SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa.

Koko: px
Aloita esitys sivulta:

Download "SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa."

Transkriptio

1 SMG-4500 Tuulivoima Kolmannen luennon aihepiirit Tuulen teho: Betzin lain johtaminen Tuulen mittaaminen Tuulisuuden mallintaminen Weibull-jakauman hyödyntäminen ILMAVIRTAUKSEN ENERGIA JA TEHO Ilmavirtauksen energia on ilmamolekyylien liike-energiaa. Tuulivoimalassa ilmamolekyylien liike-energia pyritään muuntamaan hyvällä hyötysuhteella tuuliturbiinin roottorin liike-energiaksi ja edelleen generaattorin avulla sähköenergiaksi. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa, jota voidaan mallintaa klassisen mekaniikan yhtälöllä W0 mv0. Kun energian muutosta tarkastellaan aikayksikköä kohti, saadaan teho dw0 P0 mv 0, dt jossa massavirralle m (kg/s) on voimassa m Av. 0 3 Täten ilmavirtauksen teholle saadaan P0 Av0.

2 BETZIN LAIN LÄHTÖKOHDAT Betzin laki mallintaa teoreettista ylärajaa sille hyötysuhteelle, jolla ilmavirtauksen energia saadaan muunnettua roottorin pyörimisenergiaksi. Roottori oletetaan ideaaliseksi. Roottori on ilmaa läpäisevä kiekko, jonka pintasuhde on yksi. Ei kitkaa roottorin laakereissa eikä ilmavirtauksen ja lapojen välillä. Roottori on massaton, ja ilmavirtaus on pyörteetön. Ilmavirtaus kohdistaa roottoriin vain nostovoiman, ei vastusvoimaa. Ilma virtaa kontrollitilavuuteen vasemmasta reunasta, ja sama massavirta poistuu oikeasta reunasta. Ilmanpaine ja tiheys ovat tilavuudessa vakioita. Tarkastelun tavoitteena on hakea se v :n arvo, jolla roottorin teho maksimoituu. 3 BETZIN LAIN JOHTAMINEN (/5) Koska kontrollitilavuudesta poistuu ilmaa vain oikeasta reunasta, ilmavirtauksen massavirralle voidaan kirjoittaa m Av A v Av 0 0 roottori iv. Koska roottori ottaa energiaa ilmavirtaukselta, v < v 0. Ja koska ilmanpaine on vakio koko kontrollitilavuudessa, ilmavirran on hajaannuttava, jotta massavirta pysyy muuttumattomana. Toisin sanoen A > A 0. Kun massallisen ilmavirtauksen nopeudessa tapahtuu roottorin kohdalla muutos, roottoriin kohdistuu nostovoima Newtonin II lain mukaisesti dviv Froottori ma m mdv iv Aroottoriviv v0 v. dt Roottoriin kohdistuva nostovoima riippuu siis ilman tiheydestä, turbiinin pintaalasta, ilmavirtauksen nopeudesta turbiinin kohdalla sekä kontrollitilavuudessa tapahtuvasta ilmavirtauksen nopeuden muutoksesta. 4

3 BETZIN LAIN JOHTAMINEN (/5) Nyt päästään kiinni roottorin tehoon, sillä ilmavirtauksen tekemälle työlle on voimassa dw Froottori dx. Kun kaiken tämän työn oletetaan muuttuvan roottorin liike-energiaksi, roottorin teholle voidaan kirjoittaa dw dx P. roottori Froottori Froottoriviv dt dt x xroottori Kun ilmavirran roottoriin kohdistava voima korvataan edellä esitellyllä yhtälöllä, roottorin teho saadaan muotoon P A v v v roottori roottori iv 0. Toisaalta se teho, jolla roottori ottaa energiaa ilmavirtaukselta, voidaan esittää ilmavirtauksen liike-energian muutoksen avulla eri puolilla roottoria: mv0 mv W Proottori m v0 v. t t 5 BETZIN LAIN JOHTAMINEN (3/5) Kun edellisessä yhtälössä ilmavirtauksen massavirta lausutaan toisin, saadaan P A v v v roottori roottori iv 0 Kun eri tavoin kirjoitetut roottorin tehot merkitään yhtäsuuriksi, saadaan P A v v v A v v v v v v roottori roottori iv 0 roottori iv 0 iv 0. Ilmavirtauksen nopeus roottorin kohdalla on keskiarvo ilmavirtauksen nopeuksista roottorin eri puolilla. Roottorin teho voidaan nyt kirjoittaa muotoon v v v v v v 3 Proottori Aroottori v0 v Aroottoriv

4 BETZIN LAIN JOHTAMINEN (4/5) Edellä esitetty roottorin tehon yhtälö on siinä mielessä mielenkiintoinen, että lausekkeen alkuosa esittää roottorille tulevan ilmavirtauksen tehoa. Täten lausekkeen loppuosa määrittää sen, kuinka suuren osan ilmavirtauksen tehosta roottori pystyy hyödyntämään. Tämän vuoksi on tarpeen selvittää, miten kerroin käyttäytyy v :n funktiona. v v v0 v 0 Kun kerroin derivoidaan v :n suhteen, derivaatan nollakohdiksi saadaan v = v 0 ja v =v 0 /3. Ensimmäinen nollakohta ei ole fysikaalisessa mielessä järkevä, sillä ilmavirtauksen suunta ei saa kääntyä kontrollitilavuudessa. 7 BETZIN LAIN JOHTAMINEN (5/5) Tarkastellaan seuraavassa kertoimen käyttäytymistä käyvän alueen reunoissa ja derivaatan nollakohdassa. Jos v = v 0, kerroin menee nollaksi. Tämä on järkevää, sillä tilanne v = v 0 tarkoittaa sitä, ettei roottori ota lainkaan energiaa ilmavirtauksesta. Jos v = 0, kertoimen arvoksi tulee ½. Tässä tilanteessa ilmavirtaus pysähtyisi kokonaan roottorin takana. Tällöin osa alkuoletuksista ei olisi enää voimassa. Jos v = v 0 /3, kerroin saavuttaa maksimiarvonsa 6/7 59.3%. 59.3% on teoreettinen yläraja sille, kuinka suuren osan ilmavirtauksen energiasta roottori pystyy hyödyntämään. Samalla kyseessä on tuulivoimalan kokonaishyötysuhteen teoreettinen yläraja. Käytännössä tuulivoimalan kokonaishyötysuhde on korkeintaan luokkaa 40%. 8 4

5 TUULEN MITTAAMINEN (/) Tuulisuusmittaukset ovat oleellinen osa tuulivoimalahanketta. Kyse on yksinkertaisesti siitä, että ilmavirtauksen teho riippuu kuutiollisesti ilmavirtauksen vauhdista. Ilmavirtauksen vauhti vaikuttaa ratkaisevasti voimalan energiantuotantoon. Myös tuulen suunta ja turbulenttisuus ovat kiinnostavia suureita. Lisäksi wind shear ja flow inclination ovat kohdesuunnittelun kannalta tärkeitä suureita. Tuulivoimalavalmistajat sitovat voimaloiden tuotantotakuut tuulimittauksiin, mikä on konkreettinen esimerkki mittausten tärkeydestä. Kesto ja korkeus tekevät tuulimittauksista haastavia. Jatkuvien mittausten on kestettävä vähintään kuukautta. Mittaukset on tehtävä kohteeseen suunnitellun tuulivoimalan napakorkeudelta. 9 TUULEN MITTAAMINEN (/) Mittausmaston käyttäminen on luotettavin tapa tuulimittausten tekemiseen. Mittauslaitteet on sijoitettu maston kärkeen todelliselle napakorkeudelle. Kallis ja hankala menetelmä, sillä maston pituuden tulee olla jopa 00 m. Tietoliikennemastoja pyritään hyödyntämään mahdollisuuksien mukaan. LIDAR ja SODAR ovat menetelmiä, joiden avulla tuulimittaukset voidaan tehdä maan pinnalta (DAR = Detection And Ranging). Perustuvat valon (LIght) tai ääniaaltojen (SOnic) hyödyntämiseen tietyllä etäisyydellä olevan kohteen ominaisuuksien selvittämisessä. Ilmamolekyylien nopeus saadaan selville maan pinnalta lähetetyn aallon ja ilmamolekyyleistä heijastuneen aallon taajuuserosta (Doppler-ilmiö). Tuulipuiston paikkaa suunniteltaessa edellä mainitut mittausmenetelmät usein yhdistetään. Kohteeseen asennetaan yksi mittausmasto, ja sen lisäksi tehdään LIDAR- tai SODAR-mittauksia laajemmalta alueelta. 0 5

6 TUULISUUDEN MALLINTAMINEN (/3) Tuulisuuden mallintamisen tarkoituksena on selvittää eri tuulennopeuskomponenttien esiintymistodennäköisyydet. Esiintymistodennäköisyyksien avulla pystytään arvioimaan, kuinka suuren osan ajasta tuulee milläkin nopeudella. Tällöin tuulen energiasisällön mallintaminen onnistuu huomattavasti luotettavammin kuin pelkän keskiarvotuulennopeuden avulla. Weibull-jakaumaa hyödynnetään yleisesti tuulisuuden mallinnuksessa. Tuulennopeuden v esiintymistodennäköisyyttä f mallinnetaan tällöin yhtälöllä k k k v v f v exp, CC C jossa k on muotokerroin ja C määräkerroin, joka saadaan yleisen gamma-funktion avulla yhtälöstä vka C, k jossa v ka on tuulennopeuden keskiarvo. TUULISUUDEN MALLINTAMINEN (/3) Tarkastellaan tilannetta konkreettisen esimerkin avulla. Olkoon tuulennopeuden keskiarvo 5 m/s. Kun mallinnetaan mannertuulia, muotokertoimelle käytetään yleensä arvoa k =. Muotokertoimen kasvattaminen keskittää jakaumaa tuulennopeuden keskiarvon läheisyyteen. Merituulien mallinnuksessa käytetään tyypillisesti arvoa k = 4. 6

7 TUULISUUDEN MALLINTAMINEN (3/3) Lasketaan tuulen tehotiheysjakaumat, kun =.5 kg/m 3 : Tuulennopeutta v i vastaava tehotiheys P i on 3 Pi' fi vi. Keskiarvotehotiheydet saadaan oheisten kuvaajien pinta-aloina: k= P avg 46. W/m, k = 4 P avg 94.5 W/m. Jos lasketaan pelkän keskiarvotuulennopeuden avulla P avg 76.6 W/m. 3 7

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet DEE-5300 Tuulioiman perusteet Aihepiiri 3 Tuulen teho: Betzin lain johtaminen Tuulen mittaaminen Tuulisuuden mallintaminen Weibull-jakauman hyödyntäminen DEE-5300: Tuulioiman perusteet ALBERT BETZ Theoretical

Lisätiedot

SMG-4500 Tuulivoima. Kahdeksannen luennon aihepiirit. Tuulivoiman energiantuotanto-odotukset

SMG-4500 Tuulivoima. Kahdeksannen luennon aihepiirit. Tuulivoiman energiantuotanto-odotukset SMG-4500 Tuulivoima Kahdeksannen luennon aihepiirit Tuulivoiman energiantuotanto-odotukset Tuulen nopeuden mallintaminen Weibull-jakaumalla Pinta-alamenetelmä Tehokäyrämenetelmä 1 TUULEN VUOSITTAISEN KESKIARVOTEHON

Lisätiedot

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2)

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2) SMG-4500 Tuulivoima Kuudennen luennon aihepiirit Tuulivoimalan energiantuotanto-odotukset Aiheeseen liittyvä termistö Pinta-alamenetelmä Tehokäyrämenetelmä Suomen tuulivoimatuotanto 1 AIHEESEEN LIITTYVÄ

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit TUULEN TEHO

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit TUULEN TEHO SMG-4500 Tuulivoima Kolmannen luennon aihepiirit Tuulen teho: Betzin lain johtaminen Tuulivoimalatyypeistä: Miksi vaaka-akselinen, miksi kolme lapaa? Aerodynamiikkaa: Tuulivoimalan roottorin lapasuunnittelun

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Roottorin toimintaperiaate Roottorin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Tuulivoimalan tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

Tuulivoima. Energiaomavaraisuusiltapäivä 20.9.2014. Katja Hynynen

Tuulivoima. Energiaomavaraisuusiltapäivä 20.9.2014. Katja Hynynen Tuulivoima Energiaomavaraisuusiltapäivä 20.9.2014 Katja Hynynen Mitä on tuulivoima? Tuulen liike-energia muutetaan toiseen muotoon, esim. sähköksi. Kuva: http://commons.wikimedia.org/wiki/file: Windmill_in_Retz.jpg

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1. SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen

Lisätiedot

4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet

4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet 4. Kontrollitilavuusajattelu ja massan säilyminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten partikkelisysteemiin liittyvän suuren säilyminen esitetään tarkastelualueen taseena ja miten massan

Lisätiedot

Tuulennopeuksien jakauma

Tuulennopeuksien jakauma Tuulennopeuksien jakauma Kaikki tuulennopeudet eivät ole yhtä todennäköisiä (no shit, Sherlock!) Tietyn tuulennopeuden todennäköisyystiheyden antaa varsin tarkasti kaksiparametrinen Weibullin jakauma W(v)

Lisätiedot

DEE Tuulivoima

DEE Tuulivoima DEE-53020 Tuulivoima Aihepiiri 4 Tuulivoimalan rakenne Roottorin toimintaperiaate Roottorin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Tuulivoimalan tehonsäätö 1 TUULIVOIMALAN RAKENNE

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.

Lisätiedot

Tuulimittausten merkitys ja mahdollisuudet tuulipuiston suunnittelussa ja käytössä

Tuulimittausten merkitys ja mahdollisuudet tuulipuiston suunnittelussa ja käytössä Tuulimittausten merkitys ja mahdollisuudet tuulipuiston suunnittelussa ja käytössä Energiamessut 2010 Tampere Erkki Haapanen, DI erkki.haapanen(at)tuulitaito.fi Miksi tämä esitys Suomessa yleisin tuulivoimalan

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

lnx x 1 = = lim x = = lim lim 10 = x x0

lnx x 1 = = lim x = = lim lim 10 = x x0 BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet DEE-53020 Tuulivoiman perusteet Aihepiiri 2 Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

Lämpöä tuulivoimasta ja auringosta. Esa.Eklund@KodinEnergia.fi. Kodin vihreä energia Oy 30.8.2012

Lämpöä tuulivoimasta ja auringosta. Esa.Eklund@KodinEnergia.fi. Kodin vihreä energia Oy 30.8.2012 Lämpöä tuulivoimasta ja auringosta 30.8.2012 Esa.Eklund@KodinEnergia.fi Kodin vihreä energia Oy Mitä tuulivoimala tekee Tuulivoimala muuttaa tuulessa olevan liikeenergian sähköenergiaksi. Tuulesta saatava

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) x 18 ( x 9) ( x ) ( x+ ) lim = lim = lim x+ x+ ( x + ) x x x = lim (x 6) = ( ) 6 = 1 x x + 6 ( ) + 6 0 lim = =

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat ILMANPAINE (1/2)

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat ILMANPAINE (1/2) SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat 1 ILMANPAINE (1/2) Ilma kohdistaa voiman kaikkiin kappaleisiin, joiden kanssa

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

Luku 13. Kertausta Hydrostaattinen paine Noste

Luku 13. Kertausta Hydrostaattinen paine Noste Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää

Lisätiedot

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t. DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA SMG-4500 Tuulivoima Viidennen luennon aihepiirit Tuulivoimaloiden generaattorit Toimintaperiaate Tahtigeneraattori Epätahtigeneraattori Vakionopeuksinen voimala Vaihtuvanopeuksinen voimala 1 YLEISTÄ ASIAA

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

Wind Power in Power Systems: 24 Introduction to the Modelling of Wind Turbines

Wind Power in Power Systems: 24 Introduction to the Modelling of Wind Turbines Wind Power in Power Systems: 24 Introduction to the Modelling of Wind Turbines Johdanto Tässä kappaleessa esitetään näkökohtia liittyen tuulivoimaloiden simulointiin ja niiden mallintamiseen. Tietokonemallinnuksen

Lisätiedot

Kuinka valita tuulivoima-alue? Anni Mikkonen, Suomen Tuulivoimayhdistys Pori, 3.11.2010

Kuinka valita tuulivoima-alue? Anni Mikkonen, Suomen Tuulivoimayhdistys Pori, 3.11.2010 Kuinka valita tuulivoima-alue? Anni Mikkonen, Suomen Tuulivoimayhdistys Pori, 3.11.2010 Perustettu 1988 Suomen Tuulivoimayhdistys ry Jäsenistö: 100 yritystä Lähes 200 yksityishenkilöä Foorumi tuulivoimayrityksille

Lisätiedot

HAIHDUNTA. Haihdunnan määrällä on suuri merkitys biologisten prosessien lisäksi mm. vesistöjen kunnostustöissä sekä turvetuotannossa

HAIHDUNTA. Haihdunnan määrällä on suuri merkitys biologisten prosessien lisäksi mm. vesistöjen kunnostustöissä sekä turvetuotannossa HAIHDUNTA Haihtuminen on tapahtuma, missä nestemäinen tai kiinteä vesi muuttuu kaasumaiseen olotilaan vesihöyryksi. Haihtumisen määrä ilmaistaan suureen haihdunta (mm/aika) avulla Haihtumista voi luonnossa

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Ympäristöministeriön asetus Eurocode-standardien soveltamisesta talonrakentamisessa annetun asetuksen muuttamisesta

Ympäristöministeriön asetus Eurocode-standardien soveltamisesta talonrakentamisessa annetun asetuksen muuttamisesta Ympäristöministeriön asetus Eurocode-standardien soveltamisesta talonrakentamisessa annetun asetuksen muuttamisesta Annettu Helsingissä 5 päivänä marraskuuta 2010 Ympäristöministeriön päätöksen mukaisesti

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

f(x) f(y) x y f f(x) f(y) (x) = lim

f(x) f(y) x y f f(x) f(y) (x) = lim Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.

Lisätiedot

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

PHYS-A3121 Termodynamiikka (ENG1) (5 op) PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Erkki Haapanen Tuulitaito

Erkki Haapanen Tuulitaito SISÄ-SUOMEN POTENTIAALISET TUULIVOIMA-ALUEET Varkaus Erkki Haapanen Laskettu 1 MW voimalalle tuotot, kun voimalat on sijoitettu 21 km pitkälle linjalle, joka alkaa avomereltä ja päättyy 10 km rannasta

Lisätiedot

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA SMG-4500 Tuulivoima Viidennen luennon aihepiirit Tuulivoimaloiden generaattorit Toimintaperiaate Tahtigeneraattori Epätahtigeneraattori Tuulivoimalakonseptit 1 YLEISTÄ ASIAA GENERAATTOREISTA Generaattori

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

MATEK822 Pro Gradu seminaari Johannes Tiusanen 12.11.2002

MATEK822 Pro Gradu seminaari Johannes Tiusanen 12.11.2002 MATEK / MAATALOUSTEKNOLOGIA SEMINAARIMONISTE MATEK822 Pro Gradu seminaari Johannes Tiusanen 12.11.2002 $,,4,,890 : 9:: ;4 2,, Helsingin yliopisto Maa- ja kotitalousteknologian laitos Tuulen teho ja tuulisuus

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

VOIMALASÄÄTIMET Sivu 1/5 10.6.2009. FinnPropOy Puhelin: 040-773 4499 Y-tunnus: 2238817-3

VOIMALASÄÄTIMET Sivu 1/5 10.6.2009. FinnPropOy Puhelin: 040-773 4499 Y-tunnus: 2238817-3 VOIMALASÄÄTIMET Sivu 1/5 VOIMALASÄÄTIMET Sivu 2/5 YLEISTÄ VOIMALASÄÄTIMISTÄ Miksi säädin tarvitaan ja mitä se tekee? Tuulesta saatava teho vaihtelee suuresti tuulen nopeuden mukaan lähes nollasta aina

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Tuulivoimaa sisämaasta

Tuulivoimaa sisämaasta Tuulivoimaa sisämaasta SISÄ-SUOMEN SUOMEN POTENTIAALISET TUULIVOIMA-ALUEET ALUEET Saarijärvi 25.1.2011 Erkki Haapanen www.tuulitaito.fi Tekijänoikeuksista Huom. Mikäli tässä esityksessä olevia karttoja

Lisätiedot

SMG 4500 Tuulivoima. Luentotiivistelmät

SMG 4500 Tuulivoima. Luentotiivistelmät SMG 4500 Tuulivoima Luentotiivistelmät Kurssi ei valitettavasti seuraa yksittäistä oppikirjaa. Prujua ei ole. Rikkaat voivat hankkia kirjan Mukund R. Patel: Wind and Solar Power Systems Tentti perustuu

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

4. Kertausosa. 1. a) 12

4. Kertausosa. 1. a) 12 . Kertausosa. a kun, : b kun, tai 8 . Paraabeli y a bc c aukeaa ylöspäin, jos a alaspäin, jos a a Funktion g kuvaaja on paraabeli, jolle a. Se aukeaa ylöspäin. b Funktion g kuvaaja on paraabeli, jolle

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Tuulen nopeuden mittaaminen

Tuulen nopeuden mittaaminen KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

KANSALLINEN LIITE STANDARDIIN. SFS-EN 1991-1-4 EUROKOODI 1: RAKENTEIDEN KUORMAT Osa 1-4: Yleiset kuormat. Tuulikuormat

KANSALLINEN LIITE STANDARDIIN. SFS-EN 1991-1-4 EUROKOODI 1: RAKENTEIDEN KUORMAT Osa 1-4: Yleiset kuormat. Tuulikuormat 1 LIITE 5 KANSALLINEN LIITE STANDARDIIN SFS-EN 1991-1-4 EUROKOODI 1: RAKENTEIDEN KUORMAT Osa 1-4: Yleiset kuormat. Tuulikuormat Esipuhe Tätä kansallista liitettä käytetään yhdessä standardin SFS-EN 1991-1-4

Lisätiedot

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Funktiot ja yhtälöt Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Funktiot ja yhtälöt (MAA) Pikatesti ja kertauskokeet Pikatesti

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus Ensimmäisen asteen yhtälö: :n korkein eksponentti = 1 + 5 = 4( 3) Toisen asteen yhtälö: :n korkein eksponentti = 3 5 + 4 = 0 Kolmannen asteen yhtälö: :n korkein

Lisätiedot

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Page 1 of 10 Parhalahti_Valkeselvitys_JR15 1211- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIVOIMAPUISTO Parhalahti Välkeselvitys Versio Päivä Tekijät Hyväksytty Tiivistelmä Rev01 7.12.2015 YKo

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

3.4 Rationaalifunktion kulku ja asymptootit

3.4 Rationaalifunktion kulku ja asymptootit .4 Rationaalifunktion kulku ja asymptootit Rationaali- eli murtofunktiolla tarkoitetaan funktiota R, jonka lauseke on kahden polynomin osamäärä: P() R(). Q() Ainakin nimittäjässä olevan polynomin asteluvun

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset Maatalous-metsätieteellisen tiedekunnan valintakoe 18.5.2015 Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset 7. a) Matti ja Maija lähtevät kävelemään samasta pisteestä vastakkaisiin

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot