Kasvuteorian perusteita. TTS-kurssi, kevät 2010 Tapio Palokangas

Koko: px
Aloita esitys sivulta:

Download "Kasvuteorian perusteita. TTS-kurssi, kevät 2010 Tapio Palokangas"

Transkriptio

1 Kasvuteorian perusteita TTS-kurssi, kevät 2010 Tapio Palokangas

2 Talouskasvun määritelmä Talouskasvu lisää talouden tuotantokapasiteettia pysyvästi yli ajan (eli lisää potentiaalista bruttokansan-tuotetta) ei tarkoita kokonaiskysynnän muutoksista aiheutuvaa taloudellista vaihtelua Tämän vuoksi pyrimme löytämään taloudelle tasapainoisen kasvu-uran (steady-state growth), joka ympärillä sen todellinen kehitys tapahtuu Asteikossa, jossa pystyakselilla on tulon logaritmi ja vaakaakselilla on aika tasapainoinen kasvu-ura on suora Uran kulmakerroin on kasvunopeus ja pystysuora etäisyys vaaka-akselista on tulotaso tietyllä hetkellä

3 Tasapainoinen kasvu-ura

4 Taso- ja kasvuvaikutukset 1 Jos talous kohtaa eksogeenisen muutoksen, sen kehitys voi muuttua kahdella tavalla: Tasovaikutus siirtää vakaata kasvu-uraa samansuuntaisena ylös- tai alaspäin, mutta ei pitkällä aikavälillä vaikuta mitään kasvunopeuteen (= kulmakertoimeen) Kasvuvaikutus muuttaa kasvunopeutta (= suoran kulmakerrointa), mutta ei vaikuta mitään kasvu-uran tasoon

5 Taso- ja kasvuvaikutukset 2

6 Taso- ja kasvuvaikutus 3

7 Kasvun empiirisiä säännönmukaisuuksia Minkä tahansa kasvuteorian on kyettävä selittämään empiiriset säännönmukaisuudet (stylized facts), jotka ovat kaikissa keittyneissä maissa havaittavissa: 1. BKT ja pääoma kasvavat samaa vauhtia pitkällä aikavälillä, mutta nopeammin kuin työvoima 2. Palkkataso kasvaa positiivista vauhtia pitkällä aikavälillä, mutta pääoma tuotto pysyy vakaana (so. sillä ei ole trendiä) 3. Palkkojen ja pääomatulojen suhde pysyy vakaana (so. sillä ei ole trendiä)

8 Talouskasvun tekijöitä Talouskasvun päätekijät ovat: tuotantoteknologia säästäminen väestön (tai työvoiman) kasvu teknologinen muutos oppiminen investoimalla (Learning by doing) koulutus Nyt tarkastelemme näitä tekijöitä yksi kerrallaan

9 Teknologia 1 BKT tuotetaan pääomasta K ja työstä L alenevin tuotoin (diminishing returns): Y = F(K, L) Tuotannossa on vakioskaalatuotot (constant returns to scale): zy = F(zK, zl) Makromuuttujat (pääoma K, BKT Y ja kulutus C) voidaan määritellä työntekijää kohti, k=k/l, y=y/l ja c=c/l, ja merkitä pienellä kirjaimella. Vakioskaalatuottojen perusteella työntekijäkohtainen tuotantofunktio voidaan määritellä seuraavasti:

10 Teknologia 2 Työntekijäkohtaisen tuotantofunktion y=f(k) kulmakerroin on pääoman rajatuotto (Marginal product of capital, MPK) Se kertoo kuinka monta yksikköä lopputuotetta työläinen tuottaa yhdellä lisäyksiköllä pääomaa: MPK = f(k+1) f(k) = F(k+1,1) F(k,1) Koska tuotot ovat alenevat, pääoman rajatuotto (MPK) laskee, kun työntekijäkohtainen pääoma k nousee Täten työntekijäkohtainen tuotantofunktio f(k) muodostaa kasvavan mutta konkaavin (so. oikealle taipuvan) käyrän (ks. seur. sivu)

11 Teknologia 3

12 Säästäminen 1 BKT y joko kulutetaan c tai investoidaan i: y = c + i Vakio-osuus BKT:sta säästetään: c = (1-s)y Kahden em. yhtälön perusteella nähdään, että tasapainossa investoinnit ovat yhtä suuret kuin säästäminen: i = sy = sf(k) Kertomalla tuotantokäyrä f(k) vakiolla 0<s<1 saadaan sen alapuolella oleva säästämiskäyrä (ks. Seur. kuvio):

13 Säästäminen 2

14 Pääoman kuluminen 1 Tasapainossa työntekijäkohtaiset investoinnit i ovat yhtä suuret kuin työntekijäkohtainen säästäminen sf(k) Oletetaan, että vakio-osuus 0< <1 pääomasta kuluu yhdessä periodissa Pääomakannan muutos on silloin

15 Pääoman kuluminen 2

16 Vakaa tila 1 Vakaa tila (steady state) on tasapaino, jossa talous on kuin täyttyvä ilmapallo: kuvioiden suhteet säilyvät samoina, vaikka koko muuttuukin Vakaassa tilassa työntekijäkohtainen pääoma k=k/l eli pääoman ja työn suhde ei muutu Merkitsen muuttujien vakaan tilan arvoja yläindeksillä * Seuraavasta kuvasta nähdään, että työntekijäkohtainen pääoma k sopeutuu kohden vakaan tilan tasapainoaan k*

17 Vakaa tila 2

18 Säästämisasteen nousu 1 Jos säästämisaste s nousee s tasolta s 0 tasolle s 1, säästämiskäyrä siirtyy ylöspäin ja pääoma tasapainomäärä työntekijää kohden k* kasvaa tasolta k 0 * tasolle k 1 * Jos säästäminen sf(k) nousee poistojen k yläpuolelle, pääoma alkaa kasvaa ja pääoma työntekijää kohden k lisääntyy, kunnes uusi tasapaino k 1 * saavutetaan.

19 Säästämisasteen nousu 2

20 Kultainen sääntö 1 Hyvinvointia maksimoivaa vakaata tilaa sanotaan kultaiseksi säännöksi (Golden Rule) Kultaisen säännön löytämiseksi oletetaan, että valtio voi määrätä säästämisasteen s esim. verotuksen avulla. Silloin työntekijäkohtainen kulutus c on yhtä suuri kuin BKT y minus investoinnit i: c = y i = f(k) - i Koska vakaassa tilassa investoinnit ovat yhtä kuin pääoman kuluminen, i* = k*, saadaan c = f(k*) - k*

21 Kultainen sääntö 2 Vakaan tilan työntekijäkohtaista pääomaa k 0 * vastaa vakaan tilan tuotos y 0 * = f(k 0 *) vakaan tilan kulutus c 0 * vakaan tilan säästämisaste s 0 * vakaan tilan poistot k 0 * Seuraava kuva osoittaa näiden välisen riippuvuuden

22 Kultainen sääntö 3

23 Kultainen sääntö 4 Mikä on pääoma/työ -suhdeluvun k optimitaso. Toisin sanoen mikä k maksimoi työntekijäkohtaisen kulutuksen c? Tämä tapahtuu silloin kun käyrien f(k*) ja k* välinen pystysuora erotus on suurimmillaan! Tällöin k* = k g * missä funktion f(k*) tangentti on yhdensuuntainen suoran k* kanssa (seur. kuva) Säästämisaste s g, joka vastaa suhdelukua k g *, saadaan käyrien s g f(k g *) ja k g * risteyksestä

24 Kultainen sääntö 5

25 Kultainen sääntö 6 Tämä osoittaa, että hyvinvointi (= kulutus henkeä/työntekijää kohden) maksimoituu, kun pääoman rajatuotto (= funktion f(k*) kulmakerroin) MPK on yhtäsuuri kuin pääoman poistoaste : MPK =

26 Väestön kasvu 1 Miten väestönkasvu vaikuttaa vakaaseen tilaan? Aikaisemmin oletimme, että työn tarjonta L on vakio Oletetaan nyt että työntekijöiden lukumäärä L kasvaa vakiovauhtia L/L=n. Silloin talouden täytyy lisätä pääoman kasautumista, jotta näille uusille työläisille saataisiin koneita

27 Väestön kasvu 2 Termiä ( +n)k voidaan sanoa omavaraisuusinvestoinneiksi (break-even investment), jotka tarvitaan, jotta työntekijäkohtainen pääoma k pysyisi vakiona. Tässä k investoinnit, jotka tarvitaan korvaamaan koneiden kulumista nk investoinnit, jotka tarvitaan tuottamaan koneet uusille työläisille ( +n)k omavaraisuusinvestoinnit

28 Väestönkasvu 3 Tämän määritelmän mukaan pääomakanta muuttuu seuraavasti:

29 Väestön kasvu 4

30 Väestön kasvu 5 Mallin ominaisuudet ovat samat kuin ilman väestön kasvua n = 0, paitsi että pääoman poistoaste nousee väestön kasvunopeuden n verran. Tämän seurauksena kultaisessa säännössä pääoman rajatuotto MPK on yhtäsuuri kuin pääoman poistoaste plus väestön kasvunopeus n: MPK = + n

31 Väestön kasvu 6 Mitä tapahtuu, jos väestön kasvunopeus n nousee tasolta n 0 tasolle n 1? Omavaraisinvestointien käyrän ( +n)k kulmakerroin nousee Tämän seurauksena työntekijäkohtainen pääoma k putoaa tasolta k 0 tasolle k 1 (ks. seur. kuva) Selitys: jos väestön kasvunopeus kiihtyy, niin silloin on vaikeampaa kasata pääomaa K niin nopeasti että pääoman ja työn välinen suhdeluku k pysyisi vakiona

32 Väestön kasvu 7

33 Työn tehokkuus 1 Aikaisemmin oletimme, että työn tuottavuus on vakio (ja valittu ykköseksi) Jos työn tuottavuus kasvaa vakiovauhtia, niin mitä silloin tapahtuu vakaalle tilalle? Aikaisemmin BKT tuotettiin pääomasta K ja työstä L seuraavasti: Y = F(K,L) Nyt oletamme että tehokkuus E lisää työpanosta L seuraavasti: Y = F(K,EL)

34 Työn tehokkuus 2 Aikaisemmin tarkastelimme makromuuttujia suhteessa työntekijämäärään: k=k/l, y=y/l Nyt tarkastelemme niitä suhteessa tehokkaaseen työpanokseen EL: Itse asiassa voidaan ajatella, että teknologinen edistys luo uusia työntekijöitä: jos esim. muutoksen jälkeen kaksi henkeä tekee kolmen työt, niin tavallaan on syntynyt yksi uusi työntekijä Omavaraisuusinvestoinnit koostuvat nyt kolmesta osasta:

35 Työn tehokkuus 3 k Investoinnit, jotka tarvitaan korvaamaan pääoman poistot nk Investoinnit, jotka tarvitaan tuottamaan koneet uusille työntekijöille gk investoinnit, jotka tarvitaan tuottamaan koneet uusille työntekijöille, jotka teknologinen prosessi on tuottanut ( +n+g)k omavaraisuusinvestoinnit

36 Työn tehokkuus 4

37 Työn tehokkuus 5 Mallin ominaisuudet ovat samat kuin ilman väestön kasvua n=0 ja ilman teknologista muutosta g = 0, paitsi että poistoaste nousee väestön kasvunopeuden n ja teknologisen muutoksen nopeuden g summan n+g verran. Tämän seurauksena kultaisessa säännössä pääoman rajatuotos MPK on yhtäsuuri kuin poistoaste plus väestön kasvunopeus n plus teknologisen muutoksen nopeus g: MPK = + n + g

38 Sisäsyntyinen kasvu 1 Tehokkuuden E kera tuotantofunktio on muotoa Y = F(K,EL) BKT tuotetaan vakioskaalatuottoisesti: zy = F(zK,zEL) Oletetaan, että taloudessa tapahtuu teknologian vuotoa (spillover of technological knowledge): yritykset oppivat toisiltaan. Tällöin yhden yrityksen investointi nostaa tehokkuutta E kaikissa yrityksissä Oletetaan, että makrotasolla työn tehokkuus E ja pääoma K kasvavat samaa vauhtia: E/E = K/K.

39 Sisäsyntyinen kasvu 2 Koska tehokkuus E ja pääoma K nyt kasvavat samaa vauhtia, ne pysyvät vakiosuhteessa toisiinsa. Esimerkiksi: E = K. Sijoittamalla tämä tuotantofunktioon saadaan Täten olemme johtaneet AK kasvumallin (AK growth model), missä BKT Y on vakiosuhteessa A pääomaan K.

40 Sisäsyntyinen kasvu 3 Pääoman kasautuminen K on kokonaissäästämisen sy ja pääoman kulumisen K erotus: K = sy - K = (sa - )K Tämä osoittaa, että pääoma K ja BKT Y kasvavat samaa vauhtia: Tämä yleinen kasvunopeus on sitä suurempi, mitä korkeampi säästämisaste s

41 Sisäsyntyinen kasvu 4

42 Kirjallisuutta: Jones, Charles. Introduction to Economic Growth. Norton Mankiw, Gregory. Macroeconomics. 6th Edition. Worth Publishers 2007.

Kasvuteorian perusteita

Kasvuteorian perusteita Tapio Palokangas Helsingin taloustutkimuskeskus (HECER) Helsingin yliopisto HECER, kevät 2015 Contents Mitä on kasvu? 1 Mitä on kasvu? 2 3 4 5 6 Talouskasvun määritelmä Talouskasvu lisää talouden tuotantokapasiteettia

Lisätiedot

Kasvuteorian perusteita. TTS-kurssi, kevät 2010 Ilkka Kiema

Kasvuteorian perusteita. TTS-kurssi, kevät 2010 Ilkka Kiema Kasvuteorian perusteita TTS-kurssi, kevät 2010 Ilkka Kiema Kasvun empiirisiä säännönmukaisuuksia 1 Bruttokansantuotteen kasvulla mitattua talouskasvua koskevia empiirisiä säännönmukaisuuksia (stylized

Lisätiedot

Luentorunko 2: Talouskasvu 1

Luentorunko 2: Talouskasvu 1 Luentorunko 2: Talouskasvu 1 Niku Määttänen, Aalto-yliopisto ja Etla Makrotaloustiede 31C00200, Talvi 2018 Johdanto Talouskasvun mittaaminen Maiden välillä valtavat elintasoerot. Pienelläkin muutoksella

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivastaukset A5-kurssin laskareihin, kevät 009 Harjoitukset (viikko 5) Tehtävä Asia selittyy tulonsiirroilla. Tulonsiirrot B lasketaan mukaan kotitalouksien käytettävissä oleviin tuloihin Y d. Tässä

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 5.6.2014 MALLIVASTAUKSET Jokaisen tehtävän perässä on pistemäärä sekä sivunumero (Matti ohjola, Taloustieteen oppikirja, 2012) josta vastaus löytyy. (1) (a) Suppea raha sisältää

Lisätiedot

7 Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13)

7 Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13) 7 Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13) Tavaroiden ja palvelujen tuotanto tapahtuu yrityksissä Yritykset tuntevat niiden valmistukseen tarvittavan teknologian teknologia on

Lisätiedot

Makrotaloustiede 31C Kevät 2017 Talouskasvu

Makrotaloustiede 31C Kevät 2017 Talouskasvu Makrotaloustiede 31C00200 Kevät 2017 Talouskasvu 1 Monisteen sisältö Mitä kasvuteoria tutkii? Perusasioita tuotantofunktiosta Neoklassinen (Solowin) kasvumalli Kasvutilinpito Empiirinen kasvututkimus 2

Lisätiedot

Kasvuteorian perusteista. Matti Estola 2013

Kasvuteorian perusteista. Matti Estola 2013 Kasvuteorian perusteista Matti Estola 2013 Solowin kasvumallin puutteet Solwin mallista puuttuu mikrotason selitys kasvulle, sillä mikrotasolla yritykset tekevät tuotantopäätökset kannattavuusperiaatteella

Lisätiedot

Makrotaloustiede 31C00200

Makrotaloustiede 31C00200 Makrotaloustiede 31C00200 Kevät 2017 Harjoitus 4 Arttu Kahelin arttu.kahelin@aalto.fi Tehtävä 1 a) Kokonaistarjonta esitetään AS-AD -kehikossa tuotantokuilun ja inflaation välisenä yhteytenä. Tämä saadaan

Lisätiedot

Verotus ja talouskasvu. Essi Eerola (VATT) Tulevaisuuden veropolitiikka -seminaari 25.09.2009

Verotus ja talouskasvu. Essi Eerola (VATT) Tulevaisuuden veropolitiikka -seminaari 25.09.2009 Verotus ja talouskasvu Essi Eerola (VATT) Tulevaisuuden veropolitiikka -seminaari 25.09.2009 Johdantoa (1/2) Talouskasvua mitataan bruttokansantuotteen kasvulla. Pienetkin erot talouden BKT:n kasvuvauhdissa

Lisätiedot

Hyvän vastauksen piirteet

Hyvän vastauksen piirteet Hyvän vastauksen piirteet Hakukohteen nimi: Taloustieteen kandiohjelma Kokeen päivämäärä ja aika: 7.5.2019 kl. 9.00-13.00 1. Määrittele lyhyesti seuraavat käsitteet. (a) Suhteellinen etu (comparative advantage)

Lisätiedot

3d) Yes, they could: net exports are negative when imports exceed exports. Answer: 2182.

3d) Yes, they could: net exports are negative when imports exceed exports. Answer: 2182. . Se talous, jonka kerroin on suurempi, reagoi voimakkaammin eksogeenisiin kysynnän muutoksiin. Investointien, julkisen kysynnän tai nettoviennin muutokset aiheuttavat sitä suuremman muutoksen tasapainotulossa,

Lisätiedot

Osa 15 Talouskasvu ja tuottavuus

Osa 15 Talouskasvu ja tuottavuus Osa 15 Talouskasvu ja tuottavuus 1. Elintason kasvu 2. Kasvun mittaamisesta 3. Elintason osatekijät Suomessa 4. Elintason osatekijät OECD-maissa 5. Työn tuottavuuden kasvutekijät Tämä on pääosin Mankiw

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

Luentorunko 9: Lyhyen aikavälin makrotasapaino, IS-TR-malli

Luentorunko 9: Lyhyen aikavälin makrotasapaino, IS-TR-malli Luentorunko 9: Lyhyen aikavälin makrotasapaino, Niku, Aalto-yliopisto ja Etla Makrotaloustiede 31C00200, Talvi 2018 Luentorunko 9: Lyhyen aikavälin makrotasapaino, Johdanto Kysyntä ja IS-käyrä Lyhyen aikavälin

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) 4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

14 Talouskasvu ja tuottavuus

14 Talouskasvu ja tuottavuus 14 Talouskasvu ja tuottavuus 1. Elintason kasvu 2. Kasvun mittaamisesta 3. Elintason osatekijät Suomessa 4. Elintason osatekijät OECD-maissa 5. Työn tuottavuuden kasvutekijät Tämä on pääosin Mankiw n ja

Lisätiedot

Kappale 1: Makrotaloustiede. KT34 Makroteoria I. Juha Tervala

Kappale 1: Makrotaloustiede. KT34 Makroteoria I. Juha Tervala Kappale 1: Makrotaloustiede KT34 Makroteoria I Juha Tervala Makrotaloustiede Talouden kokonaissuureiden, kuten kansantuotteen, työllisyyden, inflaation ja työttömyysasteen tutkiminen. Taloussanomien taloussanakirja

Lisätiedot

Kuluttaja valitsee erilaisten hyödykekorien välillä. Kuluttajan preferenssijärjestyksen perusoletukset ovat

Kuluttaja valitsee erilaisten hyödykekorien välillä. Kuluttajan preferenssijärjestyksen perusoletukset ovat Kuluttajan valinta KTT Olli Kauppi Kuluttaja valitsee erilaisten hyödykekorien välillä. Kuluttajan preferenssijärjestyksen perusoletukset ovat 1. Täydellisyys: kuluttaja pystyy asettamaan mitkä tahansa

Lisätiedot

3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21)

3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 1. Työn tarjonta Kuluttajan valintateorian perusmalli soveltuu suoraan kotitalouksien työn tarjontapäätöksen

Lisätiedot

8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13)

8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13) 8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13) Tavaroiden ja palvelujen tuotanto tapahtuu yrityksissä Yritykset tuntevat niiden valmistukseen

Lisätiedot

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla

Lisätiedot

Taloudellisen kasvun syyt. Tapio Palokangas syyslukukausi 2013

Taloudellisen kasvun syyt. Tapio Palokangas syyslukukausi 2013 Taloudellisen kasvun syyt Tapio Palokangas syyslukukausi 2013 Taustaa Tämän luentosarjan tarkoituksena on tutkia talouskasvua ilmiönä sekä analysoida sen taustalla olevia tekijöitä Talouskasvu ilmenee

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n.

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n. Harjoitukset 2, vastauksia. Ilmoittakaa virheistä ja epäselvyyksistä! 1. b (kysyntäkäyrä siirtyy vasemmalle) 2. c (kysyntäkäyrä siirtyy oikealle) 3. ei mikään edellisistä; oikea vastaus olisi p 2

Lisätiedot

Harjoitustehtävät 6: mallivastaukset

Harjoitustehtävät 6: mallivastaukset Harjoitustehtävät 6: mallivastaukset Niku Määttänen & Timo Autio Makrotaloustiede 31C00200, talvi 2018 1. Maat X ja Y ovat muuten identtisiä joustavan valuuttakurssin avotalouksia, mutta maan X keskuspankki

Lisätiedot

TU Kansantaloustieteen perusteet Syksy 2016

TU Kansantaloustieteen perusteet Syksy 2016 TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä

Lisätiedot

Makrotaloustiede 31C00200

Makrotaloustiede 31C00200 Makrotaloustiede 31C00200 Kevät 2017 Harjoitus 5 Arttu Kahelin arttu.kahelin@aalto.fi 1. Maan julkisen sektorin budjettialijäämä G-T on 5 % BKT:sta, BKT:n reaalinen kasvu on 5% ja reaalikorko on 3%. a)

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 6.6.013: MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja, 01] sivuihin. (1) (a) igou -verot: Jos markkinoilla

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

Tehtävien ratkaisut

Tehtävien ratkaisut Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta

Lisätiedot

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista

Lisätiedot

Tutkimus- ja kehittämismenojen pääomittaminen kansantalouden tilinpidossa. Ville Haltia

Tutkimus- ja kehittämismenojen pääomittaminen kansantalouden tilinpidossa. Ville Haltia Tutkimus- ja kehittämismenojen pääomittaminen kansantalouden tilinpidossa Ville Haltia 17.9.2013 Sisältö Tausta t&k-menojen pääomittamiselle Yleistä kansantalouden tilinpidosta Pääomittamisen menetelmät

Lisätiedot

Venäjän kehitys. Pekka Sutela Pellervon Päivä 2016 Helsinki

Venäjän kehitys. Pekka Sutela Pellervon Päivä 2016 Helsinki Venäjän kehitys Pekka Sutela Pellervon Päivä 2016 Helsinki 7.4.2016 Pekka Sutela 1 Talous: Ennustajat ovat yksimielisiä lähivuosista Kansantulon supistuminen jatkuu vielä tänä vuonna Supistuminen vähäisempää

Lisätiedot

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus Kulutus Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 13.11.2013 Antti Ripatti (HECER) Kulutus 13.11.2013 1 / 11 Indifferenssikäyrät ja kuluttajan teoria Tarkastellaan edustavaa kotitaloutta.

Lisätiedot

Luku 19 Voiton maksimointi

Luku 19 Voiton maksimointi Kevät 00 Luku 9 Voiton maksimointi Edellisessä luvussa tarkastelimme yrityksen teknologisia rajoitteita ja niiden vaikutusta tuotantoon. Tuotannon syntymistä tuotannontekijöistä katsottiin niin samatuotoskäyrien

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

Kansantalouden kuvioharjoitus

Kansantalouden kuvioharjoitus Kansantalouden kuvioharjoitus Huom: Tämän sarjan tehtävät liittyvät sovellustiivistelmässä annettuihin kansantalouden kuvioharjoituksiin. 1. Kuvioon nro 1 on piirretty BKT:n määrän muutoksia neljännesvuosittain

Lisätiedot

Tänään ja jatkossa. Osa 10. Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13)

Tänään ja jatkossa. Osa 10. Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13) Tänään ja jatkossa Mennään yrityksen päätöksentekoon tarkemmin. Aiemmin yrityksen tuotantopäätösten yhteenveto oli tarjontakäyrä. Tarkastellaan nyt tarkemmin tarjontakäyrän taustalla olevia kustannuksia.

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Harjoitukset 1. Kysynnän ja tarjonnan perusteet (kertausta ja lämmittelyä). 1. Jampan

Lisätiedot

Maailmantalouden trendit

Maailmantalouden trendit Maailmantalouden trendit Maailmantalouden kehitystrendit lyhyellä ja pitkällä aikavälillä ja niiden vaikutukset suomalaiseen metsäteollisuuteen. Christer Lindholm Maailmantalouden trendit 25.05.2011 1

Lisätiedot

talouskasvun lähteenä Matti Pohjola

talouskasvun lähteenä Matti Pohjola Työn tuottavuus talouskasvun lähteenä Matti Pohjola Tuottavuuden määritelmä Panokset: -työ - pääoma Yit Yritys tai kansantalous Tuotos: - tavarat - palvelut Tuottavuus = tuotos/panos - työn tuottavuus

Lisätiedot

Nopein talouskasvun vaihe on ohitettu

Nopein talouskasvun vaihe on ohitettu Meri Obstbaum Suomen Pankki Nopein talouskasvun vaihe on ohitettu Euro ja talous 5/2018 18.12.2018 1 Euro ja talous 5/2018 Pääkirjoitus Ennuste 2018-2021 Kehikot Julkisen talouden arvio Työn tuottavuuden

Lisätiedot

TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset

TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset TU-91.1001 Kansantaloustieteen perusteet Syksy 2017 5. www-harjoitusten mallivastaukset Tehtävä 1: Tuotteen X kysyntäkäyrä on P = 25-2Q ja tarjontakäyrä vastaavasti P = Q + 10. Mikä on markkinatasapinopiste

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan

Lisätiedot

Osa 18 Työmarkkinat ja työttömyys (Mankiw & Taylor, Ch 18 & 28; Taloustieteen oppikirja, luku 10 )

Osa 18 Työmarkkinat ja työttömyys (Mankiw & Taylor, Ch 18 & 28; Taloustieteen oppikirja, luku 10 ) Osa 18 Työmarkkinat ja työttömyys (Mankiw & Taylor, Ch 18 & 28; Taloustieteen oppikirja, luku 10 ) 1. Työn kysyntä 2. Työn tarjonta 3. Työmarkkinoiden tasapaino 4. Tahaton työttömyys 5. Luonnollinen (rakenteellinen)

Lisätiedot

Makrotaloustiede 31C00200

Makrotaloustiede 31C00200 Makrotaloustiede 31C00200 Kevät 2016 Harjoitus 5 1.4.2016 Arttu Kahelin arttu.kahelin@aalto.fi Tehtävä 1 a) Käytetään kaavaa: B t Y t = 1+r g B t 1 Y t 1 + G t T t Y t, g r = 0,02 B 2 Y 2 = 1 + r g B 1

Lisätiedot

Luentorunko 12: Lyhyen ja pitkän aikavälin makrotasapaino, AS

Luentorunko 12: Lyhyen ja pitkän aikavälin makrotasapaino, AS Luentorunko 12: Lyhyen ja pitkän aikavälin makrotasapaino, AS-AD-malli Niku, Aalto-yliopisto ja Etla Makrotaloustiede 31C00200, Talvi 2018 Johdanto IS-TR-IFM: Lyhyen aikavälin makrotasapaino, kiinteät

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

14 Talouskasvu ja tuottavuus

14 Talouskasvu ja tuottavuus 14 Talouskasvu ja tuottavuus 1. Elintason kasvu 2. Kasvun mittaamisesta 3. Elintason osatekijät Suomessa 4. Elintason osatekijät OECD-maissa 5. Työn tuottavuus, tuotantofunktio ja teknologinen kehitys

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

1 Di erentiaaliyhtälöt

1 Di erentiaaliyhtälöt Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y

Lisätiedot

Juha Honkatukia Yksikönjohtaja Valtion taloudellinen tutkimuskeskus 20.3.2013

Juha Honkatukia Yksikönjohtaja Valtion taloudellinen tutkimuskeskus 20.3.2013 Pitkän aikavälin skenaariot millainen kansantalous vuonna 2050? Alustavia tuloksia Juha Honkatukia Yksikönjohtaja Valtion taloudellinen tutkimuskeskus 20.3.2013 VATTAGE-malli Laskennallinen yleisen tasapainon

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin

Lisätiedot

LOW CARBON 2050 millainen kansantalous vuonna 2050? Juha Honkatukia Yksikönjohtaja Valtion taloudellinen tutkimuskeskus

LOW CARBON 2050 millainen kansantalous vuonna 2050? Juha Honkatukia Yksikönjohtaja Valtion taloudellinen tutkimuskeskus LOW CARBON 2050 millainen kansantalous vuonna 2050? Juha Honkatukia Yksikönjohtaja Valtion taloudellinen tutkimuskeskus 15.3.2013 VATTAGE-malli Laskennallinen yleisen tasapainon malli (AGE) Perustuu laajaan

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

Vaikuttaako kokonaiskysyntä tuottavuuteen?

Vaikuttaako kokonaiskysyntä tuottavuuteen? Vaikuttaako kokonaiskysyntä tuottavuuteen? Jussi Ahokas Itä-Suomen yliopisto Sayn laki 210 vuotta -juhlaseminaari Esityksen sisällys Mitä on tuottavuus? Tuottavuuden määritelmä Esimerkkejä tuottavuudesta

Lisätiedot

Luento 11. Työllisyys ja finanssipolitiikka

Luento 11. Työllisyys ja finanssipolitiikka Luento 11 Työllisyys ja finanssipolitiikka Finanssipolitiikka ja suhdannevaihtelut Kokonaiskysynnässä voimakkaita suhdanneluonteisia vaihteluja kotimaisen kysynnän vaihtelujen ja erityisesti investointien

Lisätiedot

MIKROTALOUSTIEDE A31C00100

MIKROTALOUSTIEDE A31C00100 MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi olli.kauppi@aalto.fi Luennon sisältö Tuottajan teoria (kirjan luku 6) Tuotantofunktio Skaalaedut Kustannukset (kirjan luku 7) Eri kustannustyypit Kustannusten

Lisätiedot

I I K UL U UT U T T A T JANTE T O E R O I R A

I I K UL U UT U T T A T JANTE T O E R O I R A II KULUTTAJANTEORIA.. Budjettirajoite * Ihmisten kaikkea toimintaa rajoittavat erilaiset rajoitteet. * Mikrotalouden kurssilla tärkein rajoite on raha. * Kuluttaja maksimoi hyötyään, mutta ei kykene toteuttamaan

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18 Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

3. www-harjoitusten mallivastaukset 2017

3. www-harjoitusten mallivastaukset 2017 TU-91.1001 Kansantaloustieteen perusteet 3. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Reaalitulo perunoina on 0 = 40 20*P, mistä seuraa 2 perunaa. Reaalitulo makkaroina on M = 40-0*P = 40 makkaraa.

Lisätiedot

Amerikan uusi asento:

Amerikan uusi asento: Amerikan uusi asento: Voisivatko pääomamarkkinajäykkyydet selittää tuottavuuden heikkoa kasvua Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 15.2.2017 MTK Pääoman kohdentuminen ja pitkä lama

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 4

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 4 A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 4 1. Jukan yritys tarjoaa pikaruoka-annosten kotiinkuljetuspalvelua. Asiakkaat tekevät tilauksensa Jukan verkkosivuilla. Jukka ostaa tilatut annokset

Lisätiedot

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero Y56 Kevät 2010 1 Y56 Laskuharjoitukset 4 Palautus viim. ti 30.3. klo 12-14 (luennolla!) Opiskelijan nimi Opiskelijanumero Harjoitus 1. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Hakukohteen nimi: Taloustieteen kandiohjelma

Hakukohteen nimi: Taloustieteen kandiohjelma Teknisiä merkintöjä: TALOUS Sivu: 1 (11) Nimi: Hakukohteen nimi: Taloustieteen kandiohjelma Kokeen päivämäärä ja aika: 7.5.2019 klo 9.00-13.00 Kirjoita henkilö- ja yhteystietosi tekstaamalla. Kirjoita

Lisätiedot

JOHNNY ÅKERHOLM

JOHNNY ÅKERHOLM JOHNNY ÅKERHOLM 16.1.2018 Taantumasta kasvuun uudistuksia tarvitaan Suomen talouden elpyminen jatkui kansainvälisen talouden vanavedessä vuonna 2017, ja bruttokansantuote kasvoi runsaat 3 prosenttia. Kasvua

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

KEMS448 Fysikaalisen kemian syventävät harjoitustyöt

KEMS448 Fysikaalisen kemian syventävät harjoitustyöt KEMS448 Fysikaalisen kemian syventävät harjoitustyöt Jakaantumislaki 1 Teoriaa 1.1 Jakaantumiskerroin ja assosioituminen Kaksi toisiinsa sekoittumatonta nestettä ovat rajapintansa välityksellä kosketuksissa

Lisätiedot

Talouden näkymät

Talouden näkymät Juha Kilponen Suomen Pankki Talouden näkymät 2015-2017 10.6.2015 Julkinen 1 Suomi jää yhä kauemmas muun euroalueen kasvusta Talouskasvua tukee viennin asteittainen piristyminen ja kevyt rahapolitiikka

Lisätiedot

5 Markkinat, tehokkuus ja hyvinvointi

5 Markkinat, tehokkuus ja hyvinvointi 5 Markkinat, tehokkuus ja hyvinvointi Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja kuluttaa sellaisen määrän

Lisätiedot

Talouden näkymät Euro & talous erikoisnumero 1/2010

Talouden näkymät Euro & talous erikoisnumero 1/2010 Talouden näkymät 2010-2012 Euro & talous erikoisnumero 1/2010 Pääjohtaja Erkki Liikanen 1 BKT ja kysyntäerät Tavaroiden ja palveluiden vienti Kiinteät bruttoinvestoinnit Yksityinen kulutus Julkinen kulutus

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 11

Mat Dynaaminen optimointi, mallivastaukset, kierros 11 Mat-.148 Dynaaminen optimointi, mallivastaukset, kierros 11 1. Olkoon tehtaan tuotanto x(t) ajan hetkellä t ja investoitava osuus tuotannosta u(t). Tehdasta kuvaa systeemiyhtälö ẋ(t) = u(t)x(t) x() = c

Lisätiedot

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7)

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) 4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja

Lisätiedot

Aasian taloudellinen nousu

Aasian taloudellinen nousu Aasian taloudellinen nousu Iikka Korhonen Suomen Pankki 27.4.2011 Maailmantalouden painopiste siirtyy itään Japanin ja myöhemmin Etelä-Korean taloudellinen nousu antoi ensisysäyksen modernin Aasian taloudelliselle

Lisätiedot

15 Talouskasvun teoriaa ja empiriaa

15 Talouskasvun teoriaa ja empiriaa 15 Talouskasvun teoriaa ja empiriaa 1. Tuotantofunktio 2. Tuottavuuserojen lähteet 3. Elintason kasvun lähteet 4. Investoinnit ja säästäminen 5. Yksinkertainen kasvumalli 6. Teknologinen kehitys 7. Suomi

Lisätiedot

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Taloustieteen perusteet 31A00110 18.04.2016 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Yht Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi

Lisätiedot

Taloustieteen perusteet 31A Ratkaisut 3, viikko 4

Taloustieteen perusteet 31A Ratkaisut 3, viikko 4 Taloustieteen perusteet 31A00110 2018 Ratkaisut 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +

Lisätiedot

Noususuhdanne vahvistuu tasapainoisemman kasvun edellytykset parantuneet

Noususuhdanne vahvistuu tasapainoisemman kasvun edellytykset parantuneet Juha Kilponen Suomen Pankki Noususuhdanne vahvistuu tasapainoisemman kasvun edellytykset parantuneet 18.12.2017 18.12.2017 Julkinen 1 Talouden yleiskuva Kasvu laajentunut vientiin, ja tuottavuuden kasvu

Lisätiedot

origo III neljännes D

origo III neljännes D Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä

Lisätiedot

Vastaukset. 1. kaksi. 3. Pisteet eivät ole samalla suoralla. d) x y = x e) 5. a) x y = 2x

Vastaukset. 1. kaksi. 3. Pisteet eivät ole samalla suoralla. d) x y = x e) 5. a) x y = 2x Vastaukset. kaksi. y - - x - - 3. Pisteet eivät ole samalla suoralla. d) x y = x 0 0 3 3 e) 5. a) b) x y = x 0 0 3 6 98 6. a) b) x y = x + 0 3 5 6 7 7. a) b) x y = x - 3 0-3 - 3 3 8. 99 a) y = b) y = -

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Työ muuttuu muuttuvatko pelisäännöt ja asenteet? Timo Lindholm / SITRA

Työ muuttuu muuttuvatko pelisäännöt ja asenteet? Timo Lindholm / SITRA Työ muuttuu muuttuvatko pelisäännöt ja asenteet? Timo Lindholm / SITRA 7.9.2016 Kansan, maan ja työn vuotuisen tuoton arvoa ei voida lisätä millään muulla keinolla kuin lisäämällä joko sen tuottavien työläisten

Lisätiedot

Uusklassisessa yrityksen teoriassa ei kuitenkaan käsitellä kysymyksiä kuten

Uusklassisessa yrityksen teoriassa ei kuitenkaan käsitellä kysymyksiä kuten Kevät 00 YRITYKSEN TEORIA Seuraavissa luvuissa tarkastellaan yrityksen teoriaa eli yrityksen käyttäytymistä. Yrityksen teoria on pitkään ollut toinen mikroteorian kulmakivi kuluttajateorian ohella. Uusklassisessa

Lisätiedot

* Hyödyn maksimointi on ihmisten toimintaa ja valintoja ohjaava periaate.

* Hyödyn maksimointi on ihmisten toimintaa ja valintoja ohjaava periaate. KANSANTALOUSTIETEEN PERUSTEET Yrityksen teoria (Economics luvut 13-14) 14) KTT Petri Kuosmanen Optimointiperiaate a) Yksilöt pyrkivät maksimoimaan hyötynsä. * Hyödyn maksimointi on ihmisten toimintaa ja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

k-kantaisen eksponenttifunktion ominaisuuksia

k-kantaisen eksponenttifunktion ominaisuuksia 3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot