SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat ILMANPAINE (1/2)

Koko: px
Aloita esitys sivulta:

Download "SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat ILMANPAINE (1/2)"

Transkriptio

1 SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat 1 ILMANPAINE (1/2) Ilma kohdistaa voiman kaikkiin kappaleisiin, joiden kanssa se on kontaktissa. Unohdetaan ensin gravitaatio, ja tarkastellaan ilmaa suljetussa tilavuudessa. Suljetun tilavuuden seinämiin kohdistuva voima on seuraus tilavuuden sisällä olevien ilmamolekyylien satunnaisesta törmäilystä seinämiin. Mitä vilkkaampaa ilmamolekyylien liike on, sitä suuremman voiman ne seinämiin kohdistavat. Liikkeen vilkkautta saadaan kasvatettua lisäämällä suljetun tilavuuden ilmamolekyylien määrää tai nostamalla lämpötilaa. Lämpötilan muutos ei kuitenkaan vaikuta suljetussa tilavuudessa ilman tiheyteen (kg/m 3 ). Paine määritellään voimana pinta-alayksikköä kohti. Ilmanpaine tarkoittaa sitä voimaa pinta-alayksikköä kohti, jonka ilma kohdistaa sen kanssa kontaktissa olevaan kappaleeseen. 2 1

2 ILMANPAINE (2/2) Ilmakehä ei ole suljettu tilavuus, joten esimerkiksi lämpötilan muutos aiheuttaa tiheyden muutoksen. Lisäksi gravitaatiolla on hallitseva merkitys ilmanpaineeseen ilmakehässä. Tietyn kohteen ilmanpaine mitataan ilman painona pinta-alayksikköä kohti. Mitä korkeammalla merenpinnasta ollaan, sitä pienempi on ilman paino, sillä sitä vähemmän kohteen yläpuolella on ilmaa, johon gravitaatio vaikuttaa. Keskimääräinen ilmanpaine merenpinnan tasolla vastaa noin yhden kg:n massaa neliösenttimetrille: kg 9.81 m s pavg Pa m Vaikka paineen SI-yksikkö on Pascal (N/m 2 ), ilmanpaine esitetään yleisimmin bareina: 1 Pa = 0.01 mbar p avg = bar = mbar. Pohdintaa: Jos merenpinnan tasolla sijaitsevan talon kattopinta-ala on 100 m 2 (10 6 cm 2 ), katon yläpuolella oleva ilma kohdistaa kattoon miljoonan kg:n massaa vastaavan voiman. Miksi talon katto ei romahda? 3 ILMANPAINEEN PYSTYSUUNTAISET MUUTOKSET Gravitaation seurauksena ilmakehän korkeimmat ilmanpainelukemat löytyvät merenpinnan tasolta, sillä maan vetovoima puristaa ilmaa sitä enemmän, mitä enemmän tarkastelukohdan yläpuolella on ilmamassaa. Mitä korkeampi on ilmanpaine, sitä suurempi on ilman tiheys, eli sitä suurempi on ilmamolekyylien määrä tilavuusyksikköä kohti. Ohuessa vuoristoilmassa on alhaisen ilmanpaineen vuoksi happimolekyylien määrä tilavuusyksikköä kohden pienempi kuin merenpinnan tasolla. Siksi myös hengittäminen tuntuu hankalammalta. Pystysuuntainen ilmanpaineen profiili esitetään yleensä standardin ilmakehän avulla, joka on malli todellisesta ilmakehästä. Standardi ilmakehä perustuu ilmakehän olosuhteiden keskiarvoistamiseen kaikilla leveyspiireillä kaikkina vuodenaikoina. 4 2

3 ILMANPAINEEN VAAKASUUNTAISET MUUTOKSET (1/2) Gravitaatio vaikuttaa ilmanpaineeseen vain pystysuunnassa, joten vaakasuuntaiset muutokset johtuvat lämpötilan ja ilmankosteuden muutoksista. Lämpötilan kasvu pienentää ilman tiheyttä, mikä edelleen pienentää ilman painoa pinta-alayksikköä kohti. Lämpötilan kasvu pienentää ilmanpainetta. Ilma sisältää aina kosteutta, joten vesimolekyyli kuuluu ilmamolekyyleihin. Ilmankosteuden muutokset aiheuttavat ilmamolekyylien massan muutoksen. Veden molekyylimassa on pienempi kuin hapella ja typellä. Koska vesimolekyyli ottaa ilmassa happi- tai typpimolekyylin paikan, ilmankosteuden lisääntyminen pienentää ilman massaa, mikä edelleen pienentää ilman painoa pinta-alayksikköä kohti. Ilmankosteuden kasvu pienentää ilmanpainetta. Vaakasuuntaiset ilmanpaineen muutokset määrittävät vallitsevan säätilan, vaikka ne ovatkin huomattavasti vähäisempiä kuin pystysuuntaiset muutokset. Pystysuunnassa ilmanpaine muuttuu useita satoja millibareja, kun noustaan muutaman kilometrin korkeudelle merenpinnasta. Vaakasuunnassa ilmanpaineen muutos jää lähes aina 100 mbarin alapuolelle. Sääkartoilla esitetyt ilmanpainelukemat ovat aina lukemia merenpinnan tasolta. 5 ILMANPAINEEN VAAKASUUNTAISET MUUTOKSET (2/2) Ilmavirtausten hajaantuminen ((a) ja (c)) ja suppeneminen ((b) ja (d)) aiheuttavat yleensä merkittäviä vaakasuuntaisia ilmanpaineen muutoksia. Yleisesti ottaen ei kuitenkaan voida sanoa, aiheuttavatko hajaantuminen ja suppeneminen ilmanpaineen nousua vai laskua. Molemmat ovat mahdollisia. Yleensä kuvan (b) mukainen suppeneminen synnyttää matalapaineen ja kuvan (a) mukainen hajaantuminen korkeapaineen. Toisaalta hajaantuminen (c) voi myös paikallisesti laskea ilmanpainetta, ja vastaavasti suppeneminen (d) voi nostaa sitä. 6 3

4 MATALA- JA KORKEAPAINEET Sääennusteiden ilmanpainekartat esittävät merenpinnan tason ilmanpainelukemia tasa-arvokäyrien, eli isobarien, avulla. Ilmanpaine pysyy vakiona tasaarvokäyrää pitkin kuljettaessa. Matalapaineen keskuksessa ilmanpaine on ympäristöään alhaisempi. Korkeapaineen keskuksessa ilmanpaine on ympäristöaan korkeampi. Absoluuttiset ilmanpainelukemat eivät kuitenkaan ole ilmavirtausten kannalta tärkeässä roolissa. Sen sijaan painegradientilla, eli paineen muutoksella pituusyksikköä kohti, on ratkaiseva rooli. Pohdintaa: Miten painegradientti käy ilmi ilmanpainekartasta? 7 TUULI LUONNONILMIÖNÄ Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen. Ilmavirtojen liikkeeseen vaikuttavia voimia voidaan luokitella viisi kappaletta: Painegradienttivoima Keskihakuvoima Coriolis-voima Kitka Gravitaatio 8 4

5 PAINEGRADIENTTIVOIMA Painegradientti poikkeaa nollasta, jos ilmanpaine muuttuu paikan suhteen. Painegradienttivoima saa ilmamolekyylit liikkeelle. Ilmiötasolla kyse on ilman tiheyserojen tasoittumisesta, jota luonnontieteissä kutsutaan yleisesti diffuusioksi. Ilmanpaineen absoluuttinen arvo ei vaikuta painegradienttiin. Ainoastaan ilmanpaineen muutoksella ja kohteiden välisellä etäisyydellä on merkitystä. Kuvan kaikissa tilanteissa painegradientin itseisarvo pysyy muuttumattomana, 0.02 mbar/m. Kuvassa (c) painegradientin suunta on vastakkainen kuviin (a), (b) ja (d) verrattuina. 9 KESKIHAKUVOIMA Newtonin I laki: kiihtyvässä liikkeessä olevaan kappaleeseen kohdistuu aina nollasta poikkeava nettovoima. Kaarevalla radalla oleva kappale on aina kiihtyvässä liikkeessä, sillä mahdollisesta vakiovauhdista huolimatta nopeuden suunta muuttuu jatkuvasti. Kun moukarinheittäjä irrottaa vaijerista, metallikuula lähtee tangentin suuntaan, jolloin vakionopeus on ideaalitilanteessa mahdollista. Ennen irrottamista heittäjä kohdistaa moukariin sisäänpäin vaikuttavan voiman, joka rajoittaa sen liikeradan ympyräksi. Tätä voimaa kutsutaan keskihakuvoimaksi. Keskihakuvoiman suunta on aina kaarevan radan keskipistettä kohti. Ilmavirtojen reitit ovat harvoin suoria, joten keskihakuvoima vaikuttaa myös tuuliin. Ilmavirtojen yhteydessä keskihakuvoima ei ole oma itsenäinen voimansa, vaan se on seuraus muiden voimien välisestä epätasapainosta. 10 5

6 CORIOLIS-VOIMA (1/3) 11 CORIOLIS-VOIMA (2/3) Punainen nuoli osoittaa ilmavirtauksen suuntaa. Kuvassa (a) suunta on tarkastelun alkuhetkellä ylhäältä alas (etelästä pohjoiseen) sekä avaruudessa olevan että maanpäällisen tarkkailijan silmin. Kuva (b) esittää samaa tilannetta hieman myöhemmin. Avaruudessa olevan tarkkailijan silmin ilmavirtauksen suunta on edelleen ylhäältä alas, mutta koska maapallon ilmansuuntakoordinaatisto kiertyy maapallon pyöriessä, maanpäällisen tarkkailijan silmin ilmavirtauksen suunta ei enää olekaan etelästä pohjoiseen. 12 6

7 CORIOLIS-VOIMA (3/3) Jos maapallo ei pyörisi, ilma virtaisi suoraan korkeapaineesta matalapaineeseen. Coriolis-ilmiö on seuraus maapallon pyörimisestä oman akselinsa ympäri. Pyörimissuunta on kohti itää, minkä vuoksi maapäällisen tarkkailijan silmin ilmavirtaus kaartuu pohjoisella pallonpuoliskolla oikealle ja eteläisellä vasemmalle. Mitä nopeammin ilma virtaa, sitä voimakkaammin Coriolis-ilmiö vaikuttaa. Mitä nopeammin ilma virtaa, sitä pidemmän matkan se kulkee aikayksikössä. Mitä pidemmän matkan ilma liikkuu, sitä suurempi on Coriolis-poikkeaminen. 13 KITKA (1/2) Kitka mielletään usein kiinteiden kappaleiden välistä liikettä vastustavaksi voimaksi. Kitka on kuitenkin merkittävä tekijä myös nesteiden ja kaasujen liikkeessä. Nesteen ja kaasun kitkaa kutsutaan viskositeetiksi. Pienessä mittakaavassa nesteen/kaasun kitka johtuu molekyylien satunnaisesta liikkeestä. Molekyyliviskositeetti ei erityisemmin vaikuta ilmavirtojen liikkeeseen. Suuressa mittakaavassa nesteen/kaasun kitka johtuu virtauksen pyörteistä. Pyörreviskositeetti vaikuttaa merkittävästi ilmavirtojen liikkeeseen. Kun ilmavirtaus kohtaa esteen, pyörteitä syntyy kuvan mukaisesti esteen taakse. Osa ilmavirtauksen liike-energiasta kuluu pyörteisiin, joten pyörreviskositeetti hidastaa ilmavirtauksia. 14 7

8 KITKA (2/2) Mitä epätasaisempi maan pinta on, sitä voimakkaammin pyörreviskositeetti hidastaa ilmavirtausta. Esimerkiksi pelto hidastaa ilmavirtausta vähemmän kuin metsä. Pyörreviskositeetti heikkenee nopeasti, kun etäisyys maan pinnasta kasvaa. Tästä syystä tuulen nopeus on sitä suurempi, mitä korkeammalle noustaan. Kun noustaan noin 1 km korkeudelle maan pinnasta, pyörreviskositeetti ei enää käytännössä vaikuta ilmavirtaukseen. Sitä ilmakerrosta, jossa pyörreviskositeetti hidastaa ilmavirtausta, kutsutaan rajakerrokseksi tai kitkakerrokseksi. Rajakerroksen paksuus on luokkaa 1 km.. 15 GRAVITAATIO Koska ilmavirrat koostuvat massallisista hiukkasista, gravitaatio vaikuttaa niiden liikkeeseen. Koska gravitaatiovoima vaikuttaa maan pintaa vastaan kohtisuorasti, gravitaatio ei vaikuta maan pinnan suuntaisten ilmavirtausten energiaan. Gravitaatio vaikuttaa laskeviin ja nouseviin ilmavirtauksiin. Hellejaksojen jälkeisiin koviin ukkosiin usein liittyvät syöksyvirtaukset ovat yksi esimerkki gravitaation vaikutuksesta ilmavirtauksiin. Syöksyvirtaus syntyy, kun sadepisarat haihtuvat pilven alapuolella kuivassa ilmassa. Haihtuminen sitoo energiaa, joten ilman lämpötila laskee paikallisesti. Samalla ilman tiheys kasvaa lämpövärähtelyn vaimentuessa. Syntynyt raskas ilma putoaa nopeasti alaspäin ja kääntyy vaakasuuntaiseksi kohdatessaan maan pinnan. 16 8

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Aineen olomuodot ja olomuodon muutokset

Aineen olomuodot ja olomuodon muutokset Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Voimakuvioita kirja Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Kirja lattialla Kirja, jota painetaan kepillä Kirja, jota painetaan seinään Kirja,

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys

Lisätiedot

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste 8 3 Paine Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste i Ilma on ainetta ja se vaatii oman tilavuutensa. Ilmalla on massa. Maapallon ympärillä on ilmakehä. Me asumme ilmameren pohjalla. Me olemme

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Roottorin toimintaperiaate Roottorin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Tuulivoimalan tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4 Kertauskysymyksiä KPL1 Suureita ja mittauksia 1. Suure on kappaleen ominaisuus, joka voidaan jollain tavalla mitata 2. Mittayksiköksi, tai lyhyemmin yksiköksi 3. Si-järjestelmä on kansainvälinen mittayksikköjärjestelmä

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

BIOMEKANIIKKAA VALMENNUKSEEN

BIOMEKANIIKKAA VALMENNUKSEEN BIOMEKANIIKKAA VALMENNUKSEEN Kuortane 5.10.2013 Suomen Urheiluliiton 3. tason valmentajakoulutus Tapani Keränen KIHU www.kihu.fi Biomekaniikka? Biomekaniikka tarkastelee eliöiden liikkumista. Biomekaniikan

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Yläilmakehän luotaukset Synoptiset säähavainnot antavat tietoa meteorologisista parametrestä vain maan pinnalla Ilmakehän

Lisätiedot

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma Sekä A- että B-osiosta tulee saada vähintään 10 pistettä. Mikäli A-osion pistemäärä on vähemmän kuin 10 pistettä,

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

Vertaileva lähestymistapa järven virtauskentän arvioinnissa

Vertaileva lähestymistapa järven virtauskentän arvioinnissa Vertaileva lähestymistapa järven virtauskentän arvioinnissa Vertaileva lähestymistapa järven virtauskentän arvioinnissa Sisältö: 1. Virtauksiin vaikuttavat tekijät 2. Tuulen vaikutus 3. Järven syvyyden

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 VESI

KEMIAN MIKROMAAILMA, KE2 VESI VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen

Lisätiedot

RAK-31000 Statiikka 4 op

RAK-31000 Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

766323A-02 Mekaniikan kertausharjoitukset, kl 2012

766323A-02 Mekaniikan kertausharjoitukset, kl 2012 766323A-02 Mekaniikan kertausharjoitukset, kl 2012 Gravitaatio, liikemäärämomentti, ellipsiradat T 1: Oleta, että Marsin kuu Phobos kiertää Marsia ympyrärataa pitkin. Ympyrän säde on 9380 km ja kiertoaika

Lisätiedot

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista?

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? Ideaalikaasut 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? 2. Auton renkaan paineeksi mitattiin huoltoasemalla 2,2 bar, kun lämpötila oli + 10 ⁰C. Pitkän ajon jälkeen rekkaan

Lisätiedot

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen

Lisätiedot

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk I LUOKKAHUONEESSA ENNEN TIETOMAA- VIERAILUA POHDITTAVIA TEHTÄVIÄ Nimi Luokka Koulu yyyyyyyyyy Tehtävä 1. ETSI TIETOA PAINOVOIMASTA JA TÄYDENNÄ. TIETOA LÖYDÄT MM. PAINOVOIMA- NÄYTTELYN VERKKOSIVUILTA. Painovoima

Lisätiedot

8 Suhteellinen liike (Relative motion)

8 Suhteellinen liike (Relative motion) 8 Suhteellinen liike (Relative motion) 8.1 Inertiaalikoordinaatistot (Inertial reference of frames) Newtonin I laki on II lain erikoistapaus. Jos kappaleeseen ei vaikuta ulkoisia voimia, ei kappaleen liikemäärä

Lisätiedot

Luento 7: Voima ja Liikemäärä

Luento 7: Voima ja Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

Purjehdi Vegalla - Vinkki nro 2

Purjehdi Vegalla - Vinkki nro 2 Purjehdi Vegalla 1 1 Purjehdi Vegalla - Vinkki nro 2 Tuulen on puhallettava purjeita pitkin - ei niitä päin! Vielä menee pitkä aika, kunnes päästään käytännön harjoituksiin, joten joudutaan vielä tyytymään

Lisätiedot

1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu

1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu 1. Tasainen liike Kappale liikkuu vakionopeudella niin, että suunta ei muutu matka nopeus aika aika Nopeuden laskeminen Yhtälö kirjoitettuna suureilla ja niiden tunnuksilla: Yksiköt alinna nopeus = matka

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Purjelennon Teoriakurssi 2014. Sääoppi, osa 2 Veli-Matti Karppinen, VLK

Purjelennon Teoriakurssi 2014. Sääoppi, osa 2 Veli-Matti Karppinen, VLK Purjelennon Teoriakurssi 2014, osa 2 Veli-Matti Karppinen, VLK Pilvityypit Purjelentäjän pilvet Cumulus, kumpupilvi Teräväreunainen kumpupilvi kertoo noston olemassaolosta Noston ollessa hiipumassa ja

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

Henkilötunnus Sukunimi Etunimet

Henkilötunnus Sukunimi Etunimet Valintakokeessa on kaksi osaa: Osa 1 sisältää viisi esseetehtävää kansantaloustieteestä. Osasta 1 voi saada 0 30 pistettä. Osa sisältää kuusi matematiikan laskutehtävää. Osasta voi saada 0 30 pistettä.

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Viidennen luennon aihepiirit Olosuhteiden vaikutus aurinkokennon toimintaan: Mietitään kennon sisäisten tapahtumien avulla, miksi ja miten lämpötilan ja säteilyintensiteetin

Lisätiedot

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Yleista Sorptioroottorin jäähdytyskoneiston jäähdytystehontarvetta alentava vaikutus on erittän merkittävää

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

5 Kentät ja energia (fields and energy)

5 Kentät ja energia (fields and energy) 5 Kentät ja energia (fields and energy) Mansfield and O Sullivan: Understanding Physics, kappaleen 5 alkuosa 5.1 Newtonin gravitaatiolaki Newton: vetovoima kahden kappaleen välillä on tai tarkemmin F m

Lisätiedot

Maan ja avaruuden välillä ei ole selkeää rajaa

Maan ja avaruuden välillä ei ole selkeää rajaa Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

IL Dnro 46/400/2016 1(5) Majutveden aallokko- ja virtaustarkastelu Antti Kangas, Jan-Victor Björkqvist ja Pauli Jokinen

IL Dnro 46/400/2016 1(5) Majutveden aallokko- ja virtaustarkastelu Antti Kangas, Jan-Victor Björkqvist ja Pauli Jokinen IL Dnro 46/400/2016 1(5) Majutveden aallokko- ja virtaustarkastelu Antti Kangas, Jan-Victor Björkqvist ja Pauli Jokinen Ilmatieteen laitos 22.9.2016 IL Dnro 46/400/2016 2(5) Terminologiaa Keskituuli Tuulen

Lisätiedot

KÄYTTÖ-OHJE EVERLAST

KÄYTTÖ-OHJE EVERLAST KÄYTTÖ-OHJE EVERLAST SUPER CUT 50 ESITTELY SUPER CUT-50 plasmaleikkureiden valmistuksessa käytetään nykyaikaisinta MOSFET invertteri tekniikka. Verkkojännitteen 50Hz taajuus muunnetaan korkeaksi taajuudeksi

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Käyttöohje. Tasapainolauta

Käyttöohje. Tasapainolauta Käyttöohje Tasapainolauta Kiitos kun ostit tasapainolaudan.! VAROITUS! Opettele ajamaan laitteella turvallisesti, huomioi muu liikenne ja säännöt. Käytä lisäksi säädösten mukaisia turvavarusteita. Älä

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

3. Bernoullin yhtälön käyttö. KJR-C2003 Virtausmekaniikan perusteet

3. Bernoullin yhtälön käyttö. KJR-C2003 Virtausmekaniikan perusteet 3. Bernoullin yhtälön käyttö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mitä Bernoullin yhtälö tarkoittaa ja miten sitä voidaan käyttää virtausongelmien ratkaisemiseen? Motivointi: virtausnopeuden

Lisätiedot

Kasvin soluhengityksessä vapautuu vesihöyryä. Vettä suodattuu maakerrosten läpi pohjavedeksi. Siirry asemalle: Ilmakehä

Kasvin soluhengityksessä vapautuu vesihöyryä. Vettä suodattuu maakerrosten läpi pohjavedeksi. Siirry asemalle: Ilmakehä Vettä suodattuu maakerrosten läpi pohjavedeksi. Pysy asemalla: Pohjois-Eurooppa Kasvin soluhengityksessä vapautuu vesihöyryä. Sadevettä valuu pintavaluntana vesistöön. Pysy asemalla: Pohjois-Eurooppa Joki

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Maanpinnan kallistumien Satakunnassa

Maanpinnan kallistumien Satakunnassa Ennen maan pinnan asettumista lepotilaansa, eri paikkakunnat kohoavat erilaisilla nopeuksilla. Maan kohoaminen ilmeisesti sitä nopeampaa, mitä syvemmällä maan kamara ollut. Pohjanlahden nopea nousu verrattuna

Lisätiedot

LOKINRINNE 1, ESPOO KAUPUNKIYMPÄRISTÖN TUULISUUSLAUSUNTO

LOKINRINNE 1, ESPOO KAUPUNKIYMPÄRISTÖN TUULISUUSLAUSUNTO Vastaanottaja Espoon asunnot Oy Asiakirjatyyppi Lausunto Päivämäärä 12.06.2016 LOKINRINNE 1, ESPOO KAUPUNKIYMPÄRISTÖN TUULISUUSLAUSUNTO LOKINRINNE 1, ESPOO KAUPUNKIYMPÄRISTÖN TUULISUUSLAUSUNTO Päivämäärä

Lisätiedot

6 PISTETULON JA RISTITULON SOVELLUKSIA. 6.1 Pyörivistä kappaleista. Vaasan yliopiston julkaisuja Voiman momentti akselin suhteen avaruudessa

6 PISTETULON JA RISTITULON SOVELLUKSIA. 6.1 Pyörivistä kappaleista. Vaasan yliopiston julkaisuja Voiman momentti akselin suhteen avaruudessa Vaasan yliopiston julkaisuja 93 6 PISTETULON JA RISTITULON SOVELLUKSIA Ch:DotCross :RotatingBody sec:fmomspace 6.1 Pyörivistä kappaleista 6.1.1 Voiman momentti akselin suhteen avaruudessa Seuraavassa pohdiskelussa

Lisätiedot

13. Sulan metallin nostovoima

13. Sulan metallin nostovoima 13. Sulan metallin nostovoima Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Jos putkessa, jonka poikkipinta-ala on A, painetaan männällä nestepinnat eri korkeuksille, syrjäytetään nestettä tilavuuden

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset

Lisätiedot

Järvenpään Perhelän korttelin kutsukilpailu ehdotusten vertailu

Järvenpään Perhelän korttelin kutsukilpailu ehdotusten vertailu Järvenpään Perhelän korttelin kutsukilpailu ehdotusten vertailu KERROSALAT K-ALA HUONEISTOALAT BRUTTO-A HYÖTYALA ASUNNOT LIIKETILAT YHTEENSÄ as. lkm ap lkm asunnot as aputilat YHT. liiketilat aulatilat,

Lisätiedot

PL 186, 01531 VANTAA, FINLAND, puh. 358 (0)9 4250 11, Faksi 358 (0)9 4250 2898

PL 186, 01531 VANTAA, FINLAND, puh. 358 (0)9 4250 11, Faksi 358 (0)9 4250 2898 OPS M2-1, Liite 1 21.12.2007 PL 186, 01531 VANTAA, FINLAND, puh. 358 (0)9 4250 11, Faksi 358 (0)9 4250 2898 www.ilmailuhallinto.fi LENTOKONEEN VALOT Huom. Katso luku 6 1. MÄÄRITELMIÄ Kun tässä luvussa

Lisätiedot