Testit laatueroasteikollisille muuttujille

Koko: px
Aloita esitys sivulta:

Download "Testit laatueroasteikollisille muuttujille"

Transkriptio

1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1

2 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten muuttujien testit Testi suhteelliselle osuudelle Suhteellisten osuuksien vertailutesti TKK (c) Ilkka Mellin (2007) 2

3 Laatueroasteikollisten muuttujien testit Testit laatueroasteikollisille muuttujille Tarkastelemme seuraavia testejä laatueroasteikollisille muuttujille: Testi suhteelliselle osuudelle Suhteellisten osuuksien vertailutesti On syytä huomata, että testejä saa ja on usein myös järkevää käyttää järjestys-, välimatka-ja suhdeasteikollisille muuttujille. Mitta-asteikot: ks. lukua Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2007) 3

4 Laatueroasteikollisten muuttujien testit Testit laatueroasteikollisille muuttujille: Huomautuksia Testit ovat parametrisia testejä, joissa testauksen kohteena on Bernoulli-jakauman odotusarvoparametri. Testi suhteelliselle osuudelle on yhden otoksen testi. Suhteellisten osuuksien vertailutesti on kahden otoksen testi. TKK (c) Ilkka Mellin (2007) 4

5 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit >> Testi suhteelliselle osuudelle Suhteellisten osuuksien vertailutesti TKK (c) Ilkka Mellin (2007) 5

6 Testi suhteelliselle osuudelle Testausasetelma 1/3 Olkoon A perusjoukon S tapahtuma ja olkoot Pr(A) = p Pr(A c ) = 1 p = q Määritellään satunnaismuuttuja X: 1, jos A sattuu X = 0, jos A ei satu Tällöin X ~ Bernoulli(p) ja Pr( X = 1) = p Pr( X = 0) = 1 p = q TKK (c) Ilkka Mellin (2007) 6

7 Testi suhteelliselle osuudelle Testausasetelma 2/3 Oletetaan, että tapahtuma A on muotoa A = Perusjoukon alkiolla on ominaisuus P Tällöin p = Pr(A) on todennäköisyys poimia perusjoukosta S satunnaisesti alkio, jolla on ominaisuus P. Jos perusjoukko S on äärellinen, niin todennäköisyys p kuvaa niiden perusjoukon S alkioiden suhteellista osuutta, joilla on ominaisuus P. TKK (c) Ilkka Mellin (2007) 7

8 Testi suhteelliselle osuudelle Testausasetelma 3/3 Olkoon X 1, X 2,, X n yksinkertainen satunnaisotos perusjoukosta S, joka noudattaa Bernoulli-jakaumaa Bernoulli(p) Asetetaan Bernoulli-jakauman parametrille p nollahypoteesi H 0 : p = p0 Testausongelma: Ovatko havainnot sopusoinnussa nollahypoteesin H 0 kanssa? Ratkaisuna on testi suhteelliselle osuudelle. TKK (c) Ilkka Mellin (2007) 8

9 Testi suhteelliselle osuudelle Hypoteesit Yleinen hypoteesi H : (1) Havainnot Xi ~ Bernoulli( p), i = 1,2,, n, jossa p = Pr(A), A S (2) Havainnot X 1, X 2,, X n ovat riippumattomia Nollahypoteesi H 0 : H 0 : p = p0 Vaihtoehtoinen hypoteesi H 1 : H: 1 p> p0 1-suuntaiset vaihtoehtoiset hypoteesit H: 1 p< p0 H : p p 2-suuntainen vaihtoehtoinen hypoteesi 1 0 TKK (c) Ilkka Mellin (2007) 9

10 Testi suhteelliselle osuudelle Parametrien estimointi Olkoon f tapahtuman A frekvenssi siinä n-kertaisessa toistokokeessa, jota riippumattomien havaintojen poimiminen Bernoulli-jakaumasta merkitsee. Tällöin tapahtuman A suhteellinen frekvenssi eli osuus pˆ = f / n on harhaton estimaattori Bernoulli-jakauman parametrille E(X i ) = p, i = 1, 2,, n Huomaa, että frekvenssi f noudattaa binomijakaumaa parametrein n ja p: n f = Xi ~Bin( n, p) i= 1 TKK (c) Ilkka Mellin (2007) 10

