Yleinen paikallinen vakautuva synkronointialgoritmi
|
|
- Riikka Heikkilä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Yleinen paikallinen vakautuva synkronointialgoritmi Panu Luosto 23. marraskuuta putki 1 2 α α+1 α+2 α+3 0 K 1 kehä K 2 K 3 K 4
2 Lähdeartikkeli Boulinier, C., Petit, F. ja Villain, V., When graph theory helps self-stabilization. PODC 04: Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing, New York, NY, USA, 2004, ACM Press, sivut
3 Sisältö Määritelmät Algoritmi Lukkiutumattomuus ja parametri K Vakautuvuus ja parametri α
4 Hajautettu järjestelmä äärellinen suuntaamaton yhtenäinen verkko G = (V, E) jokaisella solmulla p kellorekisteri r p solmun p naapurien joukko on N p naapurit näkevät toistensa muuttujat, ja laillisuusehdot ovat paikallisia ohjelma kokoelma ilmaisuja ehto toimenpide suoritusvuorot jakaa epäreilu demoni
5 Hajautettu järjestelmä äärellinen suuntaamaton yhtenäinen verkko G = (V, E) jokaisella solmulla p kellorekisteri r p solmun p naapurien joukko on N p naapurit näkevät toistensa muuttujat, ja laillisuusehdot ovat paikallisia ohjelma kokoelma ilmaisuja ehto toimenpide suoritusvuorot jakaa epäreilu demoni
6 Äärellinen askeltava järjestelmä 3 4 putki 1 2 α α+1 α+2 α+3 0 K 1 kehä K 2 K 3 K 4
7 Äärellinen askeltava järjestelmä kellorekisterin arvot joukossa X = {α, α + 1,..., 0,..., K 2, K 1} putki ϕ = {α, α + 1,..., 1, 0} putki ϕ = putki ϕ \ {0} kehä ϕ = {0, 1,..., K 2, K 1}
8 Äärellinen askeltava järjestelmä kellorekisterin arvoa kasvattaa funktio ϕ : X X { x + 1, jos x < K 1 ϕ(x) = 0, jos x = K putki 1 2 α α+1 α+2 α+3 0 K 1 kehä K 2 K 3 K 4
9 Äärellinen askeltava järjestelmä paikallinen vähennysoperaattori 1, jos a b + 1 (mod K) b l a = 0, jos a = b 1, jos b a + 1 (mod K) 3 4 putki 1 2 α α+1 α+2 α+3 0 K 1 kehä K 2 K 3 K 4
10 Verkkoteoriaa syklikanta (Kirchhoff 1847) lyhin syklikanta jänteetön sykli eli reikä
11 Prosessin p ohjelma Totuusarvoiset makrot ehto(p, q) prosessien p ja q synkronointiehto kehällä(p, q) r p kehä ϕ r q kehä ϕ askelehto(p, q) kehällä(p, q) ((ϕ(r p ) = r q ) ((r p = r q ) ehto(p, q))) pariehto(p, q) askelehto(p, q) askelehto(q, p) naapurustoehto(p) q N p : pariehto(p, q) kehäaskel(p) q N p : askelehto(p, q) palautusaskel(p) naapurustoehto(p) (r p / putki ϕ ) putkiaskel(p) r p putki ϕ ( q N p : (r q putki ϕ ) (r p r q )) Ohjelma kehäaskel(p) tee jotakin; r p := ϕ(r p ) palautusaskel(p) r p := α putkiaskel(p) r p := ϕ(r p )
12 Välttämättömät lisäoletukset Jos määriteltäisiin esimerkiksi ehto(p, q) identtisesti epätodeksi, algoritmissa ei olisi mitään mieltä. O 1 : (askelehto(p, q) askelehto (Ψ(p), Ψ(q))) (askelehto(p, q) pariehto(ψ(p), q) O 2 : (r p = r q = 0) pariehto(p, q)
13 Tärkeitä käsitteitä palautusvaiheessa oleva solmu algoritmin tarkastelussa keskeinen käsite: kehälle vakiintunut p V : naapurustoehto(p) kehälle vakiintuneessa järjestelmässä mikään prosessi ei ole palautusvaiheessa
14 Muutama esimerkki asynkroninen unisono: ehto(p, q) aina tosi geneerinen algoritmi: ehto(p, q) v p v q keskinäinen poissulkeminen: ehto(p, q) id p id q ryhmien keskinäinen poissulkeminen (naapuriprosessit eivät saa käyttää yhtäaikaisesti eri resursseja): ehto(p, q) resurssi p = resurssi q id p id q
15 Miten valitaan parametrit α ja K? jos parametrit valitaan väärin, voi käydä huonosti liian pieni K:n arvo voi johtaa lukkiutuneeseen tilanteeseen (alla K = 4)
16 Miten valitaan parametri α ja K? jos α on itseisarvoltaan liian pieni, toipuminen ei ehkä pääty koskaan (alla α = 1) ¹½ ½ ¹½ ½ ¹½ ¹½ ¼ ¹½ ¼ ¼ ¼ ½ ¼ ½ ¼ ½
17 Viiveen määritelmä oletuksena on, että järjestelmä on kehälle vakiintunut siis naapurisolmujen kellorekisterien arvot poikkeavat toisistaan enintään yhdellä pykälällä suuntaan tai toiseen polun µ = p 0 p 1... p k viive µ määritellään: k 1 ( µ = rpi+1 ) l r pi i=0
18 Esimerkki viiveen laskemisesta yllä pitkän syklin viive on kiertosuunnasta riippuen 4 tai 4 ja K = 4
19 Viiveen ominaisuuksia µ = µ, missä µ ja µ ovat toistensa käänteispolkuja viiveen lineaarisuus: µ1 µ 2 = µ1 + µ2 polulla µ = p 0 p 1... p k pätee r p0 + µ r pk (mod K) syklissä µ = p 0 p 1... p k p 0 siis r p0 + µ r p0 (mod K) µ 0 (mod K) on muistettava, että näissä tarkasteluissa järjestelmä on kehälle vakiintunut
20 Kohti johtopäätöksiä viive on rajoitettu viive on 0 jokaisessa syklissä nyt kahden prosessin välinen viive ei riipu polun valinnasta mielivaltaisen syklin viive on muuttumaton kehälle vakiintuneessa järjestelmässä erityisesti jos viive on jossakin vaiheessa rajoitettu, se myös pysyy rajoitettuna voidaan helposti todeta: jos viive on rajoitettu, kehälle vakiintunut järjestelmä ei voi lukkiutua
21 Kohti johtopäätöksiä viive on rajoitettu viive on 0 jokaisessa syklissä nyt kahden prosessin välinen viive ei riipu polun valinnasta mielivaltaisen syklin viive on muuttumaton kehälle vakiintuneessa järjestelmässä erityisesti jos viive on jossakin vaiheessa rajoitettu, se myös pysyy rajoitettuna voidaan helposti todeta: jos viive on rajoitettu, kehälle vakiintunut järjestelmä ei voi lukkiutua
22 Syklikantaa tarvitaan nyt lausutaan syklin viive syklikannan avulla: ( km ) (C k ) = a ki C ki = i=1 k m i=1 a ki (C ki ) viive on rajoitettu järjestelmässä täsmälleen silloin, kun viive on 0 kaikissa verkon mielivaltaisen syklikannan sykleissä tarkastellaan seuraavaksi sitä syklikantaa, jonka pisin sykli on mahdollisimman lyhyt
23 Lukkiutumattomuustulos oletetaan, että verkossa on ainakin yksi sykli olkoon verkon minimaalisen syklikannan pisimmän syklin pituus C G kuuluukoon sykli µ minimaaliseen syklikantaan järjestelmä on kehälle vakiintunut, joten kahden naapurisolmun välisen viiveen itseisarvo on korkeintaan 1 siis µ C G muistetaan, että syklissä µ 0 (mod K) jos valitaan K > C G, pätee µ = 0
24 Lukkiutumattomuustulos oletetaan, että verkossa on ainakin yksi sykli olkoon verkon minimaalisen syklikannan pisimmän syklin pituus C G kuuluukoon sykli µ minimaaliseen syklikantaan järjestelmä on kehälle vakiintunut, joten kahden naapurisolmun välisen viiveen itseisarvo on korkeintaan 1 siis µ C G muistetaan, että syklissä µ 0 (mod K) jos valitaan K > C G, pätee µ = 0
25 Lukkiutumattomuustulos oletetaan, että verkossa on ainakin yksi sykli olkoon verkon minimaalisen syklikannan pisimmän syklin pituus C G kuuluukoon sykli µ minimaaliseen syklikantaan järjestelmä on kehälle vakiintunut, joten kahden naapurisolmun välisen viiveen itseisarvo on korkeintaan 1 siis µ C G muistetaan, että syklissä µ 0 (mod K) jos valitaan K > C G, pätee µ = 0
26 Lukkiutumattomuustulos oletetaan, että verkossa on ainakin yksi sykli olkoon verkon minimaalisen syklikannan pisimmän syklin pituus C G kuuluukoon sykli µ minimaaliseen syklikantaan järjestelmä on kehälle vakiintunut, joten kahden naapurisolmun välisen viiveen itseisarvo on korkeintaan 1 siis µ C G muistetaan, että syklissä µ 0 (mod K) jos valitaan K > C G, pätee µ = 0
27 Lukkiutumattomuustulos oletetaan, että verkossa on ainakin yksi sykli olkoon verkon minimaalisen syklikannan pisimmän syklin pituus C G kuuluukoon sykli µ minimaaliseen syklikantaan järjestelmä on kehälle vakiintunut, joten kahden naapurisolmun välisen viiveen itseisarvo on korkeintaan 1 siis µ C G muistetaan, että syklissä µ 0 (mod K) jos valitaan K > C G, pätee µ = 0
28 Lukkiutumattomuustulos oletetaan, että verkossa on ainakin yksi sykli olkoon verkon minimaalisen syklikannan pisimmän syklin pituus C G kuuluukoon sykli µ minimaaliseen syklikantaan järjestelmä on kehälle vakiintunut, joten kahden naapurisolmun välisen viiveen itseisarvo on korkeintaan 1 siis µ C G muistetaan, että syklissä µ 0 (mod K) jos valitaan K > C G, pätee µ = 0
29 Lukkiutumattomuustulos oletetaan, että verkossa on ainakin yksi sykli olkoon verkon minimaalisen syklikannan pisimmän syklin pituus C G kuuluukoon sykli µ minimaaliseen syklikantaan järjestelmä on kehälle vakiintunut, joten kahden naapurisolmun välisen viiveen itseisarvo on korkeintaan 1 siis µ C G muistetaan, että syklissä µ 0 (mod K) jos valitaan K > C G, pätee µ = 0
30 Mitä äsken näytettiinkään? Jos valitaan K > C G, minimaalisen syklikannan kaikkien syklien viiveet ovat 0 viive on 0 verkon kaikissa sykleissä koska viive on rajoitettu, järjestelmä ei voi lukkiutua Parametrin K arvo määräytyy siis ainoastaan verkon minimaalisen syklikannan pisimmän syklin mukaan. 3 4 putki 1 2 α α+1 α+2 α+3 0 K 1 kehä K 2 K 3 K 4
31 Miten tästä eteenpäin? kun valitaan riittävän iso K, kehälle vakiintunut järjestelmä ei voi lukkiintua itse asiassa on helppo näyttää, että lukkiutunut järjestelmä on aina kehälle vakiintunut! tavoitteena on näyttää, että palautuksia ei olla äärettömän monta raapaistaan pintaa
32 Miten tästä eteenpäin? kun valitaan riittävän iso K, kehälle vakiintunut järjestelmä ei voi lukkiintua itse asiassa on helppo näyttää, että lukkiutunut järjestelmä on aina kehälle vakiintunut! tavoitteena on näyttää, että palautuksia ei olla äärettömän monta raapaistaan pintaa
33 Palautusverkko palautusverkon solmu on pari (p, t) solmu p palautetaan ajanhetkellä t verkon särmä kuvaa palautuksen etenemistä järjestelmää kuvaavassa verkossa palautusverkko on suunnattu ja syklitön jos palautusverkko on äärellinen, algoritmi on vakautuva kehälle vakiintuneisuuden suhteen
34 Parametrin α valitseminen nähtiin, että itseisarvoltaan liian pieni α johtaa ongelmiin puumaiset verkot nytkin ongelmattomia ratkaiseva asia on nyt verkon pisimmän reiän eli jänteettömän syklin pituus T G valitsemalla α T G 2 algoritmi on vakautuva
35 Lopuksi äärellinen askeltava järjestelmä K:n täytyy olla suurempi kuin minimaalisen syklikannan pisimmän syklin pituus α:n itseisarvon täytyy vähintään yhtä suuri kuin verkon pisimmän reiän pituus putki 1 2 α α+1 α+2 α+3 0 K 1 kehä K 2 K 3 K 4
Yleinen vakautuva paikallinen synkronointialgoritmi
hyväksymispäivä arvosana arvostelija Yleinen vakautuva paikallinen synkronointialgoritmi Panu Luosto Helsinki 29.10.2007 Seminaarikirjoitelma HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö
Itsestabilointi: perusmääritelmiä ja klassisia tuloksia
Itsestabilointi: perusmääritelmiä ja klassisia tuloksia Jukka Suomela Hajautettujen algoritmien seminaari 12.10.2007 Hajautetut järjestelmät Ei enää voida lähteä oletuksesta, että kaikki toimii ja mikään
Tehtävä 4 : 2. b a+1 (mod 3)
Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari
Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on
Algoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
Hajautetut algoritmit. seminaari syksyllä 2007 vastuuhenkilö Jyrki Kivinen toinen vetäjä Timo Karvi
58307301 Hajautetut algoritmit seminaari syksyllä 2007 vastuuhenkilö Jyrki Kivinen toinen vetäjä Timo Karvi 1 Seminaarin suorittaminen kirjoitelma (10-15 sivua) 50% esitelmä (n. 45 min) 40% muu aktiivisuus
T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka )
T-79.3001 Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka 2.1 3.4) 5.2. 9.2. 2009 Ratkaisuja demotehtäviin Tehtävä 2.1 Merkitään lausetta φ:llä, ja valitaan atomilauseiden
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan
Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto
Tehtävä 3 : 1 Olkoon G mielivaltainen epätyhjä verkko. Erityisesti siltä ei vaadita äärellisyyttä. Polut ovat verkon G koosta riippumatta määritelmän mukaan aina äärellisiä, joten kahden solmun välisen
Konsensusongelma hajautetuissa järjestelmissä
Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki Helsinki 29.10.2007 Seminaarityö HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö i 1 Johdanto 1 2 Konsensusongelma 2 2.1 Ratkeamattomuustodistus........................
Johdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste
Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä.
Tehtävä 6 : 1 Oletetaan ensin joukon X olevan sisältymisen suhteen minimaalinen solmut a ja b toisistaan erotteleva joukon V(G)\{a, b} osajoukko. Olkoon x joukon X alkio. Oletuksen nojalla joukko X\{x}
Stabilointi. Marja Hassinen. p.1/48
Stabilointi Marja Hassinen marja.hassinen@cs.helsinki.fi p.1/48 Kertausta ja käsitteitä Sisältö Stabilointi Resynkroninen stabilointi Yleinen stabilointi Tarkkailu Alustus Kysymyksiä / kommentteja saa
Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä
Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko
T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )
T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 opetusmoniste, lauselogiikka 2.1-3.5) 21 24.9.2004 1. Määrittele lauselogiikan konnektiivit a) aina epätoden lauseen ja implikaation
Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,
Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.
Tehtävä 8 : 1. Tehtävä 8 : 2
Tehtävä 8 : 1 Merkitään kirjaimella G tarkasteltavaa Petersenin verkkoa. Olkoon A joukon V(G) niiden solmujen joukko, joita vastaavat solmut sijaitsevat tehtäväpaperin kuvassa ulkokehällä. Joukon A jokaisella
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.
Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman
Shorin algoritmin matematiikkaa Edvard Fagerholm
Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua
Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna
Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna. q 0 x solmuina laskennan mahdolliset tilanteet juurena alkutilanne lehtinä tilanteet joista ei siirtymää,
Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari
Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä
b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan
Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla
Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea.
Roolit Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 25.3.2011 J. Kleinberg kehitti -algoritmin (Hypertext Induced Topic Search) hakukoneen osaksi. n taustalla
Tehtävä 5 : 1. Tehtävä 5 : 2
Tehtävä 5 : 1 Merkitään kirjaimella H kuvan punaisten solmujen virittämää verkon G yhtenäistä aliverkkoa, jossa on yhteensä kolme särmää. Aliverkosta H voidaan kahdella tavalla valita kahden solmun joukko
Itsestabiloituva johtajan valinta vakiotilassa
Itsestabiloituva johtajan valinta vakiotilassa Jouni Siren Helsinki 29.10.2007 Seminaarikirjoitelma HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos 1 1 Johdanto Johtajan valinta (engl. leader election)
Verkon värittämistä hajautetuilla algoritmeilla
Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)
Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria
Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:
Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Skedulointi, kuormituksen tasaus, robotin navigaatio
Skedulointi, kuormituksen tasaus, robotin navigaatio Esitelmä algoritmiikan tutkimusseminaarissa 17.2.2003 Kimmo Palin Tietojenkäsittelytieteen laitos Helsingin Yliopisto Skedulointi, kuormituksen tasaus,
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
Algoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
Johdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 126 Luku 3 Puut 3.1 Puu 3.2 Virittävä puu 3.3 Virittävän puun konstruointi 3.4 Minimaalinen virittävä puu
Positiivitermisten sarjojen suppeneminen
Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee
k S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Malliratkaisut Demot
Malliratkaisut Demot 1 12.3.2018 Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 297 4 2 4 163 3 454 6 179 2 136 2 169 2 390 4 3 436 7 5 Kuva 1: Tehtävän 1
6.4. Järjestyssuhteet
6.4. Järjestyssuhteet Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä). Suhde R joukossa
Tehtävä 10 : 1. Tehtävä 10 : 2
Tehtävä 0 : Kuvassa Etelä-Amerikan valtioita vastaavat solmut on sijoitettu toisiinsa nähden niiden pääkaupunkien keskinäistä sijaintia vastaavalla tavalla. Kuvioon on joukon {0,, 2, 3 alkioilla merkitty
Harjoitus 1 (20.3.2014)
Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)
58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta
(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
Äärellisten mallien teoria
Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé
811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit
811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi
Lien ryhmät D 380 klo Ratkaisut 6+6=12
JYVÄSKYLÄN YLIOPISO MAEMAIIKAN JA ILASOIEEEN LAIOS Lien ryhmät 22.5.2012 D 380 klo. 10-12 Ratkaisut 6+6=12 1. Käytä ehtoa g = {X M n n exp(tx) kaikille t R} ja tarvittaessa tietoa et exp A = exp r A toistaksesi
Algoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )
T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely)
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Riku Hyytiäinen 23.02.2015 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan.
5. Verkkoalgoritmeja Eräs keskeinen algoritmien suunnittelutekniikka on Palauta ongelma johonkin tunnettuun verkko-ongelmaan. Palauttaminen edellyttää usein ongelman ja algoritmin pientä modifioimista,
a b c d
1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on
Primitiiviset juuret: teoriaa ja sovelluksia
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Outi Sutinen Primitiiviset juuret: teoriaa ja sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,
Puiden karakterisointi
Puiden karakterisointi LuK-tutkielma Airta Ella 2502661 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2018 Sisältö Johdanto 2 1 Johdatus verkkoteoriaan 3 1.1 Verkko käsitteenä.........................
Itsestabilointi: perusmääritelmiä ja klassisia tuloksia
Itsestabilointi: perusmääritelmiä ja klassisia tuloksia Jukka Suomela Helsinki 8.10.2007 seminaarikirjoitelma HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos 1 Johdanto 1 Yhdessä tietokoneessa toimivaa
14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut
JYVÄSKYLÄN YLIOPISTO 14. Luennon sisältö Kuljetustehtävä esimerkki Verkkoteoria ja optimointi verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut kevät 2012 TIEA382 Lineaarinen ja diskreetti
Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10
Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.
j n j a b a c a d b c c d m j b a c a d a c b d c c j
TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-38.115 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 12 29.2.2008 D12/1 Tarkastellaan verkkoa, jossa on solmua ja linkkiä.
58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe ratkaisuja (Jyrki Kivinen)
58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe 12.9.2018 ratkaisuja (Jyrki Kivinen) 1. [10 pistettä] Iso-O-merkintä. (a) Pitääkö paikkansa, että n 3 + 5 = O(n 3 )? Ratkaisu: Pitää paikkansa.
3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla
Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
4.3. Matemaattinen induktio
4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta
Harjoitus 1 (17.3.2015)
Harjoitus 1 (17.3.2015) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Helsinki 4 = Kuopio 5 = Joensuu. a) Tehtävänä on ratkaista Bellman
{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
Yhtenäisyydestä. Johdanto. Lähipisteavaruus. Tuomas Korppi
Solmu 2/2012 1 Yhtenäisyydestä Tuomas Korppi Johdanto Tarkastellaan kuvassa 1 näkyviä verkkoa 1 ja R 2 :n (eli tason) osajoukkoa. Kuvan 2 verkko voidaan jakaa kolmeen osaan niin, että osien välillä ei
3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
5.6 Yhdistetty kuvaus
5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty
Inversio-ongelmien laskennallinen peruskurssi Luento 7 8
Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan
Algoritmit 1. Luento 13 Ma Timo Männikkö
Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Investointimahdollisuudet ja niiden ajoitus
Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen
Äärellisten mallien teoria
Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen
Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio
Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä
v 8 v 9 v 5 C v 3 v 4
Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi
Analyysin peruslause
LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta
=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin
FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)
Tilastollinen päättömyys, kevät 2017 Harjoitus 6B
Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen
3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.
Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17
Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat
14. Juurikunnat Määritelmä ja olemassaolo.
14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.
Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo
0. 10. 017 a b c d 1. + +. + +. + + 4. + + + 5. + 6. + P1. Lehtipuiden lukumäärä olkoon aluksi n, jolloin havupuiden määrä on 1,4n. Hakkuiden jälkeen lehtipuiden määrä putoaa lukuun n 0,1n = 0,88n ja havupuiden
Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.
Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.
Algoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
Insinöörimatematiikka A
Insinöörimatematiikka A Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2018 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 3 1 of 23 Kertausta Määritelmä Predikaattilogiikan
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan