12. Liikenteenhallinta verkkotasolla
|
|
- Annemari Niemi
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 12. Liikenteenhllint verkkotsoll luento12.ppt S Liikenneteorin perusteet Kevät
2 12. Liikenteenhllint verkkotsoll Sisältö Verkon topologi Liikennemtriisi Liikenteenhllint verkkotsoll Kuormntsus 2
3 12. Liikenteenhllint verkkotsoll Topologi Verkko muoostuu joukost solmuj j linkkejä Merk. solmujen joukko N:llä j ineksoin niitä n:llä Merk. linkkien joukko J:llä j ineksoin niitä j:llä Esimerkki: N = {,,,,e} J = {1,2,3,,12} e 5 7 linkki 1 solmust solmuun linkki 2 solmust solmuun Merk. j :llä linkin j kpsiteetti (ps) 3
4 12. Liikenteenhllint verkkotsoll Polut Määritellään polku (= reitti) joukoksi peräkkäisiä linkkejä, jotk yhistävät kksi verkon solmu toisiins. Merk. polkujen joukko P:llä j ineksoin niitä p:llä Esimerkki: solmust solmuun kolme polku puninen polku käyttää linkkejä 1 j e 5 7 vihreä polku käyttää linkkejä 11 j 6 sininen polku käyttää linkkejä 10, 8 j 6 4
5 12. Liikenteenhllint verkkotsoll Polkumtriisi Jokinen polku siis muoostuu joukost linkkejä Tätä yhteyttä kuv polkumtriisi A, joss komponentti jp = 1, jos j p eli linkki j kuuluu polulle p muuten jp = 0 Esimerkki: polkumtriisin kolme srkett
6 12. Liikenteenhllint verkkotsoll Lyhimmät polut Jos kullekin linkille j määritellään linkkipino w j, niin polun p pituus l p sn summn l p = w j j p Jos vkiopinot w j = 1, niin polun pituus = hyppyjen lkm Esimerkki: linkkipinot 1, lsketn siis hyppyjen lukumäärää solmust solmuun kksi lyhintä polku (pituus 2 hyppyä) w = 1 w = 1 w = 1 w = 1 w = 1 w = 1 w = 1 w = 1 w = 1 w = 1 w = 1 w = 1 e 6
7 12. Liikenteenhllint verkkotsoll Sisältö Verkon topologi Liikennemtriisi Liikenteenhllint verkkotsoll Kuormntsus 7
8 12. Liikenteenhllint verkkotsoll Liikenteen luonnehint Liikenne Piirikytkentäinen esim. puhelinliikenne Pkettikytkentäinen esim. tliikenne Linkki Verkko Linkki Verkko 8
9 12. Liikenteenhllint verkkotsoll Liikennemtriisi (1) Liikennettä verkkotsoll kuvtn liikennemtriisill T, joss komponentti t nm kertoo liikennetrpeen (ps) lähesolmust n määränpääsolmuun m Aggregtti kikist voist joill sm lähe j määränpää t Aggregtti myös ik-kselill: liikenteen keskirvo määrätyllä ikjksoll, esim. kiiretunnin ikn ti tyypillisen 5 minuutin jksoss e Esimerkki: Liikennetrve lähteestä määränpäähän on t (ps) 9
10 12. Liikenteenhllint verkkotsoll Liikennemtriisi (2) Jtkoss esitämme liikennetrpeet myös vektorimuooss Sitä vrten ineksoimme lähemääränpää-prit eli OD-prit. Merk. OD-prien joukko K:llä j ineksoin niitä k:ll Liikennetrpeet voin tällöin esittää vektorin x, missä x k komponentti x k kertoo OD-prin k liikennetrpeen e Esimerkki: jos OD-prin (,) ineksi on k, niin x k = t 10
11 12. Liikenteenhllint verkkotsoll Sisältö Verkon topologi Liikennemtriisi Liikenteenhllint verkkotsoll Kuormntsus 11
12 12. Liikenteenhllint verkkotsoll Liikennekuormn hllint j verkon suunnittelu Liikennekuormn hllint (trffi engineering) = Engineer the trffi to fit the topology Jos topologi j linkkien kpsiteetit on kiinnitetty j liikennemtriisi tunnetn, miten nämä liikennetrpeet pitäisi reitittää läpi verkon? Verkon suunnittelu (network esign) = Engineer the topology to fit the trffi 12
13 12. Liikenteenhllint verkkotsoll Reitityksen vikutus kuormn jkntumiseen Reitityslgoritmi määrää, miten eri liikennetrpeet kuormittvt verkon linkkejä IP-verkkojen reititysprotokollt (RIP, OSPF, BGP) käyttävät lyhimmän polun lgoritmej (Bellmn-For, Dijkstr) MPLS-verkoiss myös muut lgoritmit mhollisi Trkemmin snottun: reitityslgoritmi määrää liikennetrpeien x k jkosuhteet φ pk eri poluille p, φ=1/2 x φ=1/2 φ=0 e p P φ pk =1 kikille k 13
14 12. Liikenteenhllint verkkotsoll Linkkikuormt OD-pri k yhistävälle polulle p tulev liikenne on siis φ pk x k Liikennetrpeet x k j jkosuhteet φ pk yhessä määräävät eri linkeille j tulevt linkkikuormt y j : y j = p P k K jp φ pk Sm mtriisimuooss: x k x y = 0 e y = 0 y = Aφx 14
15 12. Liikenteenhllint verkkotsoll MPLS MPLS (Multiprotool Lel Swithing) tukee liikenteen jkmist rinnkkisille poluille MPLS-verkoiss kunkin OD-prin välille voin vpsti luo rinnkkisi polkuj eli LSP:itä (Lel Swithe Pth) Näien polkujen ei trvitse oll lyhimpiä polkuj Kutkin LSP:tä vst tunnus (lel) j kusskin MPLS-pketiss on tällinen polun ilmisev tunnus MPLS-pketit reititetään näitä tunnuksi käyttäen läpi verkon Kuormn jkutumiseen voin vikutt muuttmll suorn jkosuhteit φ pk lähesolmuiss 15
16 12. Liikenteenhllint verkkotsoll OSPF (1) OSPF (Open Shortest Pth First) on lueen sisäinen (intromin) reititysprotokoll IP-verkoiss Linkkitilprotokoll (Link Stte Protool) Jokinen lueen solmu kertoo etäisyytensä npurisolmuihins Nämä etäisyyet toimivt linkkipinoin lyhimmän polun lgoritmiss Näistä tieoist jokinen solmu rkent itselleen koko lueen topologin Ko. topologi määrää lyhimmät polut kyseisestä solmust kuhunkin kohesolmuun Lyhimmän polun lgoritmin Dijkstr IP-pketit reititetään näitä lyhyimpiä polkuj pitkin 16
17 12. Liikenteenhllint verkkotsoll OSPF (2) OSPF:ssä yleensä käytössä ECMP (Equl Cost Multipth) Jos solmust n useit lyhimpiä polkuj solmuun m, niin liikenne pyritään jkmn tsn niien solmust n lähtevien linkkien välillä, jotk kuuluvt johonkin näistä lyhimmistä poluist Tästä ei kuitenkn seur, että liikenne jkutuisi tsn rinnkkisten lyhimpien polkujen välille! Kts. seurvn klvon esimerkkiä. Kuormn jkutumiseen voin vikutt vin epäsuorsti muuttmll linkkipinoj jkosuhteit φ pk ei voi suorn muutt ECMP:n vuoksi hluttuj jkosuhteit φ pk ei välttämättä svutet 17
18 12. Liikenteenhllint verkkotsoll ECMP y = x/4 y = x/4 x y = x/4 e y = x/4 g f φ = 1/4 φ = 1/4 φ = 1/2 e f g 18
19 12. Liikenteenhllint verkkotsoll Linkkipinojen vikutus kuormn jkntumiseen (1) mksimlinen linkkikuorm w = 1 w = 1 w = 1 w = 1 w = 1 x w = 1 w = 1 x w = 1 w = 1 w = 1 w = 1 w = 1 e φ = 1/2 φ = 1/2 φ = 1 e y = 3x/2 y = x e 19
20 12. Liikenteenhllint verkkotsoll Linkkipinojen vikutus kuormn jkntumiseen (2) mksimlinen linkkikuorm w = 1 w = 1 w = 1 w = 1 w = 1 x w = 1 w = 1 x w = 2 w = 1 w = 1 w = 1 w = 2 e φ = 1/2 φ = 1/2 φ = 1/2 e φ = 1/2 y = x y = x e linkkipino ksvtettu 20
21 12. Liikenteenhllint verkkotsoll Sisältö Verkon topologi Liikennemtriisi Liikenteenhllint verkkotsoll Kuormntsus 21
22 12. Liikenteenhllint verkkotsoll Kuormntsusongelm (1) Jos verkon topologi j liikennemtriisi ovt tieoss, niin miten liikenne knnttisi reitittää verkkoon? Eräs järkevä tp on pyrkiä tsmn eri linkkien suhteellinen kuorm ρ j = y j / j Joskus se onnistuu usellkin eri tvll (kuten yläkuvss) Joskus ts se ei ole ollenkn mhollist (kuten lkuvss) Tällöin voimme kuitenkin pyrkiä niin lähelle tsjko kuin mhollist, esim. minimoimll suhteellisten kuormien mksimi (ns. kuormntsusongelm) x = 1 = 1 = 1 = 1 e = 1 g = 1 = 1 = 1 f = 1 x = 1 = 1 = 1 = 1 = 2 22
23 12. Liikenteenhllint verkkotsoll Kuormntsusongelm (2) Kuormntsusongelm: Olkoon (N,J) verkon topologi, j linkkikpsiteetit sekä x k liikennetrpeet. Tvoitteen on määrätä jkosuhteet φ pk siten, että suhteellisten linkkikuormien mksimi minimoituu Minimize sujet to y φ mx j J j p P pk = φ y j j 0 = 1 p P k K pk A jp φ pk x k j J k K p P, k K 23
24 12. Liikenteenhllint verkkotsoll Kuormntsusongelm (3) Kuormntsusongelmll on in rtkisu, mutt rtkisu ei välttämättä ole yksikäsitteinen Esimerkki: sm mksimikuormn minimi svutetn eripituisill reiteillä näistä ylempi rtkisu on tietysti resurssien kokoniskäytön knnlt järkevämpi Järkevään yksikäsitteiseen rtkisuun päästään lisäämällä (häviävän) pieni kustnnus polun jokisest käytetystä hypystä x y = 0 e x y = 0 e y = 0 24
25 Liikenteenhllint verkkotsoll Kuormntsusongelm (4) Järkevä yksikäsitteinen kuormntsusongelm: Olkoon (N,J) verkon topologi, j linkkikpsiteetit sekä x k liikennetrpeet. Tvoitteen on määrätä jkosuhteet φ pk siten, että suhteellisten linkkikuormien mksimi minimoituu pienimmällä mhollisell kokonisliikenteellä = = + K k P p K k J j x A y y pk P p pk P p K k k pk jp j J j j y J j j j, 0 1 sujet to mx Minimize ' ' φ φ φ ε
26 12. Liikenteenhllint verkkotsoll Esimerkki (1): optimlinen rtkisu = 2 = 2 = 2 = 2 = 2 x = 2 = 1 = 1 = 2 = 2 = 2 = 2 e φ = 1/2 φ = 1/4 φ = 1/4 e ρ = x/4 ρ = x/4 ρ = x/4 ρ = x/8 e ρ = x/4 ρ = x/8 26
27 12. Liikenteenhllint verkkotsoll Esimerkki (2): linkkipinot w = 1 w = 1 w = 1 w = 1 w = 1 w = 1 x w = 1 w = 1 w = 1 w = 1 w = 1 w = 1 w = 1 e φ = 1/2 φ = 1/2 e ρ = x/4 ρ = x/4 ρ = x/2 e ρ = x/4 27
28 12. Liikenteenhllint verkkotsoll Esimerkki (3): optimliset linkkipinot w = 1 w = 2 w = 2 w = 1 w = 1 x w = 1 w = 3 w = 3 w = 1 w = 1 w = 1 w = 1 e φ = 1/2 φ = 1/2 e ρ = x/4 ρ = x/4 ρ = x/4 e ρ = x/4 ρ = x/4 28
29 12. Liikenteenhllint verkkotsoll THE END 29
12. Liikenteenhallinta verkkotasolla
luento12.ppt S-38.145 - Liikenneteorin perusteet - Kevät 2005 1 Sisältö Verkon topologi Liikennemtriisi Liikenteenhllint verkkotsoll Kuormntsus 2 Topologi Verkko muoostuu joukost solmuj j linkkejä Merk.
Lisätiedot12. Liikenteenhallinta verkkotasolla
2. Liikntnhllint vrkkotsoll 2. Liikntnhllint vrkkotsoll Vrkon topologi Liiknnmtriisi Liikntnhllint vrkkotsoll Kuormntsus lunto2.ppt S-38. Liiknntorin prustt Kvät 200 2 2. Liikntnhllint vrkkotsoll 2. Liikntnhllint
Lisätiedotj n j a b a c a d b c c d m j b a c a d a c b d c c j
TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-38.115 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 12 29.2.2008 D12/1 Tarkastellaan verkkoa, jossa on solmua ja linkkiä.
LisätiedotKuvausta f sanotaan tällöin isomorfismiksi.
Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,
LisätiedotSähkömagneettinen induktio
ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä
LisätiedotNeliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on
4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2015) Toinen välikoe, malliratkaisut
583 Tietorkenteet j lgoritmit (kevät 205) Toinen välikoe, mllirtkisut. () Brnh n oun. Brnh n oun on lgoritmityyppi, joss tutkitn kikki ongelmn mhollisi rtkisuj puumisess rkenteess. Kun hvitn, että jokin
Lisätiedot3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko
3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu
LisätiedotS Laskennallinen systeemibiologia
S-4.50 Lsknnllinn systmiiologi 4. Hrjoitus. Viill tutkittvll ljill (,, c, j ) on määrätty täisyyt c 0 8 8 8 0 8 8 8 c 0 4 4 0 0 Määritä puurknn käyttän UPGMA-mntlmää. Näytä kunkin vihn osrkntt vstvin täisyyksinn.
Lisätiedot2.4 Pienimmän neliösumman menetelmä
2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13
MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.
Lisätiedot4 DETERMINANTTI JA KÄÄNTEISMATRIISI
4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.
LisätiedotICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()
Lisätiedot2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:
2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:
LisätiedotT Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.
T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä
Lisätiedot6 Kertausosa. 6 Kertausosa
Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)
LisätiedotSyksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut
Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.
LisätiedotICS-C2000 Tietojenkäsittelyteoria Kevät 2015
ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,
Lisätiedot763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014
763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin
LisätiedotVastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.
S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn
LisätiedotAutomaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:
2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:
LisätiedotOUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050
OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin
LisätiedotA ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
LisätiedotQ = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 },
T-79.48 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 4 Demonstrtiotehtävien rtkisut 4. Tehtävä: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,
LisätiedotLINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat
(0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset
LisätiedotAlgoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
LisätiedotGraafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria
Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:
LisätiedotDiskreetin matematiikan perusteet Ratkaisut 4 / vko 11
Diskreetin mtemtiikn perusteet Rtkisut 4 / vko 11 Tuntitehtävät 41-42 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-46 loppuviikon hrjoituksiss. Kotitehtävät 43-44 trkstetn loppuviikon hrjoituksiss.
LisätiedotOUML6421B3004. 3-tilaohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT
OUML6421B3004 3-tilohjttu venttiilimoottori KÄYTTÖKOHTEET i Lämmityksen säätö i Ilmnvihtojärjestelmät TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden
Lisätiedot10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA
MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion
LisätiedotVEKTOREILLA LASKEMINEN
3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on
LisätiedotPythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause
Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin
LisätiedotOSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA
OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali
MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,
LisätiedotPolynomien laskutoimitukset
Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää
LisätiedotRiemannin integraalista
Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:
LisätiedotDigitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30
Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),
LisätiedotOSI-malli. S Tietoliikenneverkot. Miksi kytketään. Välitys ja kytkeminen OSI-mallissa. /XHQWR.\WNHQWlMDUHLWLW\V
Teknillinen korkeakoulu Teletekniikan laboratorio OSImalli S8.88 Tietoliikenneverkot 7 sovelluskerros 7 sovelluskerros /XHQWR.\WNHQWlMUHLWLW\V esitystapakerros yhteysjakso esitystapakerros yhteysjakso
LisätiedotGraafinen ohjeisto. Julkis- ja yksityisalojen toimihenkilöliitto Jyty
Grfinen ohjeisto Julkis- j yksityislojen toimihenkilöliitto Jyty Julkis- j yksityislojen toimihenkilöliitto Jyty Grfinen ohjeisto Sisällysluettelo: 1. Johdnto 2. Peruselementit Tunnus j versiot...2.1 Tunnuksen
Lisätiedot7.lk matematiikka. Geometria 1
7.lk mtemtiikk 1 Htnpään koulu 7B j 7C Kevät 2017 2 Sisällys 1. Koordintisto... 4 2. Kulmien nimeäminen j luokittelu... 8 3. Kulmien mittminen j piirtäminen... 10 4. Ristikulmt j vieruskulmt... 14 5. Suort,
LisätiedotKirjallinen teoriakoe
11 Kirjllinen teorikoe Päivämäärä: Osllistujn nimi: Kirjllinen teorikoe Arviointi koostuu khdest osst: "yleiset kysymykset "j lskutehtävät" Kokeen hyväksytty rj on 51% molemmist osioist erikseen. St 1
LisätiedotDemonstraatiot Luento
TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-8.45 Liikenneteorian perusteet, Kevät 8 Demonstraatiot Luento 8..8 D/ Tarkastellaan seuraavaa yksinkertaista piirikytkentäistä (runko)verkkoa.
Lisätiedot58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut
Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten
LisätiedotJohdatus verkkoteoriaan 4. luento
Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,
LisätiedotProjektin itsearviointi. Työkirjapohjat
TÄMÄ DOKUMENTTI ON TARKOITETTU MIELEN AVAIN -HANKKEEN PROJEKTIEN ITSEARVIOINNIN TOTEUTTAMISEEN itserviointi Työkirpoht NET EFFECT OY ANNIINA ALI-LAURILA TOIMINTA 1. Johtjuus 3. HENKILÖSTÖ 7. HENKILÖSTÖ
LisätiedotLaskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja
582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko
LisätiedotPinta-alan laskeminen
Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin
LisätiedotTehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi
Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,
LisätiedotVEKTOREILLA LASKEMINEN
..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin
Lisätiedotx k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b
5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),
LisätiedotKattoeristeet - nyt entistä parempia kokonaisratkaisuja. Entistä suurempi Kuormituskestävyys ja Jatkuva Keymark- Laadunvalvontajärjestelmä
Kttoeristeet - nyt entistä prempi kokonisrtkisuj Entistä suurempi Kuormituskestävyys j Jtkuv Keymrk- Lunvlvontjärjestelmä Rockwool-ekolvll kttoeristeet seisovt omill jloilln Ekolvoj käytettäessä työ on
LisätiedotMS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali
MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November
LisätiedotRunkovesijohtoputket
Runkovesijohtoputket PUTKET JA PUTKEN OSAT SSAB:n vlmistmi pinnoitettuj putki j putken osi käytetään lähinnä runkovesijohtolinjoihin, joiden hlkisij on DN 400-1200. Ost vlmistetn teräksisistä pineputkist
LisätiedotVALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen
LisätiedotKognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP
Kognitiivinen mllintminen I, kevät 007 Hrjoitus. Joukko-oppi. MMIL, luvut -3 Rtkisuehdotuksi, MP. Määritellään joukot: A = {,,, 3, 4, 5} E = {, {}, } B = {, 4} F = C = {, } G = {{, }, {,, 4}} D = {, }
LisätiedotHarjoitus 3 (3.4.2014)
Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
LisätiedotRistitulo ja skalaarikolmitulo
Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden
LisätiedotJohdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste
LisätiedotYRITYSTEN HENKILÖSTÖKOULUTUS
AIKUISKOULUTUSTILASTOT M Itell Posti Oy YRITYSTEN HENKILÖSTÖKOULUTUS VUONNA 2010 'CONTINUING VOCATIONAL TRAINING SURVEY - CVTS4' TIEDUSTELU PERUSTUU TILASTOLAKIIN (LAKI 280/04) KYSELYLOMAKE SÄHKÖINEN LOMAKE:
LisätiedotMatematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista
Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),
LisätiedotAlgoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
LisätiedotReititys. Tietokoneverkot 2009 (4 op) Syksy Futurice Oy. Reititys. Jaakko Kangasharju.
algoritmit Tietokoneverkot 2009 (4 op) jaakko.kangasharju@futurice.com Futurice Oy Syksy 2009 (Futurice Oy) Syksy 2009 1 / 45 Sisältö 1 algoritmit 2 3 4 algoritmit 5 6 (Futurice Oy) Syksy 2009 2 / 45 Sisältö
Lisätiedot6 Integraalilaskentaa
6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion
LisätiedotPainopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1
Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon
LisätiedotNäytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.
Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä
LisätiedotVerkkokerroksen palvelut. 4. Verkkokerros. Virtuaalipiiri (virtual circuit) connection-oriented ~ connectionless. tavoitteet.
4. Verkkokerros sovelluskerros asiakas kuljetuskerros end-to-end verkkokerros Verkkokerroksen palvelut tavoitteet palvelut riippumattomia aliverkkojen tekniikasta kuljetuskerros eristettävä aliverkkojen
Lisätiedot58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)
811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo
LisätiedotEDE Elementtimenetelmän perusteet. Luento vk 1 Syksy Matematiikan ja matriisilaskennan kertausta
mperee tekillie yliopisto hum.8.3 Kostruktiotekiik litos EDE-00 Elemettimeetelmä perusteet. Lueto vk Syksy 03. Mtemtiik j mtriisilske kertust Yleistä Kirjoittele täe joiti kurssi keskeisiä sioit iille,
Lisätiedotsolmujoukko V omassa säiliössä (sekvenssi) kaarijoukko E kaarialkio-säiliössä kussakin kaarialkiossa viite sen alku- ja loppusolmuun
Grf-tetorkenteen toteutus Grfn toteutus? Perustp : krlst e f Tetorkenteet, syksy 7 Grf-tetorkenteen toteutus Perusopertoen työmäärä krlstss...: ovtko solmut u j v verekkäsä?: O(m) solmun lsäys: O() solmun
LisätiedotAUTOMAATTIEN SYNKRONISAATIOSTA
AUTOMAATTIEN SYNKRONISAATIOSTA John Kopr Pro grdu -tutkielm Huhtikuu 015 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Mtemtiikn j tilstotieteen litos KOPRA, JOHAN: Automttien synkronistiost
LisätiedotVuokrahuoneistojen välitystä tukeva tietojärjestelmä.
Kertusesimerkki: Vuokrhuoneistojen välitystä tukev tietojärjestelmä. Esimerkin trkoituksen on on hvinnollist mllinnustekniikoiden käyttöä j suunnitteluprosessin etenemistä tietojärjestelmän kehityksessä.
LisätiedotVerkkokerroksen palvelut. 4. Verkkokerros. Virtuaalipiiri (virtual circuit) connection-oriented ~ connectionless. tavoitteet.
. Verkkokerros sovelluskerros asiakas kuljetuskerros end-to-end verkkokerros Verkkokerroksen palvelut tavoitteet palvelut riippumattomia aliverkkojen tekniikasta kuljetuskerros eristettävä aliverkkojen
LisätiedotHarjoitus 3 (31.3.2015)
Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
Lisätiedot4. Verkkokerros. sovelluskerros. kuljetuskerros. verkkokerros. siirtoyhteyskerros peruskerros. asiakas. end-to-end
4. Verkkokerros sovelluskerros asiakas kuljetuskerros end-to-end verkkokerros deliver packets given to it by its customers siirtoyhteyskerros peruskerros 11.2.2002 1 Verkkokerroksen palvelut tavoitteet
Lisätiedot3 Mallipohjainen testaus ja samoilutestaus
Tietojenkäsittelytiede 24 Joulukuu 2005 sivut 8 21 Toimittj: Jorm Trhio c kirjoittj(t) Historiljennus mllipohjisess testuksess Timo Kellomäki Tmpereen teknillinen yliopisto Ohjelmistotekniikn litos 1 Johdnto
LisätiedotOlkoon. M = (Q, Σ, δ, q 0, F)
T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään
LisätiedotSuorat, käyrät ja kaarevuus
Suort, käyrät j krevuus Jukk Tuomel Professori Mtemtiikn litos, Joensuun yliopisto Suor? Tämä kirjoitus on eräänlinen jtko Timo Tossvisen suorn määritelmää koskevn kirjoitukseen Solmun numeross 2/2002.
LisätiedotVerkkokerroksen palvelut
4. Verkkokerros sovelluskerros asiakas kuljetuskerros end-to-end verkkokerros deliver packets given to it by its customers siirtoyhteyskerros peruskerros 2/5/2003 1 Verkkokerroksen palvelut tavoitteet
LisätiedotTee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!
MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske
LisätiedotSinilause ja kosinilause
Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,
LisätiedotR4 Harjoitustehtävien ratkaisut
. Mitkä seurvist lusekkeist eivät ole polynomej? Miksi eivät? Polynomin termine eksponentti on luonnollinen luku, ne lusekkeet, joiss eksponentti ei ole luonnollinen luku ei ole myöskään polynomi.. x x
LisätiedotTasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.
KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt
LisätiedotOlkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään
T 79.00/002 Tietojenkäsittelyteorin perusteet 2. Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään
LisätiedotEuroopan neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnallisesta merkityksestä
Sopimustekstin käännös 30.03.2015 (epävirllinen) Counil of Europe Trety Series - No. 199 Euroopn neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnllisest merkityksestä Fro, 27.10.2005 Johnto Euroopn
LisätiedotMatematiikan tukikurssi
Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv
LisätiedotSarjaratkaisun etsiminen Maplella
Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.
LisätiedotAlgoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
LisätiedotBM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
LisätiedotPreliminäärikoe Pitkä Matematiikka 5.2.2013
Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
LisätiedotJohdatus verkkoteoriaan luento Netspace
Johdatus verkkoteoriaan luento 20.3.18 Netspace Kurssin sijainti muussa suunnitellussa kokonaisuudessa Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot, verkon
LisätiedotMATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Peruslaskutoimitukset. Isto Jokinen 2015
MATEMATIIKKA Mtemtiikk pintkäsittelijöille Peruslskutoimitukset Isto Jokinen 01 SISÄLTÖ 1. Lskujärjestys 1. Murtoluvuill lskeminen. Suureet j mittyksiköt. Potenssi. Juuri 6. Tekijäyhtälöiden rtkiseminen
Lisätiedot100 % Kaisu Keskinen Diat
100 % Kaisu Keskinen Diat 98-103 4-1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6
LisätiedotKertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot
TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.
LisätiedotJoonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen
Hävittäjälentokoneen reitin suunnittelussa käytettävän dynaamisen ja monitavoitteisen verkko-optimointitehtävän ratkaiseminen A*-algoritmilla (valmiin työn esittely) Joonas Haapala 8.6.2015 Ohjaaja: DI
LisätiedotS Tietoliikenneverkot
Teknillinen korkeakoulu Teletekniikan laboratorio S-8.88 Tietoliikenneverkot Luento : Kytkentä ja reititys tietoliikenneverkoissa 5.9.999 S-8.88 Tietoliikenneverkot / Marko Luoma Miksi kytketään Suoraan
LisätiedotICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 2, 18. 22. tmmikuut Demonstrtiotehtävien rtkisut D1: Formuloi luennoll (monisteen s. 17) esitetty yksinkertinen khviutomtti täsmällisesti äärellisen
LisätiedotKäydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.
DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen
Lisätiedot811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus
LisätiedotHarjoitus 1 (17.3.2015)
Harjoitus 1 (17.3.2015) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Helsinki 4 = Kuopio 5 = Joensuu. a) Tehtävänä on ratkaista Bellman
Lisätiedot