A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6"

Transkriptio

1 A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 6 1. Monopolin kysyntäkäyrä on P = 11-Q (P on hinta per yksikkö ja Q on mitattu tuhansina yksiköinä). Monopolin vakioinen keskikustannus (AC) on 6. a. Piirrä monopolin keskituotto- ja rajatuottokäyrät sekä keskikustannus- ja rajakustannuskäyrät. b. Millä hinnalla ja määrällä monopoli maksimoi voittonsa? Mikä on monopolin optimaalinen voitto? c. Laske monopolin Lerner-indeksi. d. Oletetaan, että valtio määrää monopolille 7 hintakaton. Kuinka paljon monopoli tuottaa? Mitä sen voitoille tapahtuu? Entä Lerner-indeksille? e. Mikä hintakatto tuottaisi korkeimman tuotannontason? Kuinka paljon monopoli tuottaisi kyseisellä hintakatolla? Mikä sen Lerner-indeksi olisi? a) TR=P*Q=(11-Q)Q AR = 11-Q MR =(dtr/dq)=11-2q MC = AC = 6 Kuva tehtävän lopussa. b) Monopolin voitonmaksimointiehto MR = MC 11-2Q*=6 Q*=2.5 P(Q*)=8.5 Voitto (PQ-AC*Q)*1000=(8.5*2.5-6*2.5)*1000=6250 c) Lerner-indeksi = (P-MC)/P=(8.5-6)/8.5=0.294 d) Kysyntäfunktio Q(P) = 11-P. Kysyntä hintakatolla Q(7)=4. Hintakatto on suurempi kuin rajakustannus, joten monopoli tuottaa 4000 yksikköä hinnalla P=7. Voitto nyt (7*4-6*4)*1000=4000. Lerner-indeksi = 1/7 = e) Jos hintakatto on alle monopolin AVC:n (tässä yhtä suuri kuin MC), monopoli lopettaa liiketoimintansa. Jos hintakatto on suurempi kuin rajakustannus, monopoli tuottaa aina vähemmän kuin kilpailullinen toimiala. Tuotannon maksimoiva hintakatto on yhtä suuri kuin rajakustannus eli P = MC 11-Q = 6 Q =5. Lerner-indeksin arvoksi tulee nolla.

2 2. Monopoli kohtaa seuraava kysynnän Q=30 P ja sen kustannusfunktio on C(Q)= 1 2 Q2 a. Etsi monopolin voittoa maksimoima hinta ja määrä ja laske mikä monopolin voitto on b. Mikä olisi yhteiskunnan kannalta optimaalisin hinta? Laske monopolihinnoittelusta syntyvä hyvinvointitappio a. Monopoli tuottofunktio on hinta kertaa määrä eli TR = (30 Q) Q. Rajatuotto saadaan derivoimalla tuottofunktio määrän suhteen eli MR = TR Q = 30 2Q. Monopolin rajakustannus saadaan derivoimalla kustannusfunktio määrän suhteen. Rajakustannukseksi saadaan q. Voittoa maksimoidessaan monopoli asettaa rajakustannuksen ja rajahyödyn yhtä suureksi eli Q = 30 2Q ratkaisemalla tämä saadaan, että optimaalinen tuotantomäärä monopolille on 10, jolloin hinta on 20 (HUOM! P = 30 Q) b. Optimi yhteiskunnan kannalta olisi kilpailullinen hinta. Kilpailuilla markkinoilla hinta on yhtä kuin rajakustannus eli 30 Q = Q, josta saadaan ratkaisuksi Q = 15, jolloin hinta on myös Isot yliopistot ovat kurssiassistenttien markkino lla monopsoneja. Oletetaan, että assistenttien kysyntä on muotoa W = 30, n, jossa W on palkkataso (euroa vuodessa), ja n on palkattujen kurssiassistenttien lukumäärä. Kurssiassistenttien tarjonta on W = n. a. Oletetaan, että yliopisto käyttäytyy kuin monopsoni. Kuinka monta kurssiassistenttia se palkkaa, ja millä palkalla?

3 b. Oletetaan seuraavaksi, että kurssiassistenttien tarjonta on täysin joustava palkkatasolla Kuinka monta assistenttia yliopisto tällöin palkkaisi? a. Yliopiston kokonaismenot, kun se palkkaa n assistenttia ovat TE(n)=Wn=1000n+75n 2. Yliopiston rajamenot saadaan derivoimalla kokonaismenot: ME(n)= n. Monopsoni asettaa rajamenonsa yhtä suureksi kuin rajahyöty (kysyntä): n*= n* n*= Palkka saadaan assistenttien tarjontafunktiosta W(n*)=8909 (dollaria vuodessa). b. Nyt assistenttien tarjonta on vaakasuora tasolla $10000 pa. Yliopiston rajamenot ovat nyt Tasapainoehto on kuten edellä = n n= Aalto-yliopiston avoin linja on uudistamassa hinnoitteluaan. Uusi hinnoittelumalli saattaa sisältää lukuvuosimaksun, per kurssi hinnan tai molemmat. Tutkimus osoittaa, että avoimen yliopiston palveluita käyttävät ihmiset voidaan jakaa kahteen maksuhalukkuudeltaan erilaiseen ryhmään työnarkomaaneihin (W) ja tavanomaisiin opiskelijoihin (N) Normaaleiden opiskelijoiden kysyntäfunktio on: Q= P Ja työnarkomaanien Q= P Avoin yliopisto ottaa sisään 180 opiskelijaa kummastakin ryhmästä. (HUOM! Opiskelijat voivat päättää jättää osallistumatta avoimen opetukseen). (VIHJE! Aalto voi myydä pelkille työnarkomaaneille tai tavanomaisille kuluttajille sekä molemmille) a. Jos avoin yliopisto päätyy veloittamaan pelkästään lukukausimaksun opiskelijoilta eikä peri kursseista erikseen maksuja, miten sen kannattaa asettaa hintansa? Kuinka moni ihminen päätyy avoimen kursseille? b. Jos avoin yliopisto päätykin asettamaan lukukausimaksun että yksikköhinnan per kurssi miten sen kannattaa asettaa hintansa? Kuinka moni ihminen päätyy avoimen kursseille? a. Kiinteän hinnan veloittaessaan yritys asettaa kiinteän summan niin, että se kattaa koko kuluttajaylijäämän. Ratkaisu alla. b. Kaksiosaisessa hinnoittelussa kertamaksu eli tässä tapauksessa kurssimaksu tulisi asettaa niin, että se vastaa muuttuvia kustannuksia ja kiinteä maksu niin, että se kattaa koko jäljelle jäävän kuluttajaylijäämän. Tässä tehtävässä ei oltu erikseen eritelty kustannuksia, jos niiden oletettaisiin olevan 0 ei optimi ratkaisu muuttuisi lainkaan.

4

5

6 5. Suositulta puhelinvalmistajalta ilmestyy uusi puhelinmalli. Puhelimella on kahdenlaisia potentiaalisia ostajia, teknofriikkejä ja taviksia. Puhelinmallista on kaksi versiota, perusversio sekä kaukosäädinominaisuuden sisältävä ekstraversio. Teknofriikit arvostavat kaukosäädinominaisuutta enemmän kuin tavikset. Puhelimien tuotantokustannus on lisäominaisuuksista riippumatta 100 /kpl. Taviksia ja friikkejä tiedetään olevan yhtä paljon, mutta hintojen kustomointi asiakastyypeittäin ei ole mahdollista. Asiakastyyppien arvostukset ovat Perusversio Ekstraversio Tavis Friikki a. Mikä on puhelinvalmistajan voitot maksimoiva hinnoittelustrategia? b. Puhelinten valmistaja voisi lisätä mihin tahansa puhelinversioon suurikokoisen logon lisäkustannuksella 5 per puhelin. Taviksille logo on yhdentekevä, mutta teknofriikkejä logo ärsyttää niin pahasti, että heidän arvostuksensa logon sisältävälle puhelimelle on 50 alempi kuin mitä se olisi ilman logoa. Mikä on voitot maksimoiva strategia hinnoittelulle ja logojen sijoittelulle? c. Kuinka herkkä vastaus kohtaan a) on oletukselle siitä, että taviksia ja teknofriikkejä on yhtä paljon? Merkitse tavisten lukumäärää suhteessa friikkien lukumäärään parametrillä N (ts. oleta, että friikkejä on 1 ja taviksia N). a. Käydään läpi kaikki järkevät hinnoitteluvaihtoehdot: i) myydään vain ekstraversiota (tapausta, jossa myydään vain perusversiota ei tarvitse tutkia, koska perusversion arvostus on molemmille asiakastyypeille alempi, mutta kustannus valmistajalle on sama) Hinta 400: myydään molemmille, voitto 2*( )=600 Hinta 750: myydään vain friikeille, voitto =650 ii) myydään molempia versioita Huomaa, että friikkien arvostus lisälaadulle on suurempi kuin taviksilla ( > ): perusversio kohdistetaan taviksille. Korkein hinta, jolla tavikset ostavat perusversion on 350. Ekstraversion hinta P pitää asettaa niin, että friikit ostavat sen, eivätkä perusversiota. Toisin friikki sanoen pitää päteä CS ekstraversio friikki > CS perusversio, eli 750-P P 600. Jos P = 600, voitot ovat *100 = 750. Toisin sanoen valmistajan kannattaa myydä molempia malleja: perusversiota hintaan 350 ja ekstraversiota hintaa 600. b. Jos valmistaja myy vain yhtä versiota, sen kannattaa myydä edelleen vain ekstraversiota ilman logoa (logon laittaminen ainoastaan alentaisi ekstraversion ostajien hyötyä). Tapauksessa, jossa valmistaja myy molempia malleja, logo kannattaa laittaa perusversioon, mutta ei ekstraversioon. Tämä perustuu siihen, että laatuversioinnin perusrajoitteena on aina estää korkeamman arvostuksen tyypin siirtyminen alemman laadun (ja hinnan)

7 tuotteeseen. Logo väljentää tätä rajoitusta, koska se tekee alemman laadun tuotteesta vähemmän houkuttelevan friikeille, mutta ei taviksille. Perusmallin hinta siis edelleen 350 ja ekstraversion hinta P toteuttaa nyt 750-P (500-50)-350 P 650. Ts. ekstraversion hinta voidaan nostaa nyt 650 euroon. Voitot = 795. c. Jos valmistaja myy vain ekstraversiota: P = 400 => Voitot (N+1)*( ) = 300N+300 P = 750 => Voitot = 650 Jos valmistaja myy molempia versioita: Korkein hinta perusversiosta, jolla tavikset vielä ostavat, on 350. Teknofriikeille tulee päteä kuten ennenkin P 600. Tällä strategialla voitot ovat ( ) + ( ) N = 250N+500 Koska valmistajan kannattaisi myydä pelkästään ekstraversiota? Vastaus: kun 250N ja 300N N N 3/5 300N N 7/6 Näistä ensimmäinen ehto on tiukempi (3/5 < 7/6). Korkealaatuisia puhelimia kannattaa siis myydä hintaan 750, kun jokaista viittä Friikkiä kohtaan on enimmillään kolme Tavista (N 3/5). Seuraavaksi ratkaistaan milloin kannattaa myydä molempia versioita ja milloin pelkästään korkealaatuisia: 250N N+300 N 4 Molempia versioita kannattaa siis myydä kun Taviksia on enintään neljä kertaa niin paljon kuin Friikkejä, mutta vähintään kolme Tavista jokaista viittä Friikkiä kohtaan. Kun Taviksia on vähintään neljä kertaa Friikkien määrä kannattaa myydä pelkästään korkealaatuisia hintaan 400.

Prof. Marko Terviö Assist. Jan Jääskeläinen. 1. (a) Jos voidaan asettaa vain yksi yksikköhinta, kannattaa käyttää perushinnoittelua.

Prof. Marko Terviö Assist. Jan Jääskeläinen. 1. (a) Jos voidaan asettaa vain yksi yksikköhinta, kannattaa käyttää perushinnoittelua. Mallivastaukset 6. 1. (a) Jos voidaan asettaa vain yksi yksikköhinta, kannattaa käyttää perushinnoittelua. Tuotettu määrä ja hinta määräytyvät siis ehdosta MR = MC. Aggregoidaan ja käännetään asiakasryhmäkohtaiset

Lisätiedot

4. www-harjoitusten mallivastaukset 2017

4. www-harjoitusten mallivastaukset 2017 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä A31C00100 Mikrotaloustiede Kevät 2017 1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= 18 1.5P, missä q on käyntejä kuukaudessa keskimäärin. Yhden käyntikerran rajakustannus

Lisätiedot

4. www-harjoitusten mallivastaukset 2016

4. www-harjoitusten mallivastaukset 2016 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät Olli Kauppi & Emmi Martikainen HARJOITUKSET 7

A31C00100 Mikrotaloustiede. Kevät Olli Kauppi & Emmi Martikainen HARJOITUKSET 7 A31C00100 Mikrotaloustiede Kevät 2016 Olli Kauppi & Emmi Martikainen HARJOITUKSET 7 1. Pesuainetta ostavat kuluttajat voidaan jakaa kahteen ryhmään. Ensimmäisen ryhmän kysyntä on Q H (P)=12-2P. Ryhmään

Lisätiedot

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10 Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,

Lisätiedot

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ 06 www4 Page of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 06 Assignment: 06 www4. Mikä seuraavista alueista vastaa voittoa maksimoivan monopoliyrityksen ylisuuria

Lisätiedot

Voitonmaksimointi esimerkkejä, L9

Voitonmaksimointi esimerkkejä, L9 Voitonmaksimointi esimerkkejä, L9 (1) Yritys Valmistaa kuukaudessa q tuotetta. Kysyntäfunktio on p = 15 0, 05q ja kustannusfunktio on C(q) = 350 + 2q + 0, 05q 2. a) Yritys valmistaa nyt tuotteita kuukaudessa

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mallivastaukset - Loppukoe 10.12. Monivalinnat: 1c 2a 3e 4a 5c 6b 7c 8e 9b 10a I (a) Sekaniputus

Lisätiedot

Rajatuotto ja -kustannus, L7

Rajatuotto ja -kustannus, L7 ja -kustannus, L7 1 Kun yritys valmistaa tuotetta jaksossa määrän q (kpl/jakso), niin kassaan kertyvä tuotto on R(q) = p q = p(q) q. Esimerkki. Jos kysyntäfunktio on p = 20 0.1q, niin tuotto funktio on

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV

Lisätiedot

Voitonmaksimointi, L5

Voitonmaksimointi, L5 , L5 Seuraavassa tullaan systemaattisesti käyttämään seuraavia merkintöjä q = tuotannon määrä (quantity) (kpl/kk) p = tuotteen hinta (price) (e/kpl) R(q) = tuotto (revenue) R(q) = pq MR(q) = rajatuotto

Lisätiedot

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä:

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä: 1 Luku 22 Yrityksen tarjonta Edellisissä luvuissa olemme yrityksen teoriasta tarkastelleet yrityksen tuotantopäätöstä, ts. panosten optimaalista valintaa, yrityksen voiton maksimoinnin ja kustannusten

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen 1C00100 Mallivastaukset 2. 1. Markkinahinnan aikasarja on esitetty kuvassa 1. Yksittäisten muutosten vaikutukset on kuvattu aikasarjan jälkeen. Hinta 2018 2019 2021 2022 2024 2025 Vuosi Kuva 1: Markkinahinnan

Lisätiedot

Y56 laskuharjoitukset 5

Y56 laskuharjoitukset 5 Y56 Keät 2010 1 Y56 laskuharjoitukset 5 Palautus joko luennolle/mappiin to 8.4. tai Katjan lokerolle (Koetilantie 5, 3. krs) to 8.4. klo 16 mennessä (purku luennolla ti 13.4.) Huom. Tehtäät eiät ole aikeusjärjestyksessä,

Lisätiedot

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla

Lisätiedot

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan.

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. 5. EPÄTÄYDELLINEN KILPAILU Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. Epätäydellinen kilpailu: markkinoilla yksi tai vain muutama

Lisätiedot

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18 Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa

Lisätiedot

Harjoitusten 2 ratkaisut

Harjoitusten 2 ratkaisut Harjoitusten 2 ratkaisut Taloustieteen perusteet 31A00110 Tea Lönnroth tea.lonnroth(at)aalto.fi Teach a parrot the terms 'supply and demand' and you've got an economist. Thomas Carlyle 2 Tehtävä 1 Tarkastellaan

Lisätiedot

Taloustieteen perusteet 31A Ratkaisut 3, viikko 4

Taloustieteen perusteet 31A Ratkaisut 3, viikko 4 Taloustieteen perusteet 31A00110 2018 Ratkaisut 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden

Lisätiedot

12 Oligopoli ja monopolistinen kilpailu

12 Oligopoli ja monopolistinen kilpailu 12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä

Lisätiedot

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w)

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) 4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) Markkinat tasapainossa, kun löydetään

Lisätiedot

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kevät 2017 Talousmatematiikan perusteet, ORMS1030 6. harjoitus, viikko 6 (27.2. 3.3.2017) R1 ma 12 14 F249 R5 ti 14 16 F453 R2 ma 14 16 F453 R6 to 12 14 F104 R3 ti 08 10 F140 R7 pe 08

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

5 Markkinat, tehokkuus ja hyvinvointi

5 Markkinat, tehokkuus ja hyvinvointi 5 Markkinat, tehokkuus ja hyvinvointi Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja kuluttaa sellaisen määrän

Lisätiedot

Haitallinen valikoituminen: Kahden tyypin malli

Haitallinen valikoituminen: Kahden tyypin malli Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

MIKROTALOUSTIEDE A31C00100

MIKROTALOUSTIEDE A31C00100 MIKROTALOUSTIEDE A31C00100 Kevät 2017 Olli Kauppi olli.kauppi@aalto.fi Luennon sisältö Hinnoittelumenetelmät (luku 10) Toisen asteen hintadifferointi/-diskriminointi (määräalennukset) Kaksiosainen hinnoittelu

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

Y56 laskuharjoitukset 5 - mallivastaukset

Y56 laskuharjoitukset 5 - mallivastaukset Y56 Keät 010 1 Y56 laskuharjoitukset 5 - malliastaukset Harjoitus 1. Voiton maksimoia tuotannon taso & kiinteät kustannukset Taoitteena on ymmärtää kiinteiden kustannusten aikutus yrityksen tuotantopäätöksiin

Lisätiedot

(Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15)

(Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15) 12 Monopoli (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15) Monopoli on tilanne, jossa markkinoilla on vain yksi myyjä, jonka valmistamalle tuotteelle ei ole läheistä substituuttia yritys

Lisätiedot

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä 0 5 Nauris 10 15 20 MIKROTALOUSTIEDE A31C00100 Kevät 2017 HARJOITUKSET II Palautus 24.1.2017 klo 16:15 mennessä suoraan luennoitsijalle (esim. harjoitusten alussa) tai sähköpostitse (riku.buri@aalto.fi).

Lisätiedot

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Tamprn ksäyliopisto, 2015-2016 Talousmatmatiikan prustt, ORMS1030 1. väliko, (ti 15.12.2015) Ratkais 3 thtävää. Kokssa saa olla mukana laskin (myös graafinn laskin on sallittu) ja taulukkokirja (MAOL tai

Lisätiedot

Hintakilpailu lyhyellä aikavälillä

Hintakilpailu lyhyellä aikavälillä Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:

Lisätiedot

p'ø):{. P: f (ù: 10 Thlousmatematiikan perusteet, orrvrs ro:o - 5) - O'\lq - 4x, kun g(x) :7x2l5x-3, kun ft(.r) :3x. (x2 f'(3), g'(*), h'(*),

p'ø):{. P: f (ù: 10 Thlousmatematiikan perusteet, orrvrs ro:o - 5) - O'\lq - 4x, kun g(x) :7x2l5x-3, kun ft(.r) :3x. (x2 f'(3), g'(*), h'(*), Tampereen kesäyliopisto, kevät 2015 Thlousmatematiikan perusteet, orrvrs ro:o 2. harjoitus, (pe27.11.2015) 1. Yritys valmistaa kappaletavaraa q kappaletta viikossa. Yhden kappaleen materiaali- ja palkkakustannus

Lisätiedot

* Hyödyn maksimointi on ihmisten toimintaa ja valintoja ohjaava periaate.

* Hyödyn maksimointi on ihmisten toimintaa ja valintoja ohjaava periaate. KANSANTALOUSTIETEEN PERUSTEET Yrityksen teoria (Economics luvut 13-14) 14) KTT Petri Kuosmanen Optimointiperiaate a) Yksilöt pyrkivät maksimoimaan hyötynsä. * Hyödyn maksimointi on ihmisten toimintaa ja

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7)

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) 4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja

Lisätiedot

MIKROTEORIA, HARJOITUS 8

MIKROTEORIA, HARJOITUS 8 MIKROTEORI, HRJOITUS 8 PNOSMRKKINT, KILPILU, OLIGOPOLI, PELITEORI J VIHTOTLOUS. Jatkoa tehtävään 4 (ja 5) harjoituksessa 7. a. Laske kolluusioratkaisu. Kahden samaa tuotetta tuottavan yrityksen kustannusfunktiot

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C1 Assist. Jan Jääskeläinen Syksy 17 Mallivastaukset 7. 1. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 5 asukasta. Taidemuseoilla on

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kvät 206 Talousmatmatiikan prustt, ORMS030 3. harjoitus, viio 5. 5.2.206 Malliratkaisut. Yrityksn rään tuotlinjan kysyntäfunktio on p 20 0.030 ja vastaava kustannusfunktio on C 0.02 2

Lisätiedot

TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset

TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset TU-91.1001 Kansantaloustieteen perusteet Syksy 2017 5. www-harjoitusten mallivastaukset Tehtävä 1: Tuotteen X kysyntäkäyrä on P = 25-2Q ja tarjontakäyrä vastaavasti P = Q + 10. Mikä on markkinatasapinopiste

Lisätiedot

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto Viime kerralta Luento 9 Markkinatasapaino Markkinakysyntä kysyntöjen aggregointi Horisontaalinen summaaminen Eri kuluttajien kysynnät eri hintatasoilla Huom! Kysyntöjen summaaminen käänteiskysyntänä Jousto

Lisätiedot

Seuraavaksi kysymme, onko tällainen markkinatasapaino yhteiskunnan kannalta hyvä vai huono eli toimivatko markkinat hyvin vai huonosti

Seuraavaksi kysymme, onko tällainen markkinatasapaino yhteiskunnan kannalta hyvä vai huono eli toimivatko markkinat hyvin vai huonosti Osa 7: Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7, Pohjolan mukaan) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla

Lisätiedot

Taloustieteellinen analyysi lääkkeiden optimaalisesta hintasääntelystä ja korvattavuudesta

Taloustieteellinen analyysi lääkkeiden optimaalisesta hintasääntelystä ja korvattavuudesta Taloustieteellinen analyysi lääkkeiden optimaalisesta hintasääntelystä ja korvattavuudesta Vesa Kanniainen, HY, THL Juha Laine, Pfizer Oy Tausta ja tavoitteet Lääkekorvausjärjestelmä tavoitteita: Tehokas,

Lisätiedot

Hintadiskriminaatio 2/2

Hintadiskriminaatio 2/2 Hintadiskriminaatio 2/2 Matti Hellvist 12.2.2003 Toisen asteen hintadiskrimiaatio eli tuotteiden kohdennus Toisen asteen hintadiskriminaatio toimii tilanteessa, jossa kuluttajat ovat keskenään erilaisia

Lisätiedot

10 Monopoli (Mankiw & Taylor, Ch 15)

10 Monopoli (Mankiw & Taylor, Ch 15) 10 Monopoli (Mankiw & Taylor, Ch 15) Monopoli on tilanne, jossa markkinoilla on vain yksi myyjä, jonka valmistamalle tuotteelle ei ole läheistä substituuttia yritys voi itse asettaa hinnan eli se on price

Lisätiedot

Mikrotaloustiede (31C00100)

Mikrotaloustiede (31C00100) Mikrotaloustiede (31C00100) Syksy 2016 Prof. Marko Terviö Aalto-yliopisto Luento 1: Johdanto 1. Mitä on mikrotaloustiede 2. Miksi opiskella mikrotaloustiedettä 3. Tyypillisiä käsitteitä 4. Esimerkki: niputtaminen

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mallivastaukset 10. 1. (a) Tässä on kätevää mitata hyötyjä ja rahasummia tuhansissa euroissa. Kokonaisylijäämä

Lisätiedot

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT KYSYNTÄ, TARJONTA JA HINTA Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT Paikka, jossa ostaja ja myyjä kohtaavat, voivat hankkia tietoa vaihdettavasta tuotteesta sekä tehdä

Lisätiedot

TU Kansantaloustieteen perusteet Syksy 2016

TU Kansantaloustieteen perusteet Syksy 2016 TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä

Lisätiedot

MIKROTALOUSTIEDE A31C00100

MIKROTALOUSTIEDE A31C00100 MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi olli.kauppi@aalto.fi Ensimmäinen osakoe Ensimmäinen osakoe ti 23.2. klo 16:00 (ts. koe alkaa tasalta) päärakennuksen salissa B-200 Saliin ei oteta enää

Lisätiedot

Mikrotaloustiede (31C00100)

Mikrotaloustiede (31C00100) Mikrotaloustiede (31C00100) Syksy 2017 Prof. Marko Terviö Aalto-yliopisto Luento 1: Johdanto 1. Mitä on mikrotaloustiede 2. Miksi opiskella mikrotaloustiedettä 3. Tyypillisiä käsitteitä 4. Esimerkki: niputtaminen

Lisätiedot

Osa 12a Monopoli (Mankiw & Taylor, Ch 15)

Osa 12a Monopoli (Mankiw & Taylor, Ch 15) Osa 12a Monopoli (Mankiw & Taylor, Ch 15) Monopoli on tilanne, jossa markkinoilla on vain yksi myyjä, jonka valmistamalle tuotteelle ei ole läheistä substituuttia yritys voi itse asettaa hinnan eli se

Lisätiedot

Sopimusteoria: Salanie luku 3.2

Sopimusteoria: Salanie luku 3.2 Sopimusteoria: Salanie luku 3.2 Antti Pirjetä Taloustieteiden kvantitatiiviset menetelmät Helsingin kauppakorkeakoulu 12.2.2008 1 Kilpaillut markkinat, yksi tai useampi päämies Agenttien 1 ja 2 tuottamat

Lisätiedot

7 Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13)

7 Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13) 7 Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13) Tavaroiden ja palvelujen tuotanto tapahtuu yrityksissä Yritykset tuntevat niiden valmistukseen tarvittavan teknologian teknologia on

Lisätiedot

MIKROTALOUSTIEDE A31C00100

MIKROTALOUSTIEDE A31C00100 MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi & Emmi Martikainen emmi.martikainen@kkv.fi Luennon sisältö Hintakilpailu ja tuotedifferentiaatio Peräkkäiset pelit (12.4-12.5) Alalle tulon estäminen Taloudellinen

Lisätiedot

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17)

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen

Lisätiedot

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Taloustieteen perusteet 31A00110 18.04.2016 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Yht Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Tamprn ksäyliopisto, syksy 2016 Talousmatmatiikan prustt, ORMS1030 2. harjoitus, (p 4.11.2016) 1. Yritys valmistaa kappaltavaraa kappaltta viikossa. Yhdn kappaln matriaali- ja palkkakustannus on 7, jotn

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) 4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Pohjola, Matti (2008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy.

Pohjola, Matti (2008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy. Valtiotieteellinen tiedekunta Kansantaloustieteen valintakoe Arvosteluperusteet Kesä 010 Kirjallisuuskoe Pohjola, Matti (008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy.

Lisätiedot

suurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille

suurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille KILPAILUMUODOT Kansantaloustieteen lähtökohta on täydellinen kilpailu. teoreettinen käsitteenä tärkeä Yritykset ovat tuotantoyksiköitä yhdistelevät tuotannontekijöitä o työvoimaa o luonnon varoja o koneita

Lisätiedot

8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13)

8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13) 8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13) Tavaroiden ja palvelujen tuotanto tapahtuu yrityksissä Yritykset tuntevat niiden valmistukseen

Lisätiedot

Lyhyen aikavälin hintakilpailu 2/2

Lyhyen aikavälin hintakilpailu 2/2 Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta

Lisätiedot

Osa 4 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4 ja Pohjolan luennot)

Osa 4 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4 ja Pohjolan luennot) Osa 4 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4 ja Pohjolan luennot) Opimme tässä osiossa ja myöhemmissä luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa

Lisätiedot

11 Yritys kilpailullisilla markkinoilla

11 Yritys kilpailullisilla markkinoilla 11 Yritys kilpailullisilla markkinoilla (Talous3eteen oppikirja, luku 5; Mankiw & Taylor 2nd ed., ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, efä jokainen pitää markkinoilla

Lisätiedot

MIKROTEORIA, HARJOITUS 5 YRITYKSEN VOITON MAKSIMOINTI JA KUSTANNUSTEN MINIMOINTI

MIKROTEORIA, HARJOITUS 5 YRITYKSEN VOITON MAKSIMOINTI JA KUSTANNUSTEN MINIMOINTI MIKROTEORIA, HARJOITUS 5 RITKSEN VOITON MAKSIMOINTI JA KUSTANNUSTEN MINIMOINTI Olkoon ritksen kustannusfunktio c ( F a ritksen rajakustannukset kertovat, paljonko ritksen kustannukset muuttuvan kun tuotantoa

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

5 YRITYKSEN KÄYTTÄYTYMINEN

5 YRITYKSEN KÄYTTÄYTYMINEN 5 YRITYKSEN KÄYTTÄYTYMINEN Seuraavaksi tarkastelemme tarkemmin markkinoiden tarjontapuolta. Yrittäjän päätösongelma: Ø mitä tuottaa? Ø kuinka paljon tuottaa? Ø miten tuottaa? Ø millä hinnalla myydä? Oletamme,

Lisätiedot

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä

Lisätiedot

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ Page 1 of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 201 Assignment: 201 www5 1. Tuotteen X kysyntäkäyrä on P=25 2 Q ja tarjontakäyrä vastaavasti P=Q+10. Mikä

Lisätiedot

Informaatio ja Strateginen käyttäytyminen

Informaatio ja Strateginen käyttäytyminen Informaatio ja Strateginen käyttäytyminen Nuutti Kuosa 2.4.2003 Sisältö Johdanto Duopoli ja epätietoisuutta kilpailijan kustannuksista Kilpailijan tietämyksen manipulointi Duopoli ja epätietoisuutta kysynnästä

Lisätiedot

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Tehtävä 1.Tarkastellaan opiskelijaa, jolla opiskelun ohella jää 8 tuntia päivässä käytettäväksi työntekoon ja vapaa-aikaan. Olkoot hänen

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Mallivastaukset 6. 1. (a) Molemmilla yrityksillä on kaksi mahdollista toimenpidettä, joten pelissä on 2 2 = 4 potentiaalisesti erilaista tulemaa. i. Jos Row Corporation valitsee Mainosta ja Column Industries

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto Perushinnoittelu Yrityksellä on markkinavoimaa (market power), kun se voi nostaa hintaa menettämättä kaikkia asiakkaita, eli - kysyntä ei ole täydellisen

Lisätiedot

Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 3

Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 3 Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 3 1 Ole hyvä ja vasta kysymyksiin tähän paperiin ja pyri kirjoittamaan selkeällä käsialalla. Palauta vastaukset niitattuina. En ota vastaan myöhässä palautettuja

Lisätiedot

Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä

Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä Edellä rajakustannuksia MC(x) ja rajahyötyä MB(x) tarkasteltaessa käsiteltiin vain tapausta, jossa x on diskreetti suure (mahdollisia

Lisätiedot

Y56 laskuharjoitukset 6

Y56 laskuharjoitukset 6 Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.

Lisätiedot

Monopoli 2/2. S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli 2/2. S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli / Monopolimarkkinat - oletuksia Seuraavissa tarkasteluissa oletetaan, että monopolisti tuntee kysyntäkäyrän täydellisesti monopolisti myy suoraan tuotannosta, ts. varastojen vaikutusta ei huomioida

Lisätiedot

Pystysuuntainen hallinta 2/2

Pystysuuntainen hallinta 2/2 Pystysuuntainen hallinta 2/2 Noora Veijalainen 19.2.2003 Yleistä Tarkastellaan tilannetta jossa: - Ylävirran tuottajalla on yhä monopoliasema - Alavirran sektorissa vallitsee kilpailu - Tuottaja voi rajoitteillaan

Lisätiedot

Kustannusten minimointi, kustannusfunktiot

Kustannusten minimointi, kustannusfunktiot Kustannusten minimointi, kustannusfunktiot Luvut 20 ja 21 Marita Laukkanen November 3, 2016 Marita Laukkanen Kustannusten minimointi, kustannusfunktiot November 3, 2016 1 / 17 Kustannusten minimointiongelma

Lisätiedot

Luku 21 Kustannuskäyrät

Luku 21 Kustannuskäyrät Luku 2 Kustannuskärät Edellisessä luvussa johdimme ritksen kustannusfunktion minimoimalla ritksen tuotannon kokonaiskustannuksia. Kustannusfunktiota ja sen ominaisuuksia voidaan tarkastella graafisesti

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Harjoitukset 1. Kysynnän ja tarjonnan perusteet (kertausta ja lämmittelyä). 1. Jampan

Lisätiedot

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero Y56 Kevät 2010 1 Y56 Laskuharjoitukset 4 Palautus viim. ti 30.3. klo 12-14 (luennolla!) Opiskelijan nimi Opiskelijanumero Harjoitus 1. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa

Lisätiedot

Dynaaminen hintakilpailu ja sanattomat sopimukset

Dynaaminen hintakilpailu ja sanattomat sopimukset Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 2017 Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Assist. Jan Jääskeläinen Syksy 017 Mallivastaukset 7. Kaupungissa on kaksi suurta taidemuseoa (pelaajat) ja 500 000 asukasta. Taidemuseoilla

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Mallivastaukset 9. 2. (a) Dominoiva strategia on tarjota oman arvostuksensa verran, eli tässä e 10 miljoonaa. Tarjoamalla yli oman arvostuksen tekisi vain mahdolliseksi sen, että joutuu maksamaan yli oman

Lisätiedot

Valikoima, laatu ja mainonta

Valikoima, laatu ja mainonta Valikoima, laatu ja mainonta Sami Niemelä 5.2.2003 Sisältö Tuoteavaruus Käsite ja erottelutapoja Valikoiman muodostaminen Laatu ja laajuus Laatu Tyypit ja ongelmia Mainonta Käytetyt symbolit määrä s laatu

Lisätiedot

MIKROTALOUSTIEDE A31C00100

MIKROTALOUSTIEDE A31C00100 MIKROTALOUSTIEDE A31C00100 Kevät 2017: Luento I Olli Kauppi, KTT olli.kauppi@aalto.fi Päivän ohjelma 1. Kurssin yleiset asiat 2. Esimerkki mikrotaloustieteellisestä malliajattelusta (niputtaminen) 3. Kysyntä

Lisätiedot