11 Testi suhteelliselle osuudelle Testisuure ja sen jakauma Määritellään testisuure pˆ p0 z = p0(1 p0) / n Jos nollahypoteesi H 0 : p = p0 pätee, niin testisuure z noudattaa suurissa otoksissa approksimatiivisesti standardoitua normaalijakaumaa: z a N(0,1) Approksimaatio on tavallisesti riittävän hyvä, jos npˆ 10 ja n(1 pˆ) 10 TKK (c) Ilkka Mellin (2007) 11

12 Testi suhteelliselle osuudelle Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu Oletetaan, että testin yleinen hypoteesi H ja nollahypoteesi H 0 pätevät: X 1, X 2,, X n X Bernoulli( p ), i = 1,2,, n i 0 Tällöin (ks. monisteen Todennäköisyyslaskenta lukua Stokastiikan konvergenssikäsitteet ja raja-arvolauseet sekä lukuja Otokset ja otosjakaumat ja Väliestimointi): n 1 f p0(1 p0) pˆ = Xi = a N p0, n i= 1 n n jolloin pˆ p0 z = a N(0,1) p (1 p ) / n 0 0 TKK (c) Ilkka Mellin (2007) 12

13 Testi suhteelliselle osuudelle Testi suhteelliselle osuudelle: Testisuure z mittaa tilastollista etäisyyttä Testisuure pˆ p0 z = p (1 p ) / n 0 0 mittaa parametrin p estimaatin ˆp ja nollahypoteesin H 0 : p = p0kiinnittämän parametrin p arvon p 0 tilastollista etäisyyttä. Mittayksikkönä on erotuksen ˆp p 0 standardipoikkeaman p(1 p) n estimaattori, joka on määrätty olettaen, että nollahypoteesi H 0 pätee. TKK (c) Ilkka Mellin (2007) 13

14 Testi suhteelliselle osuudelle Testi Testisuureen pˆ p0 z = p (1 p ) / n 0 0 normaaliarvo = 0, koska nollahypoteesin H 0 pätiessä E(z) = 0 Siten itseisarvoltaan suuret testisuureen z arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. Hylkäysalueen valinta ja p-arvon määrääminen: ks. lukua Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 14

15 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle osuudelle >> Suhteellisten osuuksien vertailutesti TKK (c) Ilkka Mellin (2007) 15

16 Suhteellisten osuuksien vertailutesti Testausasetelma 1/4 Olkoon A perusjoukon S k, k = 1, 2 tapahtuma ja olkoot Pr(A) = p k Pr(A c ) = 1 p k = q k Määritellään satunnaismuuttujat X k, k = 1, 2 : 1, jos A tapahtuu perusjoukossa Sk X k = 0, jos A ei tapahdu perusjoukossa S Tällöin X k ~ Bernoulli(p k ), k = 1, 2 ja Pr( Xk = 1) = pk Pr( X = 0) = 1 p = q k k k k TKK (c) Ilkka Mellin (2007) 16

17 Suhteellisten osuuksien vertailutesti Testausasetelma 2/4 Oletetaan, että tapahtuma A on muotoa A = Perusjoukon alkiolla on ominaisuus P Tällöin p k = Pr(A) on todennäköisyys poimia perusjoukosta S k, k = 1, 2 satunnaisesti alkio, jolla on ominaisuus P. Jos perusjoukko S k, k = 1, 2 on äärellinen, niin todennäköisyys p k kuvaa niiden perusjoukon S k alkioiden suhteellista osuutta, joilla on ominaisuus P. TKK (c) Ilkka Mellin (2007) 17

18 Suhteellisten osuuksien vertailutesti Testausasetelma 3/4 Olkoon X11, X21,, Xn 11 yksinkertainen satunnaisotos perusjoukosta S 1, joka noudattaa Bernoulli-jakaumaa Bernoulli(p 1 ) Olkoon X12, X22,, Xn 2 2 yksinkertainen satunnaisotos perusjoukosta S 2, joka noudattaa Bernoulli-jakaumaa Bernoulli(p 2 ) Olkoot otokset lisäksi toisistaan riippumattomia. TKK (c) Ilkka Mellin (2007) 18

19 Suhteellisten osuuksien vertailutesti Testausasetelma 4/4 Asetetaan Bernoulli-jakaumien parametreille p 1 ja p 2 nollahypoteesi H 0 : p1 = p2 = p Testausongelma: Ovatko havainnot sopusoinnussa hypoteesin H 0 kanssa? Ratkaisuna on suhteellisten osuuksien vertailutesti. TKK (c) Ilkka Mellin (2007) 19

20 Suhteellisten osuuksien vertailutesti Yleinen hypoteesi Yleinen hypoteesi H : (1) Havainnot Xi1 Bernoulli( p1), i= 1,2,, n1, jossa p 1 = Pr(A), A S 1 (2) Havainnot X j 2 Bernoulli( p2), j = 1,2,, n2, jossa p 2 = Pr(A), A S 2 (3) Havainnot X i1 ja X j2 ovat riippumattomia kaikille i ja j Huomautus: Oletus (3) sisältää kolme riippumattomuusoletusta: Havainnot ovat riippumattomia otoksien 1 ja 2 sisällä. Havainnot ovat riippumattomia otoksien 1 ja 2 välillä. TKK (c) Ilkka Mellin (2007) 20

21 Suhteellisten osuuksien vertailutesti Nollahypoteesi ja vaihtoehtoiset hypoteesit Nollahypoteesi H 0 : H 0 : p1 = p2 = p Vaihtoehtoinen hypoteesi H 1 : H: 1 p1 > p2 1-suuntaiset vaihtoehtoiset hypoteesit H: 1 p1 < p2 H : p p 2-suuntainen vaihtoehtoinen hypoteesi TKK (c) Ilkka Mellin (2007) 21

22 Suhteellisten osuuksien vertailutesti Parametrien estimointi Olkoon f k tapahtuman A frekvenssi siinä n k -kertaisessa toistokokeessa, jota riippumattomien havaintojen poimiminen Bernoulli-jakaumasta k merkitsee, k = 1, 2. Tällöin tapahtuman A suhteellinen frekvenssi eli osuus pˆ k = fk / nk, k = 1,2 on harhaton estimaattori Bernoulli-jakauman parametrille p k = E(X ik ), i = 1, 2,, n k, k = 1, 2 Huomaa, että frekvenssi f k noudattaa binomijakaumaa parametrein n k ja p k : n k f = X ~Bin( n, p ), k = 1,2 k ik k k i= 1 TKK (c) Ilkka Mellin (2007) 22

23 Suhteellisten osuuksien vertailutesti Yhdistetty otos Jos nollahypoteesi H 0 : p1 = p2 = p pätee, voidaan otokset yhdistää ja parametrin p harhaton estimaattori on tapahtuman A suhteellinen frekvenssi yhdistetyssä otoksessa: np 1ˆ1+ np 2 ˆ2 f1+ f2 pˆ = = n + n n + n Jos nollahypoteesi H 0 pätee, niin p(1 p) p(1 p) Var( pˆ1 pˆ2) = + n n = p(1 p) + n n 1 2 TKK (c) Ilkka Mellin (2007) 23

24 Suhteellisten osuuksien vertailutesti Testisuure ja sen jakauma Määritellään testisuure pˆ1 pˆ2 z = 1 1 pˆ(1 pˆ) + n1 n 2 Jos nollahypoteesi H 0 : p1 = p2 = p pätee, niin testisuure z noudattaa suurissa otoksissa approksimatiivisesti standardoitua normaalijakaumaa: z a N(0,1) Approksimaatio on tavallisesti riittävän hyvä, jos npˆ 5, n(1 pˆ ) 5, npˆ 5, n(1 pˆ ) TKK (c) Ilkka Mellin (2007) 24

25 Suhteellisten osuuksien vertailutesti Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 1/3 Oletetaan, että testin yleinen hypoteesi H ja nollahypoteesi H 0 pätevät: X, X,, X, X, X,, X n n Xi1 Bernoulli( p), i = 1,2,, n1 X Bernoulli( p), j = 1,2,, n j 2 2 Tällöin (ks. monisteen Todennäköisyyslaskenta lukua Stokastiikan konvergenssikäsitteet ja raja-arvolauseet sekä lukuja Otokset ja otosjakaumat ja Väliestimointi): n1 1 f 1 p(1 p) pˆ 1 = Xi 1 = a N p, n1 i= 1 n1 n1 n2 1 f 2 p(1 p) pˆ 2 = X j2 = a N p, n2 j= 1 n2 n2 TKK (c) Ilkka Mellin (2007) 25

26 Suhteellisten osuuksien vertailutesti Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 2/3 Koska pˆ1 pˆ2, niin pˆ1 pˆ2 Y = a N(0,1) 1 1 p(1 p) + n1 n 2 Koska todennäköisyys p on tuntematon, satunnaismuuttujan Y lauseke on testisuureena epäoperationaalinen. TKK (c) Ilkka Mellin (2007) 26

27 Suhteellisten osuuksien vertailutesti Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 3/3 Jos satunnaismuuttujan Y lausekkeessa todennäköisyys p korvataan otossuureella np 1ˆ1+ np 2 ˆ2 f1+ f2 pˆ = = n + n n + n saadaan testisuure pˆ1 pˆ2 z = 1 1 pˆ(1 pˆ) + n1 n 2 joka nollahypoteesin H 0 pätiessä noudattaa suurissa otoksissa standardoitua normaalijakaumaa N(0,1): z a N(0,1) Todistus sivuutetaan. TKK (c) Ilkka Mellin (2007) 27

28 Suhteellisten osuuksien vertailutesti Testisuure z mittaa tilastollista etäisyyttä Testisuure pˆ1 pˆ2 z = 1 1 pˆ(1 pˆ) + n1 n 2 mittaa mittaa tapahtuman A otoksista 1 ja 2 määrättyjen suhteellisten frekvenssien tilastollista etäisyyttä. Mittayksikkönä on erotuksen pˆ pˆ standardipoikkeaman p(1 p) + n1 n 2 estimaattori, joka on määrätty olettaen, että nollahypoteesi H 0 pätee. TKK (c) Ilkka Mellin (2007) 28

29 Suhteellisten osuuksien vertailutesti Testi 1/2 Testisuureen pˆ1 pˆ2 z = 1 1 pˆ(1 pˆ) + n1 n 2 normaaliarvo = 0, koska nollahypoteesin H 0 pätiessä E(z) = 0 Siten itseisarvoltaan suuret testisuureen z arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. TKK (c) Ilkka Mellin (2007) 29

30 Suhteellisten osuuksien vertailutesti Testi 2/2 Hylkäysalueen valinta ja p-arvon määrääminen: ks. lukua Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 30

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Johdanto: Deterministisyys ja satunnaisuus Todennäköisyyden määritteleminen Todennäköisyyslaskennan peruskäsitteet TKK (c)

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille

Todennäköisyyslaskenta sivuaineopiskelijoille Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.

Lisätiedot

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,

Lisätiedot

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET 21.5.2014 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 1.1 Tiekartta... 4 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 5 2.1 Keskiarvon luottamusväli... 5 2.2

Lisätiedot

TURVALLISUUDELLE TÄRKEIDEN LAITTEIDEN KOESTUSTEN MERKITYS VIKOJEN HAVAITSEMISESSA

TURVALLISUUDELLE TÄRKEIDEN LAITTEIDEN KOESTUSTEN MERKITYS VIKOJEN HAVAITSEMISESSA Aalto Yliopisto Perustieteiden korkeakoulu Raul Kleinberg TURVALLISUUDELLE TÄRKEIDEN LAITTEIDEN KOESTUSTEN MERKITYS VIKOJEN HAVAITSEMISESSA Kandidaatintyö Espoo 23. maaliskuuta 2012 Työn valvoja: Työn

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

Altisteiden ja sairauksien mittaaminen. Biostatistiikan näkökulmasta EPIDEMIOLOGIAN JA BIOSTATISTIIKAN PERUSTEET. L2 kevät 2007

Altisteiden ja sairauksien mittaaminen. Biostatistiikan näkökulmasta EPIDEMIOLOGIAN JA BIOSTATISTIIKAN PERUSTEET. L2 kevät 2007 EPIDEMIOLOGIAN JA BIOSTATISTIIKAN PERUSTEET L2 kevät 2007 mittaaminen Biostatistiikan näkökulmasta Janne Pitkäniemi VTM, MSc (biometry) HY, Kansanterveystieteen laitos 1 Perusjoukon ja otoksen käsitteet

Lisätiedot

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden peruslaskusäännöt >> Uusien tapahtumien muodostaminen

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

1 TILASTOMENETELMIEN PERUSTEITA

1 TILASTOMENETELMIEN PERUSTEITA 1 TILASTOMENETELMIEN PERUSTEITA Insinööritieteissä suoritetaan usein erilaisia mittauksia tai kokeita, joiden tuloksena saadaan numeerisia havaintoaineistoja tutkittavasta ilmiöstä. Hyvinvointiteknologiassa

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012 Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012 Raija Leppälä 17. lokakuuta 2011 Sisältö 1 Johdanto 3 2 Todennäköisyyslaskentaa 5 2.1 Satunnaisilmiö ja tapahtuma 5 2.2 Klassinen

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

031021P Tilastomatematiikka (5 op) viikot 5 6

031021P Tilastomatematiikka (5 op) viikot 5 6 031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9

Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9 Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9 1.1 PARAMETRITTOMIEN MENETELMIEN LYHYT HISTORIA 11 1.2 PARAMETRITTOMAT MENETELMÄT IHMISTIETEISSÄ

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Aki Taanila VARIANSSIANALYYSI

Aki Taanila VARIANSSIANALYYSI Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

Mitä tilastollinen analyysi on?

Mitä tilastollinen analyysi on? Mitä tilastollinen analyysi on? Tilastotiede (engl. statistics) on tieteenala, jonka kohteena ovat numeerisen tilastoaineiston keräämiseen ja muokkaamiseen, esittämiseen, tilastolliseen analyysiin ja tulosten

Lisätiedot

1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1.2 Tilastollinen päättely ja tieteellisyyden kriteerit 2

1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1.2 Tilastollinen päättely ja tieteellisyyden kriteerit 2 Sisältö 1 JOHDANTO 1 1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1. Tilastollinen päättely ja tieteellisyyden kriteerit TEOREETTINEN JAKAUMA 3.1 Satunnaismuuttuja

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

TILASTOMATEMATIIKKA. Keijo Ruohonen

TILASTOMATEMATIIKKA. Keijo Ruohonen TILASTOMATEMATIIKKA Keijo Ruohonen 20 Sisältö I PERUSOTOSJAKAUMAT JA DATAN KUVAUKSET. Satunnaisotanta.2 Tärkeitä otossuureita 2.3 Datan esitykset ja graafiset metodit 6.4 Otosjakaumat 6.4. Otoskeskiarvon

Lisätiedot

Johdatus todennäköisyyslaskentaan ja tilastotieteeseen. Stefan Emet

Johdatus todennäköisyyslaskentaan ja tilastotieteeseen. Stefan Emet Johdatus todennäköisyyslaskentaan ja tilastotieteeseen Stefan Emet Matematiikan ja tilastotieteen lts Turun yliopisto 24 Sisältö Johdanto. Todennäköisyys..................................2 Peruskäsitteitä.................................

Lisätiedot

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,

Lisätiedot

Tilastollisen päättelyn kurssi

Tilastollisen päättelyn kurssi Pekka Nieminen Pentti Saikkonen Tilastollisen päättelyn kurssi Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2013 1. laitos 2004 2. laitos 2005 3. laitos 2006, korjattu 2007, 2009 ja 2013 http://www.iki.fi/pjniemin/paattely.pdf

Lisätiedot

1. JOHDANTO. SIS LLYSLUETTELO sivu 1. JOHDANTO 3

1. JOHDANTO. SIS LLYSLUETTELO sivu 1. JOHDANTO 3 1 2 22.10.2001 Tilastollisten menetelmien perusteet I Syksy 2001 Opintojakson www-sivu: http://www.uta.fi/~strale/p2syksy.html Huom. 1. Luentomateriaali on tarkoitettu ko. opintojakson opiskelijoille.

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

KAHDEN RYHMÄN VERTAILU

KAHDEN RYHMÄN VERTAILU 10.3.2015 KAHDEN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Luennon sisältö Luokitellut muuttujat Ristiintaulukko, prosentit Khiin neliötesti

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

TESTINVALINTATEHTÄVIEN VASTAUKSET

TESTINVALINTATEHTÄVIEN VASTAUKSET TESTINVALINTATEHTÄVIEN VASTAUKSET Vastaukset on merkitty keltaisella, muuttujien mittaustasot muuttujan kuvauksen perässä ja muu osa vastauksesta kysymyksen perässä. Tehtävä 1. Talousmatematiikan kurssin

Lisätiedot

Aki Taanila TILASTOLLINEN PÄÄTTELY

Aki Taanila TILASTOLLINEN PÄÄTTELY Aki Taanila TILASTOLLINEN PÄÄTTELY 17.6.2010 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 7 2.1 Normaalijakautuneisuuden testaaminen... 7 2.2 Keskiarvon luottamusväli...

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Määritelmä 3.1 (Ehdollinen todennäköisyys) Olkoot A ja B otosavaruuden Ω tapahtumia. Jos P(A) > 0, niin tapahtuman B ehdollinen todennäköisyys

Määritelmä 3.1 (Ehdollinen todennäköisyys) Olkoot A ja B otosavaruuden Ω tapahtumia. Jos P(A) > 0, niin tapahtuman B ehdollinen todennäköisyys Luku 3 Satunnaismuuttujat, ehdollistaminen ja riippumattomuus Tässä luvussa käsitellään satunnaismuuttujien ominaisuuksia ja täydennetään todennäköisyyslaskennan tietoja. Erityisesti satunnaismuuttujien

Lisätiedot

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON? SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Maatalouden tutkimuskeskuksen julkaisuja

Maatalouden tutkimuskeskuksen julkaisuja Maatalouden tutkimuskeskuksen julkaisuja S A RJ A Lauri Jauhiainen Virallisten lajikekokeiden tulosten laskentaperusteet lir>, Maatalouden 100 tutkimuskeskus Lauri Jauhiainen Virallisten lajikekokeiden

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

Aki Taanila TILASTOLLINEN PÄÄTTELY

Aki Taanila TILASTOLLINEN PÄÄTTELY Aki Taanila TILASTOLLINEN PÄÄTTELY 14.4.2012 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 7 2.1 Normaalijakautuneisuuden testaaminen... 7 2.2 Keskiarvon luottamusväli...

Lisätiedot

Ekonometria: Tavoite: PerehdyttÄaÄa (empiirisen) ekonometrisen tutkimuksen periaatteisiin, mallintamiseen, tekniikkaan ja käaytäannäon toteuttamiseen.

Ekonometria: Tavoite: PerehdyttÄaÄa (empiirisen) ekonometrisen tutkimuksen periaatteisiin, mallintamiseen, tekniikkaan ja käaytäannäon toteuttamiseen. Ekonometria: Tavoite: PerehdyttÄaÄa (empiirisen) ekonometrisen tutkimuksen periaatteisiin, mallintamiseen, tekniikkaan ja käaytäannäon toteuttamiseen. Ekonometria (STAT.2020) Syksy 2005 Seppo PynnÄonen

Lisätiedot

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 2) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 2) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos BIOSTATISTIIKKAA ESIMERKKIEN AVULLA Kurssimoniste (luku 2) Janne Pitkäniemi Helsingin Yliopisto Kansanterveystieteen laitos Helsinki, 2005 Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy

Lisätiedot

PSYKOLOGIAN VALINTAKOE TILASTOMATEMATIIKAN LISÄMATERIAALI 2016

PSYKOLOGIAN VALINTAKOE TILASTOMATEMATIIKAN LISÄMATERIAALI 2016 PSYKOLOGIAN VALINTAKOE TILASTOMATEMATIIKAN LISÄMATERIAALI 06 HELSINGIN YLIOPISTO PSYKOLOGIAN VALINTAKOE 06 Tilastomatematiikan lisämateriaali Copyright Helsingin yliopisto, käyttäytymistieteiden laitos

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastotiede tieteenalana

Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastotiede tieteenalana Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastotiede tieteenalana TKK (c) Ilkka Mellin (2006) 1 Tilastotiede tieteenalana >> Mitä tilastotiede on? Tilastotieteen sovellukset TKK (c) Ilkka

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2

Lisätiedot

SSL syysseminaari 29.10.2013 Juha Hyssälä

SSL syysseminaari 29.10.2013 Juha Hyssälä SSL syysseminaari 29.10.2013 Juha Hyssälä Lääketieteellisessä tutkimuksessa on perinteisesti käytetty elinaika-analyysissä Coxin suhteellisen vaaran mallia ja/tai tämän johdannaisia. Kyseinen malli kuitenkin

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Tilastomatematiikka TUDI

Tilastomatematiikka TUDI Miika Tolonen http://www.mafy.lut.fi/tilmattudi Laboratory of Applied Mathematics Lappeenranta University of Technology 10. syyskuuta 2014 Sisältö I Johdanto 1 Johdanto 2 Satunnaiskokeet ja satunnaismuuttujat

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Tilastokeskuksen liikevaihtoindeksien ennakkotietojen estimointimenetelmän kehittäminen. Heli Holtari. Tilastotieteen pro gradu -tutkielma

Tilastokeskuksen liikevaihtoindeksien ennakkotietojen estimointimenetelmän kehittäminen. Heli Holtari. Tilastotieteen pro gradu -tutkielma Tilastokeskuksen liikevaihtoindeksien ennakkotietojen estimointimenetelmän kehittäminen Heli Holtari Tilastotieteen pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät

Lisätiedot

Perusjoukon kokonaissumman estimointi Coxin regressiolla ja logistisella regressiolla: sovellus rakennusten aloitustilastoon

Perusjoukon kokonaissumman estimointi Coxin regressiolla ja logistisella regressiolla: sovellus rakennusten aloitustilastoon Perusjoukon kokonaissumman estimointi Coxin regressiolla ja logistisella regressiolla: sovellus rakennusten aloitustilastoon Juha Paju Tilastotieteen pro gradu -tutkielma Jyväskylän yliopisto Matematiikan

Lisätiedot

Ilkka Mellin Aikasarja-analyysi Aikasarjat

Ilkka Mellin Aikasarja-analyysi Aikasarjat Ilkka Mellin Aikasarja-analyysi Aikasarjat TKK (c) Ilkka Mellin (2007) 1 Aikasarjat >> Aikasarjat: Johdanto Aikasarjojen esikäsittely Aikasarjojen dekomponointi TKK (c) Ilkka Mellin (2007) 2 Aikasarjat:

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

Mitä on laadullinen tutkimus? Pertti Alasuutari Tampereen yliopisto

Mitä on laadullinen tutkimus? Pertti Alasuutari Tampereen yliopisto Mitä on laadullinen tutkimus? Pertti Alasuutari Tampereen yliopisto Määritelmiä Laadullinen tutkimus voidaan määritellä eri tavoin eri lähtökohdista Voidaan esimerkiksi korostaa sen juuria antropologiasta

Lisätiedot

Aineistokoko ja voima-analyysi

Aineistokoko ja voima-analyysi TUTKIMUSOPAS Aineistokoko ja voima-analyysi Johdanto Aineisto- eli otoskoon arviointi ja tutkimuksen voima-analyysi ovat tilastollisen tutkimuksen suunnittelussa keskeisimpiä asioita. Otoskoon arvioinnilla

Lisätiedot

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

Tilastotiede tieteenalana. Tilastotiede tieteenalana. Tilastotiede tieteenalana. Tilastotiede tieteenalana: Mitä opimme? Mitä tilastotiede on?

Tilastotiede tieteenalana. Tilastotiede tieteenalana. Tilastotiede tieteenalana. Tilastotiede tieteenalana: Mitä opimme? Mitä tilastotiede on? TKK (c) Ilkka Mellin (2004) 1 Tilastotiede tieteenalana Johdatus todennäköisyyslaskentaan ja tilastotieteeseen Tilastotiede tieteenalana TKK (c) Ilkka Mellin (2004) 2 Tilastotiede tieteenalana: Mitä opimme?

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A)

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) PHYS-A1110 Laboratoriotyöosuus Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) Kurssin järjestelyt Miksi? Fysiikka on havaintoja ja niiden selittämistä / ennustamista

Lisätiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012

Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012 Puheentutkimuksen tilastoanalyysin perusteet 8. luento Pertti Palo 20.1.2012 Käytännön asioita Viimeisen seminaarin siirto: 2.3. 10-12 -> 2.3. 14-16. Miten seminaarin luentokuulustelun voi korvata? Harjoitustöiden

Lisätiedot

0.08 bussimatkustajaa. 0.92 ei-bussimatkustajaa

0.08 bussimatkustajaa. 0.92 ei-bussimatkustajaa 141216 1 Riski R f C (a) Tarkastellaan kuolemaan johtaneita onnettomuuksia f bussi 13 onnettomuutta f muut 13 onnettomuutta 3 tulipalokuolemaa onnettomus 3 tulipalokuolemaa onnettomus 8 bussimatkustajaa

Lisätiedot

TILASTOTIETEEN PERUSTEET, kl 2011

TILASTOTIETEEN PERUSTEET, kl 2011 TILASTOTIETEEN PERUSTEET, kl 2011 Luku 3: TILASTOLLINEN KUVAILU Tässä luvussa esittelemme menetelmiä, joilla havaintomatriisin yhden sarakkeen eli yhden muuttujan havaintojen sisältämä informaatio kuvaillaan

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot