SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
|
|
- Jari Korpela
- 5 vuotta sitten
- Katselukertoja:
Transkriptio
1 SG-00 Signaalinkäsittelyn menetelmät, Tentti Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen jälkeen erilliselle konseptille, jota voit pyytää valvojalta. Laskinta saa käyttää, mutta muistin tulee olla tyhjä. Rastita vielä alle mistä löytyy merkintä pakollisista harjoituksista. Osallistuin harjoituksiin syksyllä 005 keväällä 006. Osallistuin harjoituksiin vuonna: syksyllä kesällä Palautin harjoitustehtäväpaketin vuonna: En ole vielä suorittanut pakollisia harjoituksia ja otan yhteyttä luennoitsijaan.. Ovatko seuraavat väittämät tosia vai epätosia? (Perusteluja ei tarvita. Oikea vastaus: p, väärä: p, ei vastausta 0 p.) (a) Suotimen stabiilius tarkistetaan selvittämällä ovatko sen siirtofunktion napojen itseisarvot pienempiä kuin yksi. (b) Signaalin x(n)y(n) DFT on X(n)Y(n). (c) Kaksiulotteinen diskreetti Fourier-muunnos voidaan laskea yksiulotteisten diskreettien Fourier-muunnosten avulla. (d) Järjestelmä, jonka impulssivaste on h(n) =δ(n)+0.5δ(n ) 0.5δ(n 3) on stabiili. (e) Laskostuminen estetään A/D-muunnoksessa asettamalla näytteenottotaajuus vähintään samaksi kuin analogisen signaalin suurin taajuus. (f) FIR-suotimen siirtofunktio voidaan päätellä sen impulssivasteesta. Suodintyyppi Impulssivaste kun n 0 n = 0 Alipäästö f c sinc(n πf c ) f c Ylipäästö f c sinc(n πf c ) f c Kaistanpäästö f sinc(n πf ) f sinc(n πf ) (f f ) Kaistanesto f sinc(n πf ) f sinc(n πf ) (f f ) Ikkuna- Siirtymäkaistan Päästökaistan Estokaistan Ikkunan lauseke funktion leveys värähtely minimi- w(n),kun nimi (normalisoitu) (db) vaimennus (db) n ( )/ Suorakulmainen 0.9/ Bartlett 3.05/ n Hanning 3./ cos πn Hamming 3.3/ cos πn Blackman 5.5/ cos πn cos 4πn
2 . (a) Analoginen signaali koostuu yksittäisestä siniaallosta, jonka taajuus on 00 Hz. Signaalista otetaan näytteitä sekunnin välein. Tapahtuuko laskostumista? Jos vastauksesi on myönteinen, miksi taajuudeksi mainittu sinitaajuus tulkitaan, ts. mille taajuudelle se laskostuu? (p) (b) Laske jaksollisen lukujonon x(n) =(, 4, 5, ) diskreettifourier-muunnos. (p) (c) Suodin suunnitellaan ikkunamenetelmällä seuraavien määrittelyjen mukaiseksi. Estokaista Päästökaista Päästökaistan maksimivärähtely Estokaistan minimivaimennus äytteenottotaajuus [ khz,6khz] [0 khz,0khz] 0.06 db 48 db 3 khz Kertoimia saat käyttää enintään 0 kappaletta. Millä ikkunoilla tämä onnistuu (vai onnistuuko millään)? (3p)
3 3. Tarkastellaan alla olevan lohkokaavion esittämää LTI-järjestelmää. x(n) y(n) z 8 (a) Määritä järjestelmän siirtofunktio H(z). (b) Piirrä napa-nollakuvio. (c) Onko järjestelmä stabiili? Miksi / miksi ei?
4 4. Suunnittele ikkunamenetelmällä ylipäästösuodin (selvitä käsin impulssivasteen lauseke), jonka vaatimukset ovat seuraavat: Päästökaista Estokaista Päästökaistan maksimivärähtely Estokaistan minimivaimennus äytteenottotaajuus [.5 khz,6khz] [0 khz,.5 khz] 0.06 db 48 db 3 khz Käytä etusivun taulukoita hyväksesi.
5 5. (a) LTI-järjestelmä (siirtofunktio H(z)) onminimivaiheinen, jos se on stabiili ja sillä on käänteisjärjestelmä (siirtofunktio H(z) ), joka on myös stabiili. Molemmat järjestelmät oletetaan kausaalisiksi. Onko järjestelmä H(z) = (z.)(z 0.5) z 4 z z minimivaiheinen? Perustele. (p) (b) Erään LTI-järjestelmän amplitudivaste taajuudella ω 0 = π 8 on ( H e π i) 4 =. Lisäksi tiedetään, että järjestelmän vaihevaste on jatkuva ja saa nollataajuudella arvon arg(h(e 0i )) = 0. Ryhmäviive on vakio: τ(ω) = kaikilla ω [0, π].mikäon järjestelmän vaste y(n) herätteelle x(n) =u(n) cos(ω 0 n)? (4p)
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 18.3.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 5.5.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotSGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen
SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5
LisätiedotSGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen
SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla
LisätiedotIIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.
TL536DSK-algoritmit (J. Laitinen)..5 Välikoe, ratkaisut Millaisia ongelmia kvantisointi aiheuttaa signaalinkäsittelyssä? Miksi ongelmat korostuvat IIR-suodatinten tapauksessa? Tarkastellaan Hz taajuista
LisätiedotTuntematon järjestelmä. Adaptiivinen suodatin
1 1 Vastaa lyhyesti seuraaviin a) Miksi signaaleja ylinäytteistetään AD- ja DA-muunnosten yhteydessä? b) Esittele lohkokaaviona adaptiiviseen suodatukseen perustuva tuntemattoman järjestelmän mallinnus.
LisätiedotRemez-menetelmä FIR-suodinten suunnittelussa
Luku Remez-menetelmä FIR-suodinten suunnittelussa Remez-menetelmä, eli optimaalinen menetelmä etsii minimax-mielessä optimaalista suodinta. Algoritmi johdetaan seuraavassa (täydellisyyden vuoksi) melko
LisätiedotT Digitaalinen signaalinkäsittely ja suodatus
T-63 Digitaalinen signaalinkäsittely ja suodatus 2 välikoe / tentti Ke 4528 klo 6-9 Sali A (A-x) ja B (x-ö)m 2 vk on oikeus tehdä vain kerran joko 75 tai 45 Tee välikokeessa tehtävät, 2 ja 7 (palaute)
LisätiedotDigitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu
Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,
LisätiedotSGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen
SGN-5 Signaalinkäsittelyn sovellukset Välikoe.. Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla - on. Sivuilla 4-6 on. Vastaa
LisätiedotT SKJ - TERMEJÄ
T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä
Lisätiedot1 Vastaa seuraaviin. b) Taajuusvasteen
Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?
LisätiedotAlipäästösuotimen muuntaminen muiksi perussuotimiksi
Alipäästösuotimen muuntaminen muiksi perussuotimiksi Usein suodinsuunnittelussa on lähtökohtana alipäästösuodin (LPF), josta voidaan yksinkertaisilla operaatioilla muodostaa ylipäästö- (HPF), kaistanpäästö-
Lisätiedot1 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu päästökaistavärähtely on 0.05 db ja estokaistalla vaimennus on 44 db.
TL5362DSK-algoritmit (J. Laitinen) 2.2.26 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu äästökaistavärähtely on.5 db ja estokaistalla vaimennus on 44 db. 6 Kuinka suuri maksimioikkeama vahvistusarvosta
LisätiedotSMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet
SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:
LisätiedotDigitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006
Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien
LisätiedotKatsaus suodatukseen
Katsaus suodatukseen Suodatuksen perustaa, ideaaliset suotimet, käytännön toteutuksia Suodatus Suodatusta käytetään yleensä signaalin muokkaukseen siten, että 2 poistetaan häiritsevä signaali hyötysignaalin
LisätiedotHeikki Huttunen Signaalinkäsittelyn sovellukset
Tampereen teknillinen yliopisto. Signaalinkäsittelyn laitos. Opetusmoniste 2: Tampere University of Technology. Department of Signal Processing. Lecture Notes 2: Heikki Huttunen Signaalinkäsittelyn sovellukset
LisätiedotSuodattimet. Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth. Suodattimet samalla asteluvulla (amplitudivaste)
Suodattimet Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth Suodattimet samalla asteluvulla (amplitudivaste) Kuvasta nähdään että elliptinen suodatin on terävin kaikista suodattimista, mutta sisältää
Lisätiedot1 Olkoon suodattimen vaatimusmäärittely seuraava:
Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus
LisätiedotT Signaalinkäsittelyjärjestelmät Kevät 2005 Pakolliset ja lisäpistelaskarit
T-61.14 SKJ (Pakolliset ja lisäpistetehtävät 5) Sivu / 16 T-61.14 Signaalinkäsittelyjärjestelmät Kevät 5 Pakolliset ja lisäpistelaskarit HUOM! Kurssi luennoidaan todennäköisesti viimeistä kertaa keväällä
LisätiedotSpektri- ja signaalianalysaattorit
Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden
Lisätiedot5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z
5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon
LisätiedotTL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
LisätiedotKompleksianalyysi, viikko 7
Kompleksianalyysi, viikko 7 Jukka Kemppainen Mathematics Division Fourier-muunnoksesta Laplace-muunnokseen Tarkastellaan seuraavassa kausaalisia signaaleja eli signaaleja x(t), joille x(t) 0 kaikilla t
LisätiedotKompleksiluvut signaalin taajuusjakauman arvioinnissa
Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos
LisätiedotEsipuhe. Tampereella, 9. toukokuuta 2003, Heikki Huttunen heikki.huttunen@tut.fi
Esipuhe Käsillä oleva moniste on tarkoitettu opetusmateriaaliksi Tampereen teknillisen yliopiston signaalinkäsittelyn laitoksen kurssille "8253: Johdatus signaalinkäsittelyyn 2". Materiaali on kehittynyt
Lisätiedot8000253: Johdatus signaalinkäsittelyyn 2
TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan osasto Signaalinkäsittelyn laitos TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology Institute of Signal Processing Opetusmoniste 2-23
LisätiedotSignaalinkäsittelyn menetelmät
Signaalinkäsittelyn laitos. Opetusmoniste 25: Institute of Signal Processing. Lecture Notes 25: Heikki Huttunen Signaalinkäsittelyn menetelmät Tampere 25 Opetusmoniste 25: Signaalinkäsittelyn menetelmät
Lisätiedot4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla
4.1 Näytteenottolause 4. Fourier-analyysin sovelletuksia Näyttenottosignaali (t) = k= δ(t kt). T on näytteenottoväli, ja ω T = 1 T on näyttenottotaajuus. Funktion (signaalin) f(t) näytteistäminen tapahtuu
LisätiedotHeikki Huttunen Signaalinkäsittelyn sovellukset
Tampereen teknillinen yliopisto. Signaalinkäsittelyn laitos. Opetusmoniste 2: Tampere University of Technology. Department of Signal Processing. Lecture Notes 2: Heikki Huttunen Signaalinkäsittelyn sovellukset
Lisätiedotz muunnos ja sen soveltaminen LTI järjestelmien analysointiin
z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten
LisätiedotSuodinpankit ja muunnokset*
Suodinpankit ja muunnokset* Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Spanias et al. Audio signal processing and coding. Wiley & Sons Smith, Spectral audio signal processing, online
LisätiedotLuento 8. Suodattimien käyttötarkoitus
Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..007 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden
LisätiedotHeikki Huttunen Signaalinkäsittelyn perusteet
Tampereen teknillinen yliopisto. Signaalinkäsittelyn laitos. Opetusmoniste 24: Tampere University of Technology. Department of Signal Processing. Lecture Notes 24: Heikki Huttunen Signaalinkäsittelyn perusteet
LisätiedotFIR suodinpankit * 1 Johdanto
FIR suodinpankit * Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Saramäki. Multirate signal processing. TTKK:n kurssi 80558. * ) Aihealue on erittäin laaja. Esitys tässä on tarkoituksellisesti
LisätiedotL/M = 16.9/9.1 = 169/91 = 13/7.
