momeiemäfuio m (). derivaaa piseessä : dm() α E( ),,,3, d Ila Melli (4) /8

2 Geomerise jaauma asi esimmäisä origomomeia ova dm () α E( ) d p ja α pe ( qe ) pe ( qe ) ( qe ) pe ( qe ) dm E( ) () d pe qe pe qe qe 4 ( qe ) ( ) ( )( ) pe ( + qe ) 3 ( qe ) + q p Sie geomerise jaauma odousarvo o µ E( ) α p ja variassi o σ Var( ) E[( µ ) ] E( ) µ α α + q p p q p Ila Melli (4) /8

3 6.. Poisso-jaauma Poisso(λ) piseodeäöisyysfuio o x e λ λ f( x) Pr( x), λ >, x,,, x! Johda jaauma momeiemäfuio ja se avulla jaauma odousarvo ja variassi. Sauaismuuuja oudaaa Poisso-jaaumaa Poisso(λ), jos se piseodeäöisyysfuio o muooa x e λ λ f( x) Pr( x), λ >, x,,, x! Sauaismuuuja momeiemäfuio o x m () E( e ) e f( x) x x e e e e x λ x e λ λ λ ( e ) λ x e λ x! e ( λe ) x! x Sauaismuuuja. origomomei α E( ) saadaa määräämällä momeiemäfuio m (). derivaaa piseessä : dm() α E( ),,,3, d Poisso-jaauma asi esimmäisä origomomeia ova ja dm () α E( ) d α e λ e λ λ ( e ) λe + λ ( e ) dm E( ) () d + λ ( e ) λe ( + λe ) λ + λ Ila Melli (4) 3/8

4 Sie Poisso-jaauma odousarvo o µ E( ) α λ ja variassi o σ Var( ) E[( µ ) ] E( ) µ α α λ + λ λ λ 6.3. Jauva asaise jaauma Uiform(a, b) iheysfuio o f ( x), a b a x b Johda jaauma momeiemäfuio ja se avulla jaauma odousarvo ja variassi. Sauaismuuuja oudaaa jauvaa asaisa jaaumaa Uiform(a, b), jos se iheysfuio o muooa f ( x), a b a x b Sauaismuuuja momeiemäfuio o x m () E( e ) e f( x) + b a e x b a x e b a b a e e b ( a) b a Sauaismuuuja. origomomei α E( ) saadaa määräämällä momeiemäfuio m (). derivaaa piseessä : dm() α E( ),,,3, d Ila Melli (4) 4/8

5 Jauva asaise jaauma asi esimmäisä origomomeia ova ja dm () α E( ) d b a b a ( be ae ) ( b a) ( e e )( b a) ( b a) b a b a ( be ae ) ( e e ) ( b a) a+ b α dm E( ) () d + 4 ( b a) b a b a b a [( b e a e ) ( be ae ) ( be ae )] ( b a) b a b a b a ( be ae ) ( be ae ) ( e e ) 3 ( b a) a + ab+ b 3 Sie jauva asaise jaauma odousarvo o a+ b µ E( ) α ja variassi o σ Var( ) E[( µ ) ] E( ) µ α α b a b a [( be ae ) ( e e )] ( b a) 4 ( b a) + a ab b a b ( b a) Ila Melli (4) 5/8

6 6.4. Espoeijaauma Exp(λ) iheysfuio o λx f( x) λe, λ >, x Johda jaauma momeiemäfuio ja se avulla jaauma odousarvo ja variassi. Sauaismuuuja oudaaa espoeijaaumaa Exp(λ), jos se iheysfuio o muooa λx f( x) λe, λ >, x Sauaismuuuja momeiemäfuio o () E( x m e ) e f( x) + x λx e e λ e λ ( λ ) x ( λ ) x e λ λ λ λ Sauaismuuuja. origomomei α E( ) saadaa määräämällä momeiemäfuio m (). derivaaa piseessä : dm() α E( ),,,3, d Espoeijaauma asi esimmäisä origomomeia ova ja dm () α E( ) d λ ( λ ) λ Ila Melli (4) 6/8

7 α dm E( ) () d λ ( λ ) 3 λ Sie jauva asaise jaauma odousarvo o a+ b µ E( ) α ja variassi o σ Var( ) E[( µ ) ] E( ) µ α α λ λ λ 6.5. Jauva asaise jaauma Uiform(,) iheysfuio o f ( x), x Oleeaa, eä sauaismuuuja ja Y ova riippumaomia ja ~ Uiform(,) Y ~ Uiform(,) Määrää sauaismuuuja U + Y iheysfuio. Oloo, Y riippumaomia sauaismuuujia, joide iheysfuio ova f (x), f Y (y) Ila Melli (4) 7/8

8 Tällöi summa iheysfuio o U + Y + f ( u) f ( u x) f ( x) U Y Tämä ähdää seuraavalla avalla: Kosa sauaismuuuja ja Y ova riippumaomia, iide yheisjaauma iheysfuio f Y (x, y) voidaa esiää sauaismuuujie ja Y iheysfuioide uloa: Oloo f ( xy, ) f ( xf ) ( y) Y Y U + Y V Muodoseaa sauaismuuujie U ja V yheisjaauma. Tarasellaa sisi muuosa ( ) u x+ y v x joa ääeismuuos o y u v x v Muuose ( ) Jacobi deermiai o ( uv, ) u v u v ( x, y) x y y x Sie sauaismuuujie U ja V yheisjaauma iheysfuio o ( uv, ) fuv ( u, v) fy ( x, y) ( x, y) f ( x) f ( y) f () v f ( u v) Y Y Ila Melli (4) 8/8

9 Summamuuuja U + Y iheysfuio saadaa sauaismuuujie U ja V yheisjaauma iheysfuio lauseeesa sauaismuuuja U reuajaauma iheysfuioa: + + f ( u) f ( u, v) dv f ( v) f ( u v) dv U UV Y + f ( x) f ( u x) Y Ny joe Oloo ~ Uiform(,) Y ~ Uiform(,) f ( x), x f ( y), y Y U + Y V O selvää, eä summa U + Y voi saada arvoja vai välillä [, ]. Sauaismuuujie U ja V yheisjaauma iheysfuio o f ( uv, ) f ( v) f ( u v), v x, u x+ y, x, y UV Y u Sauaismuuujie U ja V yheisjaauma iheysfuio saa siis arvo ysi yo. uvio vioeliössä ja arvo olla muualla. Summa U + Y iheysfuio o v + f ( u) f ( u x) f ( x) U Y u u Tämä seuraa siiä, eä f f ( u x) Y ( x) u < u x< miä o yhäpiävää se assa, eä u < x< u Ila Melli (4) 9/8

10 Tiheysfuio lauseeesi saadaa välillä < u < : u u f ( u) f ( x) x U u [ ] u u Tiheysfuio lauseeesi saadaa välillä < u < : Sie summamuuuja u [ ] f ( u) f ( x) x u + U u u u U + Y iheysfuio o muooa f U u, u ( u) u +, u Sauaismuuuja U + Y jaauma o eräs olmiojaaumisa. Se iheysfuio uvaaja o oiealla. f (x) x 6.6. Biomijaauma Bi(, p) piseodeäöisyysfuio o x x f ( x) Pr( x) p q, < p<, q p, x,,,, x ja se momeiemäfuio o m () ( q+ pe ) Oleeaa, eä sauaismuuuja ja ova riippumaomia ja ~ Bi(, p) ~ Bi(, p) Määrää sauaismuuuja jaauma. + Oloo, riippumaomia sauaismuuujia, joide momeiemäfuio ova m (), m () Ila Melli (4) /8

11 Tällöi summa + momeiemäfuio o sauaismuuujie ja momeiemäfuioide ulo: m () m ()m () Kosa ~ Bi(, p) ~ Bi(, p) ii m () ( q+ pe ) m () ( q+ pe ) Sie summa + momeiemäfuio o m () m () m () ( q+ pe ) ( q+ pe ) ( q+ pe ) + Kosa m () o biomijaauma Bi( +, p) momeiemäfuio, voimme pääellä, eä + ~ Bi( +, p) 6.7. Jauva asaise jaauma Uiform(,) iheysfuio o f ( x), x Oleeaa, eä sauaismuuuja ja ova riippumaomia ja ~ Uiform(,) Y ~ Uiform(,) Oloo () mi{, } Määrää sauaismuuuja () iheysfuio. Oloo sauaismuuuja ja riippumaomia ja i ~ Uiform(,), i, Tällöi iide yheie iheysfuio o muooa, x f( x), muulloi Ila Melli (4) /8

12 ja yheie erymäfuio o muooa, x < F( x) x, x, x > Sauaismuuuja () mi{, } iheysfuio o f ( x ) [ F ( x )] f ( x ) ( x ), x () 6.8. Jauva asaise jaauma Uiform(,) iheysfuio o f ( x), x Oleeaa, eä sauaismuuuja ja ova riippumaomia ja ~ Uiform(,) Y ~ Uiform(,) Oloo () max{, } Määrää sauaismuuuja () iheysfuio. Oloo sauaismuuuja ja riippumaomia ja i ~ Uiform(,), i, Tällöi iide yheie iheysfuio o muooa, x f( x), muulloi ja yheie erymäfuio o muooa, x < F( x) x, x, x > Sauaismuuuja () max{, } iheysfuio o f ( x ) [ F ( x )] f ( x ) x, x () f () (x) f () (x) Ila Melli (4) /8

13 6.9. Oloo,, 3, joo riippumaomia sauaismuuujia, joilla o aiilla sama iheysfuio Oloo, < x < θ f( x) θ, muulloi () max{,,, } Todisa, eä sauaismuuujie (), (), (3), muodosama joo overgoi jaaumalaa ohi sauaismuuujaa, joa erymäfuio o, x < θ Gx ( ), x θ Riippumaomie sauaismuuujie,, 3, yheie iheysfuio o muooa, < x < θ f( x) θ, muulloi Kosa välillä < x < θ päee x x d [] x θ θ θ sauaismuuujie,, 3, yheie erymäfuio o muooa, x F( x) x,< x< θ θ, θ x Oloo () max{,,, } Ila Melli (4) 3/8

14 Sauaismuuuja () iheysfuio o u < x < θ ja muulloi. f x F x f x ( ) ( ) [ ( )] ( ) x θ x θ f ( ) ( ) x θ Sauaismuuuja () erymäfuio o Jos ii, x < x F( ) ( x), x< θ θ, θ x, x < θ F( ) ( x) G( x), θ x jossa G(x) o disreei jaauma erymäfuio., x θ gx ( ) Pr( x), muulloi Sie sauaismuuujie (), (), (3), muodosama joo overgoi jaaumalaa ohi sauaismuuujaa : ( ) L Ila Melli (4) 4/8

15 6.. Oloo,, 3, joo riippumaomia sauaismuuujia, joide piseodeäöisyysfuio ova muooa, x f( x) Pr( x), x Todisa, eä sauaismuuujie,, 3, muodosama joo overgoi soasisesi ohi vaioa : P Riippumaomie sauaismuuujie,, 3, piseodeäöisyysfuio ova muooa Sie Selväsi u., x f( x) Pr( x), x Pr( ), < ε < Pr( > ε ), ε Pr( > ε ) Soasise overgessi määrielmä muaa sauaismuuujie,, 3, muodosama joo overgoi soasisesi ohi vaioa : P Ila Melli (4) 5/8

16 Momeiemäfuio Sauaismuuuja momeiemäfuio o m () E( e ) Sauaismuuuja. origomomei α E( ),,,3, saadaa määräämällä momeiemäfuio m (). derivaaa piseessä : dm() α E( ),,,3, d Sauaismuuuja odousarvo ja variassi saadaa aavoisa µ E( ) α Var( ) E[( ) ] E( ) α σ µ µ α Oloo sauaismuuuja disreei ja se piseodeäöisyysfuio f ( x) Pr( x ) Tällöi sauaismuuuja momeiemäfuio saadaa aavasa x m () E( e ) e f( x) Oloo sauaismuuuja jauva ja se iheysfuio f ( x ) x Tällöi sauaismuuuja momeiemäfuio saadaa aavasa Oloo + x m () E( e ) e f( x),,, riippumaomia sauaismuuujia, joide momeiemäfuio ova Tällöi summa m (), m (),, m () momeiemäfuio o sauaismuuujie,,, momeiemäfuioide ulo: m () m ()m () m () Ila Melli (4) 6/8

17 Kasiuloeise sauaismuuujie muuose jaauma Oloo sauaismuuujie ja Y yheisjaauma iheysfuio f Y (x, y) Määriellää sauaismuuuja U g(, Y) V h(, Y) Oleeaa, eä muuosella u g( x, y) ( ) v h( x, y) o seuraava omiaisuude: (i) Muuuja x ja y voidaa raaisa yhälöryhmäsä ( ). (ii) Fuioilla g ja h o jauva osiaisderivaaa muuujie x ja y suhee. (iii) Muuose ( ) Jacobi deermiai ( uv, ) u v u v + ( xy, ) x y y x aiille x ja y, joille f Y (x, y) Tällöi sauaismuuujie U ja V yheisjaauma iheysfuio o f ( u, v) f ( x, y) UV Y ( uv, ) ( x, y) jossa x ja y raaisaa yhälöryhmäsä ( ). Sauaismuuujie summa jaauma Oloo ja Y riippumaomia sauaismuuujia, joide iheysfuio ova f (x), f Y (y) Tällöi summa U + Y iheysfuio o + f ( u) f ( u x) f ( x) U Y Ila Melli (4) 7/8

18 Sauaismuuujie miimi ja masimi jaauma Oloo sauaismuuuja,,, riippumaomia ja samaa jaaumaa oudaavia sauaismuuujia. Oloo sauaismuuujie,,, yheie iheysfuio f ( x ) ja yheie erymäfuio F( x) Tällöi sauaismuuuja iheysfuio o ja sauaismuuuja iheysfuio o () mi{,,, } f x F x f x ()( ) [ ( )] ( ) () max{,,, } f x F x f x ( ) [ ( )] ( ) ( ) Soasie overgessi Sauaismuuujie,, 3, muodosama joo overgoi soasisesi ohi sauaismuuujaa, jos aiille ε > päee lim Pr( > ) Meriää ää P Jaaumaovergessi Oloo,, 3, joo sauaismuuujia, joide erymäfuio ova F (x), F (x), F 3 (x), Sauaismuuujie,, 3, muodosama joo overgoi jaaumalaa ohi sauaismuuujaa, joa erymäfuio o F (x), jos lim F ( x) F ( x) joaisessa piseessä x, jossa F (x) o jauva. Meriää ää L Ila Melli (4) 8/8

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet

Lisätiedot

Momenttiemäfunktio ja karakteristinen funktio. Momenttiemäfunktio ja karakteristinen funktio

Momenttiemäfunktio ja karakteristinen funktio. Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ila Melli (4) Momeiemäfuio ja aaeisie fuio Momeiemäfuio Diseeie jaaumie momeiemäfuioia Jauvie jaaumie momeiemäfuioia Kaaeisie fuio Johdaus odeäöisyyslaseaa Momeiemäfuio ja aaeisie fuio TKK (c)

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie

Lisätiedot

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV. Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Moimuuujameeelmä Yhde seliäjä lieaarie regressiomalli Moimuuujameeelmä: Yhde seliäjä lieaarie regressiomalli Ilkka Melli. Yhde seliäjä lieaarie regressiomalli, se esimoii ja esaus.. Yhde seliäjä lieaarie

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 5. harjoitukset / Ratkaisut Aiheet: Jatkuvia jakaumia Avainsanat: Jatkuvia jakaumia

Mat Sovellettu todennäköisyyslaskenta B 5. harjoitukset / Ratkaisut Aiheet: Jatkuvia jakaumia Avainsanat: Jatkuvia jakaumia Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Jatkuvia jakaumia Avaisaat: Biomijakauma, Ekspoettijakauma, Jatkuva tasaie jakauma, Kertymäfuktio, Keskeie raja-arvolause, Mediaai, Normaaliapproksimaatio,

Lisätiedot

7.1. Suurimman uskottavuuden estimointimenetelmä: Johdanto

7.1. Suurimman uskottavuuden estimointimenetelmä: Johdanto Ma-1.361 Tilasollie pääely 7. Suurimma uskoavuude meeelmä ja asympooie eoria Tilasollie pääely 7. Suurimma uskoavuude meeelmä ja asympooie eoria 7.1. Suurimma uskoavuude esimoiimeeelmä: Johdao Aikasarja,

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

11. Jatkuva-aikainen optiohinnoittelu

11. Jatkuva-aikainen optiohinnoittelu . Jauva-aiainen opiohinnoielu Sijoiusoheien hinojen ehiymisä voiaan arasella myös jauva-aiaisina prosesseina Iô-prosessi erisuuruise perioiohaise hinnanmuuose mahollisia voiaan oisinaan raaisa analyyisesi.

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1 Johdatus todeäköisyyslasketaa Kovergessikäsitteet ja raja-arvolauseet TKK (c) Ilkka Melli (2004) 1 Kovergessikäsitteet ja raja-arvolauseet Kovergessikäsitteitä Suurte lukuje lait Keskeie raja-arvolause

Lisätiedot

Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet

Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet Ilkka Melli Todeäköisyyslasketa Osa 2: Satuaismuuttujat ja todeäköisyysjakaumat Kovergessikäsitteet ja raja arvolauseet TKK (c) Ilkka Melli (2006) 1 Kovergessikäsitteet ja raja arvolauseet >> Kovergessikäsitteitä

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Diskreetit jakaumat Jatkuvat jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Diskreetit jakaumat Jatkuvat jakaumat. Avainsanat: Mat-2.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Diskeetit jakaumat Jatkuvat jakaumat Biomijakauma, Ekspoettijakauma, Jatkuva tasaie jakauma, Ketymäfuktio, Mediaai, Negatiivie biomijakauma,

Lisätiedot

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali

Lisätiedot

Todennäköisyyslaskun kertaus. Heliövaara 1

Todennäköisyyslaskun kertaus. Heliövaara 1 Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,

Lisätiedot

Lineaaristen järjestelmien teoriaa II

Lineaaristen järjestelmien teoriaa II Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE

5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE Värähelymeaiia 5. 5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE 5. Johao Luvussa 4 araselii yhe vapausasee syseemii harmoisesa heräeesä aiheuuvaa vasea ja havaiii se riippuva pääasiassa syseemi vaimeusesa

Lisätiedot

5. laskuharjoituskierros, vko 8, ratkaisut

5. laskuharjoituskierros, vko 8, ratkaisut Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa

Lisätiedot

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA Dyamiia 6. 6 JÄYKÄN KAPPALEEN TASKINETIIKKA 6. Yleisä Jäyä appalee ieiiassa arasellaa appaleesee aiuaie uloise oimie ja seurausea olea liiee (raslaaio ja roaaio) älisiä yheysiä. Voimie äsielyssä ariaa

Lisätiedot

Tilastomatematiikka Kevät 2008

Tilastomatematiikka Kevät 2008 Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

Projektin arvon aleneminen

Projektin arvon aleneminen Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

q =, r = a b a = bq + r, b/2 <r b/2.

q =, r = a b a = bq + r, b/2 <r b/2. Luuteoria I Harjoitusia 2009 1 Osoita, että (a x = x x R, (b x x< x +1 x R, (c x + = x + x R, Z, (d x + y x + y x, y R, (e x y xy x, y R 0 2 Oloot a, b, q, r Z ja a = qb + r, 0 r< b Näytä, että a a q =,

Lisätiedot

Tehtävä 11 : 1. Tehtävä 11 : 2

Tehtävä 11 : 1. Tehtävä 11 : 2 Tehtävä : Käytetää irjaita M luvu ( ) meritsemisee. Satuaisverossa G, p() o yhteesä solmua, jote satuaismuuttuja X mahdollisia arvoja ovat täsmällee jouo0,..., M} aii aliot. Joaie satuaisvero mahdollisista

Lisätiedot

Jatkuvia jakaumia. Jatkuvia jakaumia. Jatkuvia jakaumia Mitä opimme? 2/3. Jatkuvia jakaumia Mitä opimme? 1/3. Jatkuvia jakaumia Mitä opimme?

Jatkuvia jakaumia. Jatkuvia jakaumia. Jatkuvia jakaumia Mitä opimme? 2/3. Jatkuvia jakaumia Mitä opimme? 1/3. Jatkuvia jakaumia Mitä opimme? TKK (c) Ilkk Melli (4) Jtkuvi jkumi Jtkuv tsie jkum Johdtus todeäköisyyslsket Jtkuvi jkumi TKK (c) Ilkk Melli (4) Jtkuvi jkumi Mitä opimme? /3 Tutustumme tässä luvuss seurvii jtkuvii todeäköisyysjkumii:

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki!

MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki! MATA17 Sami Yrjäheikki Harjoitus 7 1.1.018 Tehtävä 1 Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki! (a) Jokaie jatkuva fuktio f : R R o tasaisesti jatkuva. (b) Jokaie jatkuva fuktio f : [0, 1[ R

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia

Lisätiedot

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

Todennäköisyyslaskenta: Todennäköisyysjakaumia

Todennäköisyyslaskenta: Todennäköisyysjakaumia Todeäköisyysjakaumia Todeäköisyyslasketa: Todeäköisyysjakaumia 6. Diskreettejä jakaumia 7. Jatkuvia jakaumia 8. Normaalijakaumasta johdettuja jakaumia 9. Moiulotteisia jakaumia Ilkka Melli 35 Todeäköisyysjakaumia

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude

Lisätiedot

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y) Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat: Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,

Lisätiedot

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

JLP:n käyttämättömät mahdollisuudet. Juha Lappi JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p

Lisätiedot

Tilastolliset menetelmät: Varianssianalyysi

Tilastolliset menetelmät: Varianssianalyysi Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi a useampisuutaie variassiaalsi T @ Ila Melli (006) 433 Variassiaalsi T @ Ila Melli (006)

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x , III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat

Lisätiedot

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko.

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko. Luento odennäöisyyslasentaa Otosavaruus, tapahtuma ja todennäöisyys Ehdollinen todennäöisyys, tilastollinen riippumattomuus, Bayesin teoreema, oonaistodennäöisyys Odotusarvo, varianssi, momentti Stoastiset

Lisätiedot

9.7 Matriisinormit. Vaasan yliopiston julkaisuja 225. Ei siis lainkaan ongelmia defektiivisyydestä.

9.7 Matriisinormit. Vaasan yliopiston julkaisuja 225. Ei siis lainkaan ongelmia defektiivisyydestä. Vaasa yliopisto julkaisuja 225 U = 0.1213-0.9359-0.3307-0.1005-0.3430 0.9339 0.9875 0.0801 0.1357 S = V = >> 4.5221 0 0 0 2.2793 0 0 0 1.1642 0.0537-0.8212-0.5681 0.4414-0.4908 0.7512 0.8957 0.2911-0.3361

Lisätiedot

Diskreettejä jakaumia. Diskreettejä jakaumia. Diskreettejä jakaumia Mitä opimme? 2/3. Diskreettejä jakaumia Mitä opimme? 1/3

Diskreettejä jakaumia. Diskreettejä jakaumia. Diskreettejä jakaumia Mitä opimme? 2/3. Diskreettejä jakaumia Mitä opimme? 1/3 TKK (c) Ilkka Melli (4) Diskeettejä jakaumia Johdatus todeäköisyyslasketaa Diskeettejä jakaumia Diskeetti tasaie jakauma Beoulli-jakauma Biomijakauma Geometie jakauma Negatiivie biomijakauma Hyegeometie

Lisätiedot

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko.

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko. Luento 0 odennäöisyyslasentaa Otosavaruus, tapahtuma ja todennäöisyys Ehdollinen todennäöisyys, tilastollinen riippumattomuus, Bayesin teoreema, oonaistodennäöisyys Odotusarvo, varianssi, momentti Stoastiset

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä

Lisätiedot

4. Todennäköisyyslaskennan kertausta

4. Todennäköisyyslaskennan kertausta Sisältö Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat lueto04.ppt S-38.45 - Liikeeteoria

Lisätiedot

Joulukuun vaativammat valmennustehtävät ratkaisut

Joulukuun vaativammat valmennustehtävät ratkaisut Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut

Lisätiedot

Tämä merkitsee geometrisesti, että funktioiden f

Tämä merkitsee geometrisesti, että funktioiden f 28 2. Futiosarjat Edellä sarjat olivat luusarjoja, joide termit ovat (tässä urssissa) reaaliluuja. Jos termit ovat samasta muuttujasta riippuvia futioita, päädytää futiotermisii sarjoihi. Näide äyttö matematiiassa

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

Riemannin sarjateoreema

Riemannin sarjateoreema Riemannin sarjateoreema LuK-tutielma Sami Määttä 2368326 Matemaattisten tieteiden laitos Oulun yliopisto Sysy 206 Sisältö Johdanto 2 Luujonot 3 2 Sarjat 4 2. Vuorottelevat sarjat........................

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat

Lisätiedot

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora

Lisätiedot

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen

Lisätiedot

Yleinen lineaarinen malli. Yleinen lineaarinen malli. Yleinen lineaarinen malli: Mitä opimme? 2/4. Yleinen lineaarinen malli: Mitä opimme?

Yleinen lineaarinen malli. Yleinen lineaarinen malli. Yleinen lineaarinen malli: Mitä opimme? 2/4. Yleinen lineaarinen malli: Mitä opimme? TKK (c) Ila Melli (004) Yleie lieaarie malli Johdatus tilastotieteesee Yleie lieaarie malli Usea selittää lieaarie regressiomalli Yleise lieaarise malli matriisisesitys Yleise lieaarise malli estimoiti

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 3B

Tilastollinen päättely II, kevät 2017 Harjoitus 3B Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.

Lisätiedot

3. Markovin prosessit ja vahva Markovin ominaisuus

3. Markovin prosessit ja vahva Markovin ominaisuus 30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin

Lisätiedot

8. laskuharjoituskierros, vko 11, ratkaisut

8. laskuharjoituskierros, vko 11, ratkaisut Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse

Lisätiedot

järjestelmät Luento 4

järjestelmät Luento 4 DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 5b

Tilastollinen päättömyys, kevät 2017 Harjoitus 5b Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma

Lisätiedot

6.1 Riippumattomat satunnaismuuttujat

6.1 Riippumattomat satunnaismuuttujat Luku 6 Otatajakaumie teoria 6.1 Riippumattomat satuaismuuttujat Muistamme edellisistä luvuista, että satuaismuuttujat X 1 ja X 2 ovat riippumattomat (määritelmät 4.6 ja 5.5), jos f(x 1, x 2 ) f 1 (x 1

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13 4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt

Lisätiedot

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme? TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

a. Varsinainen prosessi on tuttua tilaesitysmuotoa:

a. Varsinainen prosessi on tuttua tilaesitysmuotoa: ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k

i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k 1. Neljä tuistettavissa oleva hiuase iroaoise jouo ahdolliset eergiatasot ovat 0, ε, ε, ε, 4ε,, jota aii ovat degeeroituattoia. Systeei ooaiseergia o 6ε. sitä aii ahdolliset partitiot ja osoita, että irotiloje

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien

Lisätiedot

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d) Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)

Lisätiedot

1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1

1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1 KETJUMURTOLUVUT Harjoiuksia 209. Todisa/Prove Lause 2.2. käyäen Lausea 2.3./by using Theorem 2.3. Lause 2.4. käyäen Lausea 2.3./by using Theorem 2.3. 2. Määrää Canorin kehielmä luvuille 0,, 2, 3, 4, 5,

Lisätiedot

Osittaisdifferentiaaliyhtälöt

Osittaisdifferentiaaliyhtälöt Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,

Lisätiedot

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot