solmujoukko V omassa säiliössä (sekvenssi) kaarijoukko E kaarialkio-säiliössä kussakin kaarialkiossa viite sen alku- ja loppusolmuun

Koko: px
Aloita esitys sivulta:

Download "solmujoukko V omassa säiliössä (sekvenssi) kaarijoukko E kaarialkio-säiliössä kussakin kaarialkiossa viite sen alku- ja loppusolmuun"

Transkriptio

1 Grf-tetorkenteen toteutus Grfn toteutus? Perustp : krlst e f Tetorkenteet, syksy 7 Grf-tetorkenteen toteutus Perusopertoen työmäärä krlstss...: ovtko solmut u j v verekkäsä?: O(m) solmun lsäys: O() solmun posto: O(m) kren lsäys: O() kren posto: O() Nämä kvtvuuet kun sälöt kkssuunts lnktettyjä lstoj (sm oletus myös jtkoss) Tetorkenteet, syksy 7 Grf-tetorkenteen toteutus solmujoukko omss sälössä (sekvenss) krjoukko krlko-sälössä kusskn krlkoss vte sen lku- j loppusolmuun Krlstn tlvtmus: O(m + n) Perusopertoen työmäärä krlstss: kren päätesolmujen ku: O() solmuun v lttyneen kren selus: O(m) Tetorkenteet, syksy 7 Grf-tetorkenteen toteutus Perustp : verekkyyslst e f kun krlst, mutt lsäks kullkn solmulkoll vte omn krsälöön vtteet kyseseen solmuun tulevn j stä lätevn krn Tetorkenteet, syksy 7

2 Grf-tetorkenteen toteutus Grf-tetorkenteen toteutus e f erekkyyslstn tlvtmus: O(m + n) Perusopertoen työmäärä verekkyyslstss: kren päätesolmujen ku: O() solmuun v lttyneen kren selus: O(e(v)) solmut u j v verekkäsä?: O(mn{e(u),e(v)}) e f Perusopertoen työmäärä verekkyyslstss...: solmun lsäys: O() solmun v posto: O(e(v)) kren lsäys: O() kren posto: O() Tetorkenteet, syksy 7 Grf-tetorkenteen toteutus Perustp : verekkyysmtrs kun krlst, mutt lsäks n n mtrs A solmut numeron rvoll...n lko A[, j] ssältää vtteen solmust solmuun j kulkevn kreen A[,j] = null, jos e ole krt (,j) Tetorkenteet, syksy 7 7 Tetorkenteet, syksy 7 6 Grf-tetorkenteen toteutus e f erekkyysmtrsn tlvtvuus: O(n ) oletus: e rnnkks kr, jollon m = O(n ) Tetorkenteet, syksy 7 8

3 Grf-tetorkenteen toteutus erekkyysmtrsn perusopertoen työmäärä: kren päätesolmujen ku: O() solmuun v lttyneen kren selus: O(n) solmut u j v verekkäsä?: O() solmun lsäys: O(n ) solmun v posto: O(n ) kren lsäys: O() kren posto: O() Tetorkenteet, syksy 7 9 Leveyssuuntnen ku (Bret-Frst Ser, BFS) Leveyssuuntnen ku lken solmust s läetään levämään solmust s stettn n kuempn j kuempn olevn solmun solmun v tso: lyn polku (krten lukumäärä) kulun lkusolmust s solmuun v kerros : eetään tsoll olevst solmust tsoll + olevn solmun Tetorkenteet, syksy 7 Grfn kulkemnen (rp trversl) Grfn kulkemnen: käyään läp kkk rfn solmut j kret toteutus esm. smn tpn kun puuss leveyssuuntnen kulku (ku) syvyyssuuntnen kulku (ku) kulun lkusolmu s von vlt vpst vrt. puuss: lk juursolmust Tetorkenteet, syksy 7 Leveyssuuntnen ku (Bret-Frst Ser, BFS) Leveyssuuntnen ku lken solmust : Tetorkenteet, syksy 7

4 Leveyssuuntnen ku (Bret-Frst Ser, BFS) Leveyssuuntsess uss: pokkkret: kret, jotk jotvt jo emmn käytyn solmun (kuvss ktkovvll) löytökret: kret, jotk jotvt emmn käymättömn solmun muoostvt vrttävän puun Leveyssuuntnen ku (Bret-Frst Ser, BFS) BFS(s) luo uus sälö L, joss solmu s wle L e tyjä o luo tyjä sälö L + for jokselle v L o for jokselle solmun v krelle (v,u) o f kr (v, u) käymätön ten f solmu u käymätön ten merktse (v, u) löytökreks lsää u sälöön L + else merktse (v, u) pokkkreks + Akvtvuus? verekkyyslstll O(n + m) Tetorkenteet, syksy 7 Syvyyssuuntnen ku (Dept-Frst Ser, DFS) Syvyyssuuntnen ku lken solmust s eetään lkusolmust s lkv polkuj ykstellen nn ptkälle kun päästään nykysolmust v eetään, jos olemss sellnen kr (v,u), että u on yä käymätön jos nykysolmust e vo eetä, peruutetn skel kot solmu s, j yrtetään ts Tetorkenteet, syksy 7 Tetorkenteet, syksy 7 Syvyyssuuntnen ku (Dept-Frst Ser, DFS) Syvyyssuuntnen ku lken solmust : Tetorkenteet, syksy 7 6

5 Syvyyssuuntnen ku (Dept-Frst Ser, DFS) Syvyyssuuntsess uss: perääntymskret: kret, jotk jotvt jo emmn käytyn solmun (kuvss ktkovvll) löytökret: kret, jotk jotvt emmn käymättömn solmun muoostvt vrttävän puun Syvyyssuuntnen ku (Dept-Frst Ser, DFS) DFS(v) for jokselle solmun v krelle (v,u) o f kr (v, u) käymätön ten f solmu u käymätön ten merktse (v, u) löytökreks DFS(u) else merktse (v, u) perääntymskreks Akvtvuus? verekkyyslstll O(n + m) Tetorkenteet, syksy 7 7 Tetorkenteet, syksy 7 8 Syvyyssuuntnen ku (Dept-Frst Ser, DFS) Huomutus: BFS j DFS tuottvt vrttävän puun slle ystetylle komponentlle, joon s kuuluu Jos rf e ystetty: ku teään kusskn komponentss jos solmust s lknut ku päättyy, mutt jokn solmu u yä käymättä, jtketn lottmll uus ku solmust u lopputulos: löytökret muoostvt rfn vrttävän metsän kunkn komponentn vrttävät puut Tetorkenteet, syksy 7 9

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

Tietorakenteet, esimerkkivastauksia viikon 12 laskareihin

Tietorakenteet, esimerkkivastauksia viikon 12 laskareihin Tietorakenteet, esimerkkivastauksia viikon laskareiin (a) Oletetaan seuraavan kuvan mukainen verkko ja etsitään lyyimpiä polkuja solmusta Ensimmäiseksi käsitellään solmu B, jonka etäisyys on kolme Seuraavaksi

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 126 Luku 3 Puut 3.1 Puu 3.2 Virittävä puu 3.3 Virittävän puun konstruointi 3.4 Minimaalinen virittävä puu

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2015) Toinen välikoe, malliratkaisut 583 Tietorkenteet j lgoritmit (kevät 205) Toinen välikoe, mllirtkisut. () Brnh n oun. Brnh n oun on lgoritmityyppi, joss tutkitn kikki ongelmn mhollisi rtkisuj puumisess rkenteess. Kun hvitn, että jokin

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint. Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan.

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan. 5. Verkkoalgoritmeja Eräs keskeinen algoritmien suunnittelutekniikka on Palauta ongelma johonkin tunnettuun verkko-ongelmaan. Palauttaminen edellyttää usein ongelman ja algoritmin pientä modifioimista,

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

Miten käydä läpi puun alkiot (traversal)?

Miten käydä läpi puun alkiot (traversal)? inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu

Lisätiedot

13 Lyhimmät painotetut polut

13 Lyhimmät painotetut polut TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien

Lisätiedot

TIE Tietorakenteet ja algoritmit 261

TIE Tietorakenteet ja algoritmit 261 TIE-20100 Tietorakenteet ja algoritmit 261 12 Graafit Seuraavaksi tutustutaan tietorakenteeseen, jonka muodostavat pisteet ja niiden välille muodostetut yhteydet graafiin. Keskitymme myös tyypillisimpiin

Lisätiedot

Algoritmit 2. Luento 6 To Timo Männikkö

Algoritmit 2. Luento 6 To Timo Männikkö Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

MATRIISILASKENNAN PERUSTEET. Timo Mäkelä

MATRIISILASKENNAN PERUSTEET. Timo Mäkelä MTRIISILSKENNN PERUSTEET Tmo Mäkelä Mtrslske perusteet SISÄLLYS:. PERUSSIOIT.... MÄÄRITELMIÄ.... MTRIISITYYPPEJÄ.... LSKUTOIMITUKSET.... MTRIISIN KERTOMINEN LUVULL.... YHTEEN- J VÄHENNYSLSKU.... KERTOLSKU....

Lisätiedot

Diskreetit rakenteet

Diskreetit rakenteet Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja

Lisätiedot

S FYSIIKKA III (ES) Syksy 2004, LH 10. Ratkaisut

S FYSIIKKA III (ES) Syksy 2004, LH 10. Ratkaisut S-4 FYSIIKKA III (ES) Syksy 004, LH 0 Rtksut LH0-* Jäähdytyskneen tmv Crnt n kne luvutt 0,0 kj lämöä hunelmn smll, kun kneen mttr tekee työtä 0,0 J Hunelmn lämötl n C () Kunk ljn lämöä kne tt lemmst lämösälöstä?

Lisätiedot

9. Graafit. 9.1. Graafin abstrakti tietotyyppi

9. Graafit. 9.1. Graafin abstrakti tietotyyppi 9. Graafit Graafeilla eli verkoilla esitetään yhteystietoja. Esimerkkejä niistä ovat kaupunkikartan kadut ja tietoverkon tietokoneet. Tämä luku tarkastelee verkkojen perusasioita. 9.1. Graafin abstrakti

Lisätiedot

Tietorakenteet, esimerkkivastauksia viikon 12 laskareihin

Tietorakenteet, esimerkkivastauksia viikon 12 laskareihin Tietorakenteet, esimerkkivastauksia viikon laskareiin (a) Oletetaan seuraavan kuvan mukainen verkko ja etsitään lyyimpiä polkuja solmusta Ensimmäiseksi käsitellään solmu B, jonka etäisyys on kolme Seuraavaksi

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

Suomen metsäkeskus. Zonation ja luonnonhoidon alueellinen suunnittelu yksityismetsissä

Suomen metsäkeskus. Zonation ja luonnonhoidon alueellinen suunnittelu yksityismetsissä Suomen metsäkeskus Zonton j luonnonhodon lueellnen suunnttelu ykstysmetsssä Johtv luonnonhodon sntuntj Mtt Seppälä METSO j Zonton semnr Ksvu j vkuttvuutt METSO luonnonhotoon 2014-2016 Zonton kehttämsen

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta

Lisätiedot

Algoritmit 1. Luento 13 Ma Timo Männikkö

Algoritmit 1. Luento 13 Ma Timo Männikkö Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

MASKEERAUS: KOSMETOLOGIOPISKELIJAT LAURA YLITALO, KAROLIINA SIRPELÄ, MERVI SARJANOJA VALKEAKOSKEN AMMATTI- JA AIKUISOPISTO KUVAT: JYRKI LUUKKONEN

MASKEERAUS: KOSMETOLOGIOPISKELIJAT LAURA YLITALO, KAROLIINA SIRPELÄ, MERVI SARJANOJA VALKEAKOSKEN AMMATTI- JA AIKUISOPISTO KUVAT: JYRKI LUUKKONEN g k W H C MASKEERAUS: KOSMETOLOGIOPISKELIJAT LAURA YLITALO, KAROLIINA SIRPELÄ, MERVI SARJANOJA VALKEAKOSKEN AMMATTI- JA AIKUISOPISTO KUVAT: JYRKI LUUKKONEN EDUNVALVONTAA ASENTEELLA www.u.f / www..f TUOTANTOVASTAAVA

Lisätiedot

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja 582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko

Lisätiedot

Korkotuettuja osaomistusasuntoja

Korkotuettuja osaomistusasuntoja Korkotuettuj osomistussuntoj Hvinnekuv suunnitelmst. Titeilijn näkemys Asunto Oy Espoon Stulmkri Stulmkrintie 1, 02780 ESOO Asunto Oy Espoon Stulmkri Kerv Kuklhti Iso Mntie 2 Espoo Vihdintie Keh III Hämeenlinnnväylä

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

Ratkaisu. Tulkitaan de Bruijnin jonon etsimiseksi aakkostossa S := {0, 1} sanapituudelle n = 4. Neljän pituisia sanoja on N = 2 n = 16 kpl.

Ratkaisu. Tulkitaan de Bruijnin jonon etsimiseksi aakkostossa S := {0, 1} sanapituudelle n = 4. Neljän pituisia sanoja on N = 2 n = 16 kpl. iskreetti matematiikka, syksy 00 arjoitus, ratkaisuista. seta 8 nollaa ja 8 ykköstä renkaaksi niin, että jokainen yhdistelmä 0000, 000,..., esiintyy täsmälleen kerran. Vihje: Tulkitse de ruijnin jonon

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

Binäärihaun vertailujärjestys

Binäärihaun vertailujärjestys Järjestetyn sanakirjan tehokas toteutus: binäärihaku Binäärihaku (esimerkkikuassa aain = nimi) op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13 MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.

Lisätiedot

Tietorakenteet ja algoritmit. Kertaus. Ari Korhonen

Tietorakenteet ja algoritmit. Kertaus. Ari Korhonen Tietorakenteet ja algoritmit Kertaus Ari Korhonen 1.12.2015 Tietorakenteet ja algoritmit - syksy 2015 1 Presemosta: 12. Kertaus» Mitkä tekijät, miten ja miksi vaiku1avat algoritmien nopeuteen» Rekursiohistoriapuut

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

Algoritmit 2. Luento 4 To Timo Männikkö

Algoritmit 2. Luento 4 To Timo Männikkö Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta 811312A Tietorakenteet ja algoritmit 2018-2019 Kertausta jälkiosasta V Hashtaulukot ja binääriset etsintäpuut Hashtaulukot Perusajatus tunnettava Tiedettävä mikä on tiivistefunktio Törmäysongelman hallinta:

Lisätiedot

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta Jkso 10. Sähkömgneettinen induktio Näytä ti plut tämän jkson tehtävät viimeistään tiistin 13.6.2017. Ekstr-tehtävät vstvt kolme tvllist tehtävää, kun lsketn lskuhrjoituspisteitä. Teori tähän jksoon on

Lisätiedot

12. Liikenteenhallinta verkkotasolla

12. Liikenteenhallinta verkkotasolla 2. Liikntnhllint vrkkotsoll 2. Liikntnhllint vrkkotsoll Vrkon topologi Liiknnmtriisi Liikntnhllint vrkkotsoll Kuormntsus lunto2.ppt S-38. Liiknntorin prustt Kvät 200 2 2. Liikntnhllint vrkkotsoll 2. Liikntnhllint

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste

Lisätiedot

Oulun kansalaisopiston liikunnan tuotepaketit - kuntoliikunnan ja hyvän olon kurssit. Eeva Tallqvist

Oulun kansalaisopiston liikunnan tuotepaketit - kuntoliikunnan ja hyvän olon kurssit. Eeva Tallqvist Oulun knslsopston lkunnn tuotepkett - kuntolkunnn j hyvän olon kursst Eev Tllqvst Opnnäytetyö Verumäen ykskkö Lkunnn j vp-jn ko. Syksy 2013 Lkunnn j vp-jn koulutusohjelm, monmuoto Tvstelmä 17.10.2013 Tekjä

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

Lisätiedot

Tehtävä 8 : 1. Tehtävä 8 : 2

Tehtävä 8 : 1. Tehtävä 8 : 2 Tehtävä 8 : 1 Merkitään kirjaimella G tarkasteltavaa Petersenin verkkoa. Olkoon A joukon V(G) niiden solmujen joukko, joita vastaavat solmut sijaitsevat tehtäväpaperin kuvassa ulkokehällä. Joukon A jokaisella

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

12. Liikenteenhallinta verkkotasolla

12. Liikenteenhallinta verkkotasolla luento12.ppt S-38.145 - Liikenneteorin perusteet - Kevät 2005 1 Sisältö Verkon topologi Liikennemtriisi Liikenteenhllint verkkotsoll Kuormntsus 2 Topologi Verkko muoostuu joukost solmuj j linkkejä Merk.

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

12. Liikenteenhallinta verkkotasolla

12. Liikenteenhallinta verkkotasolla 12. Liikenteenhllint verkkotsoll luento12.ppt S-38.1145 Liikenneteorin perusteet Kevät 2006 1 12. Liikenteenhllint verkkotsoll Sisältö Verkon topologi Liikennemtriisi Liikenteenhllint verkkotsoll Kuormntsus

Lisätiedot

YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA

YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA 2018-2020 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

AUTOMAATTIEN SYNKRONISAATIOSTA

AUTOMAATTIEN SYNKRONISAATIOSTA AUTOMAATTIEN SYNKRONISAATIOSTA John Kopr Pro grdu -tutkielm Huhtikuu 015 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Mtemtiikn j tilstotieteen litos KOPRA, JOHAN: Automttien synkronistiost

Lisätiedot

Kirkkonummen kunta Yhdyskuntatekniikan toimiala Pöyry Finland Oy / Veikko Urmas 13.5.2015

Kirkkonummen kunta Yhdyskuntatekniikan toimiala Pöyry Finland Oy / Veikko Urmas 13.5.2015 rkkoumm kut dyskuttkk tom öyry Fd y / kko rms M - D M yrkv j oktty strbyt, strbykr, oktyt, oktytörmä, oktyoku jk-t, ysäkötut tuuokk strbyt o v mt, jok muuttuu kduks o yrkv j okty kv-u ääktu j v myös joukkokttä

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

Helka-neiti kylvyssä

Helka-neiti kylvyssä Helkanet kylvyssä Frtz Grunbaum suom. M. A. ummnen Solo Tenor???? m Fred Raymond sov. G. Ventur 2001 Tä män täs tä p Bass Uu m g Wow uu uu uu uu uu uu uu, uu p wow wow wow wow wow wow wow, wow uu wow Mart

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-4.50 Lsknnllinn systmiiologi 4. Hrjoitus. Viill tutkittvll ljill (,, c, j ) on määrätty täisyyt c 0 8 8 8 0 8 8 8 c 0 4 4 0 0 Määritä puurknn käyttän UPGMA-mntlmää. Näytä kunkin vihn osrkntt vstvin täisyyksinn.

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus

Lisätiedot

Q{) + 'bv ' ' ',/ v ;1f ',r. c.,«j 341. e,~ RAASEPORI Slottsmalmen 344 +

Q{) + 'bv ' ' ',/ v ;1f ',r. c.,«j 341. e,~ RAASEPORI Slottsmalmen 344 + 344 343 342 c.,«j 341 bv Y3 1 2. e, Q rtt 34 339 338 v ;1f,r.. 2. Y3 1 2 Q{) \r,/... q,.? " 13 Y31 - Y31-l Y31-2 Y31-3 Y31-4 Y31-5 Y31-6 Y31-7 Y31-8 Y3HO R3Hl R31-12 R31-13 R31-14 Y3HS R31-17 R31-18 R31-19

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

OUTOKUMPU OY 0 K MALMINETSINTA. talta.

OUTOKUMPU OY 0 K MALMINETSINTA. talta. 9 OUTOKUMPU OY 0 K MALMNETSNTA Tutkmusalueen sjant Tutkmusalue sjatsee Hyvelässä, n. 6 km:ä Porsta pohjoseen, Vaasa-ten täpuolella. Tarkemp sjant lmenee raportn etulehtenä olevalta :20 000 karw' talta.

Lisätiedot

3 Mallipohjainen testaus ja samoilutestaus

3 Mallipohjainen testaus ja samoilutestaus Tietojenkäsittelytiede 24 Joulukuu 2005 sivut 8 21 Toimittj: Jorm Trhio c kirjoittj(t) Historiljennus mllipohjisess testuksess Timo Kellomäki Tmpereen teknillinen yliopisto Ohjelmistotekniikn litos 1 Johdnto

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest

Lisätiedot

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1) MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!

Lisätiedot

Kertomus U* P Sal on kaivaukåista 14. 7. - 17. 7. 1960.

Kertomus U* P Sal on kaivaukåista 14. 7. - 17. 7. 1960. M Harjavalta, Hiittenharju, Launilan asui npaikka Kertomus U* P Sal on kaivaukåista 4. 7. - 7. 7. 960. Tehdessäni 23. 4. 960 tarkastusmatkan toimittaja Olavi Alstan kanssa Harjavallan Hi~enharjun eli Harjavallan

Lisätiedot

Rakennusten sijoittelu tontille

Rakennusten sijoittelu tontille Tontnkäyttösuunntelma ts-836-3 5.8 Vuoreskeskuksen länsosa korttel 76, tont 1 ja Rakennusten sjottelu tontlle Kortteln yleslme, rakennustyypt ja rakennusten sjottelu. Kortteln 76 rakennusmsojen sjottelu

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

0 v i v j / E, M ij = 1 v i v j E.

0 v i v j / E, M ij = 1 v i v j E. Vieruspistematriisi Graafi esitetään tietokoneessa useimmiten matriisin avulla. Graafin G = (V, E), V = {v 1, v 2,..., v n } vieruspistematriisi (adjacency matrix)on n n matriisi M = (M ij ), missä n on

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

Lataa Latva pilviä piirtää - Seppo Vuokko. Lataa

Lataa Latva pilviä piirtää - Seppo Vuokko. Lataa Lataa Latva pilviä piirtää - Seppo Vuokko Lataa Kirjailija: Seppo Vuokko ISBN: 9789523010512 Sivumäärä: 264 Formaatti: PDF Tiedoston koko: 25.84 Mb Metsä on ihmiselle merkittävä monin eri tavoin. Se antaa

Lisätiedot

. P A Sähkömagnetismi, 7 op Vanhoja tenttitehtäviä

. P A Sähkömagnetismi, 7 op Vanhoja tenttitehtäviä 766319A Sähkömgnetismi, 7 op Vnhoj tenttitehtäviä 1. Puoliympyrän muotoon tivutettu suv on vrttu tsisesti siten, että vrus pituusyksikköä kohti on λ. Puoliympyrän säde on. Lske sähkökenttä puoliympyrän

Lisätiedot

7. Keko. Tarkastellaan vielä yhtä tapaa toteuttaa sivulla 162 määritelty tietotyyppi joukko

7. Keko. Tarkastellaan vielä yhtä tapaa toteuttaa sivulla 162 määritelty tietotyyppi joukko 7. Keko Tarkastellaan velä yhtä tapaa toteuttaa svulla 6 määrtelty tetotyypp joukko Tällä kertaa emme kutenkaan toteuta normaala operaatovalkomaa, vaan olemme knnostuneta anoastaan kolmesta operaatosta:

Lisätiedot

Uusien teiden rakentaminen. Perusparannus. Kunnostusojitus

Uusien teiden rakentaminen. Perusparannus. Kunnostusojitus km km km UUSEN TEDEN RKENTMNEN TEDEN PERUSPRNNUS KUNNSTUSJTUS Suorite Varoja Suorite Varoja Suorite Varoja lue tavoite tavoit tuki tuki bud tavoite tavoit tuki tuki bud tavoite tavoit tuki tuki budkm km

Lisätiedot

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A: Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

HÄMEENLINNAN VERKATEHDAS, PAVILJONKI ALUSTAVA LUONNOS VE-2

HÄMEENLINNAN VERKATEHDAS, PAVILJONKI ALUSTAVA LUONNOS VE-2 HÄ VRKHD, PVJK V V-2 JK RKKHD Y P R 3 J 1 H K P + 3 5 8 ( ) 9 2 5 2 2 7 F + 3 5 8 ( ) 9 2 5 2 2 7 1 WWWJKF V 5 K R V 4 R P V 395 84 36 425 V 6 D 45 615 R 6 63 25 3 6 65 67 HPH 66 PÄ Ä Ä 69 JK V 3 6 7 7

Lisätiedot

Tuote LVI-numero Pikakoodi KAULUS PURISTETTU HST DN 100/114,3/3,0 EN Puristettu putkikaulus;en ;Todistukset EN 10204:2004/3.

Tuote LVI-numero Pikakoodi KAULUS PURISTETTU HST DN 100/114,3/3,0 EN Puristettu putkikaulus;en ;Todistukset EN 10204:2004/3. Kaulus Tuote LVI-numero Pikakoodi DN 100/114,3/3,0 EN 1.4404 1171035 DD44 DN 125/139,7/3,0 EN 1.4404 1171039 OE47 DN 150/168,3/3,0 EN 1.4404 1171044 JG62 DN 200/219,1/3,0 EN 1.4404 1171048 MH87 DN 200/219,1/4,0

Lisätiedot

Kristuksen syntymän kalanda kreikaksi

Kristuksen syntymän kalanda kreikaksi Krstuks syntymän klnd krekk 1 F G7 7 G7 K ln es pe Hrs tu n th Hrsts j n U r n rn, n r hn des, j n n rn gl ln de n n he, p, V, r, n ne rs n p strhn Vthem he r ks ms k p ss, ss. l, 9 7. 8. F G7 7 G7 En

Lisätiedot

KIRKKONUMMEN JOKIRINTEEN OPPIMISKESKUS VIITESUUNNITELMALUONNOS

KIRKKONUMMEN JOKIRINTEEN OPPIMISKESKUS VIITESUUNNITELMALUONNOS KIRKKONUMMEN JOKIRINTEEN OPPIMISKESKUS VIITESUUNNITELMLUONNOS 7.4.2017 9 61 STTO 64 8 11.1 11.2 6 44 49 48 7.6 47 1:34.4 1:35 62 9 49 ap POLKUPYÖRÄT 63 14.2 1:36 11.9.7 (TN huolto / bussit) 12.0 1:25

Lisätiedot