TL56DSK-algoritit J. Laitinn 7.. TTES5, TTES5Z Väliko, ratkaisut Signaali x[n], onka näyttaauus on 9. khz, pitää uuntaa signaaliksi, onka näyttaauus on 6.9 khz. Esitä uunnoksn vaiht lohkokaaviona skä tarvittavin
LisätiedotTehtävä 1. Vaihtoehtotehtävät.
Kem-9.47 Prosessiautomaation perusteet Tentti.4. Tehtävä. Vaihtoehtotehtävät. Oikea vastaus +,5p, väärä vastaus -,5p ja ei vastausta p Maksimi +5,p ja minimi p TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA
Lisätiedot1 Johdanto. 2 Kriittinen näytteistys 2:lla alikaistalla. 1.1 Suodatinpankit audiokoodauksessa. Johdanto
Suodinpankit ja muunnokset* Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Spanias et al. Audio signal processing and coding. Wiley & Sons Smith, Spectral audio signal processing, online
LisätiedotSignaalinkäsittelyn sovellukset
Signaalinkäsittelyn laitos. Opetusmoniste 26: Institute of Signal Processing. Lecture Notes 26: Heikki Huttunen Signaalinkäsittelyn sovellukset Tampere 26 Tampereen teknillinen yliopisto. Signaalinkäsittelyn
Lisätiedot1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus.
TL536DSK-algoritmit (J. Laitinen) 6.4.5 Määrittele lyyeti euraavat käitteet a) Kvantiointivire. b) äytetaajuuden interpolointi. ) Adaptiivinen uodatu. a) Kvantiointivire yntyy, kun ignaalin ykittäinen
Lisätiedot4. Taajuusalueen suodatus 4.1. Taustaa Perusteita
4. Taajuusalueen suodatus 4.1. Taustaa Fourier esitti v. 1807 idean, että laskien yhteen jaksollisia painotettuja funktioita voidaan esittää kuinka tahansa monimutkainen jaksollinen funktio. Kuva 4.1.
Lisätiedot1 Äänisignaalin tallentaminen ja analysointi... 2 Q Q Q Q Häiriönpoisto... 5 Q Q Q2.3...
1 Äänisignaalin tallentaminen ja analysointi... 2 Q1.1... 2 Q1.2... 2 Q1.3... 3 Q1.4... 4 2 Häiriönpoisto... 5 Q2.1... 5 Q2.2... 8 Q2.3... 9 3 FIR- ja IIR-suotimien vertailu... 10 Q3.1... 10 Q3.2... 11
LisätiedotSGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi. Äänitaajuusjakosuodintyö (2013-2014)
TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn laitos SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi Äänitaajuusjakosuodintyö (2013-2014)
Lisätiedot1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:
TL61, Näytejonosysteemit (K00) Harjoitus 1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) 1 (t) = cos(000πt) + sin(6000πt) + cos(00πt) ja ) (t) = cos(00πt)cos(000πt).
LisätiedotSäätötekniikan ja signaalinkäsittelyn työkurssi
Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio
LisätiedotLuento 7. LTI-järjestelmät
Luento 7 Lineaaristen järjestelmien analyysi taajuustasossa Taajuusvaste Stabiilisuus..7 LTI-järjestelmät u(t) h(t) y(t) Tarkastellaan lineaarista aikainvarianttia järjestelmää n n m m d d d d yt () =
Lisätiedot8000203: Johdatus signaalinkäsittelyyn 1
TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan osasto Signaalinkäsittelyn laitos TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology Institute of Signal Processing Opetusmoniste -23 Heikki
LisätiedotELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus
L1: Audio Prof. Vesa Välimäki ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely Luennon sisältö Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus Lyhyt FIR-suodin
LisätiedotAnalogiapiirit III. Keskiviikko , klo , TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet
Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 8. Keskiviikko 5.2.2003, klo. 12.15-14.00, TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet 1. Mitoita kuvan 1 2. asteen G m -C
Lisätiedot4. Taajuusalueen suodatus 4.1. Taustaa
4. Taajuusalueen suodatus 4.1. Taustaa Fourier esitti v. 1807 idean että laskien yhteen jaksollisia painotettuja funktioita voidaan esittää kuinka tahansa monimutkainen jaksollinen funktio. Kuva 4.1. esittää
LisätiedotTL5231, Signaaliteoria (S2004) Matlab-harjoituksia
1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista
LisätiedotSÄÄTÖJÄRJESTELMIEN SUUNNITTELU
ENSO IKONEN PYOSYS SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Teknillinen tiedekunta Älykkäät koneet ja järjestelmät helmikuu
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
LisätiedotA B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)
ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari
Lisätiedot3 Ikkunointi. Kuvio 1: Signaalin ikkunointi.
3 Ikkunointi Puhe ei ole stationaarinen signaali, vaan puheen ominaisuudet muuttuvat varsin nopeasti ajan myötä. Tämä on täysin luonnollinen ja hyvä asia, mutta tämä tekee sellaisten signaalinkäsittelyn
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
LisätiedotMATEMATIIKAN JAOS Kompleksianalyysi
MATEMATIIKAN JAOS Kompleksianalyysi Harjoitustehtäviä, syksy 00. Määrää kompleksiluvun a) = 3 j + 3j, b) = j, + j c) = ( 3 3 3 j)( j) itseisarvo ja argumentti.. Määrää sellaiset reaaliluvut x ja y, että
LisätiedotVastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons.
Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Sisältö:! Johdanto! IIR vai FIR äänten suodattamiseen?!
Lisätiedote ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0,
Harjoitus 5 1. Olkoot a > 0. Laske vaimenevan pulssin e ax, kun x > 0 fx) = 0, kun x < 0, ja voimistuvan pulssin gx) = konvoluution g f Fourier-muunnos. 0, kun x > 0 e ax, kun x < 0 apa 1: Konvoluution
LisätiedotLaskuharjoitus 2 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti
LisätiedotMitä on signaalien digitaalinen käsittely
Mitä on signaalien digitaalinen käsittely Signaalien digitaalinen analyysi: mitä sisältää, esim. mittaustulosten taajuusanalyysi synteesi: signaalien luominen, esim. PC:n äänikortti käsittely: oleellisen
LisätiedotOsatentti
Osatentti 3 1.4.016 Nimi: Opiskelijanumero: Ohjeet: Kirjoita vastaukset paperissa annettuun tilaan. Lisävastaustilaa on paperin lopussa. Käytä selvää käsialaa. Laskin EI ole sallittu. Tenttikaavasto jaetaan.
LisätiedotLuento 8. tietoverkkotekniikan laitos
Luento 8 Luento 8 Signaalien suodatus 8. Ideaaliset suodattimet Ideaaliset alipäästö-, ylipäästö-, kaistanpäästö- ja kaistanestosuodattimet Oppenheim 6.3 8. Käytännön suodattimet Käytännön suodattimet,
LisätiedotOsatentti
Osatentti 2.8.205 Nimi: Opiskelijanumero: Ohjeet: Vastaa kysymyspaperiin ja kysymyksille varattuun tilaan. Laskin ei ole sallittu. Tenttikaavasto jaetaan. Kaavastoon EI merkintöjä. Palauta kaavasto tämän
LisätiedotDiskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen
Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa Pentti Romppainen Kajaanin ammattikorkeakoulu Oy Kajaani University of Applied Sciences Diskreetti Fourier-muunnos ja
LisätiedotTietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
LisätiedotSignaalit ja järjestelmät aika- ja taajuusalueissa
Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)
LisätiedotKON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma
KON-C34 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma Mitattava suure Tarkka arvo Mittausjärjestelmä Mitattu arvo Ympäristö Mitattava suure Anturi Signaalinkäsittely
LisätiedotJaksollisen signaalin spektri
Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta
LisätiedotTaajuus-, Fourier- ja spektraalianalyysi
Taajuus-, Fourier- ja spektraalianalyysi Impulssi- ja askelvastetekniikat sekä korrelaatioanalyysi tähtäävät impulssivasteen mallintamiseen aikataso Taajuus- Fourier- ja spektraalianalyysi tähtäävät systeemin
LisätiedotAlias-ilmiö eli taajuuden laskostuminen
Prosessiorientoituneet mallit Todellista hybridijärjestelmää ELEC-C1230 Säätötekniikka Luku 12: Näytteenottoteoreema ja jatkuvien säätimien diskreetit approksimaatiot Prosessiorientoituneet mallit katsotaan
LisätiedotYksinkertaisin järjestelmä
Digitaalinen Signaalinkäsittely T05 Luento 5 -.04.006 Jarkko.Vuori@evtek.fi Yksinkertaisin järjestelmä Differenssiyhtälö [ n] x[ n] y Lohkokaavio X() Y() Siirtofunktio H ( ) Nolla-napa kuvio Ei nollia
LisätiedotLABORATORIOTYÖ 2 A/D-MUUNNOS
LABORATORIOTYÖ 2 A/D-MUUNNOS 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä ja näytteenottotaajuus
LisätiedotSpektrianalysaattori. Spektrianalysaattori
Mittaustekniikan perusteet / luento 9 Spektrianalysaattori Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien
LisätiedotSpektrianalyysi, motivaatio
Digitaalinen Signaalinkäsittely 5 Luento 7-3.5.6 Jarkko.Vuori@evtek.fi Spektrianalyysi, motivaatio Ihmiskeholla on luontaisesti hidas reagointikoneisto Musiikkia kuunnellessamme emme erota äänenpaineen
LisätiedotTL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
LisätiedotSignaaliavaruuden kantoja äärellisessä ajassa a
ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 3: Kompleksiarvoiset signaalit, taajuus, kantoaaltomodulaatio Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos Signaaliavaruuden
LisätiedotKotitehtävät 1-6: Vastauksia
/V Integraalimuunnokset Metropolia/. Koivumäki Kotitehtävät -6: Vastauksia. Merkitse kompleksitasoon näiden kompleksilukujen sijainti: a = 3 j b = 3 35 (3 kulmassa 35 ) jπ / c = d = 3 e j 9.448 e cos(
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
Lisätiedot521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
LisätiedotS Signaalit ja järjestelmät
dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä
LisätiedotTaajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu. Vinkit 1 a
ELEC-C3 Säätötekniikka 9. laskuharjoitus Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu Vinkit a 3. Vaiheenjättökompensaattorin siirtofunktio: ( ) s W LAG s, a. s Vahvistus
LisätiedotDiskreetin LTI-systeemin stabiilisuus
Diskreetin LTI-systeemin stabiilisuus LuK-tutkielma Johannes Ylitalo 2372956 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 Merkintöjä 2 1 Kompleksifunktiot 3 2 Signaalianalyysi
LisätiedotDigitaalinen signaalinkäsittely Johdanto, näytteistys
Digitaalinen signaalinkäsittely Johdanto, näytteistys Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn
Lisätiedot5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
LisätiedotSIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
LisätiedotT-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9
T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 1 / 9 T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9 T-61.246 Digitaalinen signaalinkäsittely ja suodatus Versio 5.01 (29.9.2003) T-61.246 Harjoitustyö
Lisätiedot1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.
Fysiikan mittausmenetelmät I syksy 2013 Malliratkaisut 3 1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. b) Ulostulo- ja sisäänmenojännitteiden
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
LisätiedotAjatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors. TKK, Informaatiotekniikan laboratorio 1
3. DATA VEKTORINA 3.1. Vektorit, matriisit, etäisyysmitat Ajatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors {}}{ d vector elements X TKK, Informaatiotekniikan laboratorio 1
LisätiedotSignaalimallit: sisältö
Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen
LisätiedotLuento 7. Järjestelmien kokoaminen osista
Luento 7 Lineaaristen järjestelmien analyysi Järjestelmä yhdistelmät, takaisinkytkentä Taajuusvaste Stabiilisuus analyysi taajuustasossa 8..6 Järjestelmien kokoaminen osista Lineaaristen järjestelmien
LisätiedotSignaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö
Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Harjoitustyön sekä kurssin suorittaminen Kurssin suorittaminen edellyttää sekä tentin että harjoitustyön hyväksyttyä suoritusta.
Lisätiedot