Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely)
|
|
- Kai Jokinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely) Esitelmöijä Olli Rentola päivämäärä Ohjaaja: TkL Anssi Käki Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.
2 Työn tavoite Kirjallisuuskatsaus toimitusketjuista ja niiden riskienhallinnasta Implementoida stokastinen optimointimalli toimitusketjun ja tuotannon ohjaamiseen Sodhi, Determining supply requirement in the sales-andoperations-planning (S&OP) process under demand uncertainty: a stochastic programming formulation and a spreadsheet implementation. Journal of the Operational Research Society, Tutkia mallin herkkyttä alkuarvojen suhteen Verrata odotusarvoista tuoton maksimointia vs. riskien minimointia
3 Yleistä Yritysten toiminta perustuu suunnitteluun Malleja käytetään ennustamiseen ja päätöksenteon tukena Sales & Operations Planning prosessissa yrityksen myynti ja tuotanto sopivat keskenään tulevaisuuden tuotanto- ja myyntimääristä Riskienhallinta S&OP prosessissa yhä tärkeämpää, sillä toimitusketjujen kompleksisuus ja epävarmuus on lisääntynyt
4 Päätöksentekotilanne Päätöksentekijällä tiedossa: Tuotantokustannukset Varastointikustannukset Toimittamattomasta tavarasta aiheutuva menetys Myyntihinta Suunnittelujakson pituus Kysyntäskenaariot joka viikolle Ongelma: kuinka määrittää tuotantokapasiteetti jokaiselle viikolle?
5 Kysynnän ennustaminen Kysynnän taso eri tiloissa arvioidaan binomipuun avulla Eri tilojen kysyntä arvioidaan kolmen kysyntäskenaarion perusteella Optimistinen Todennäköisin Pessimistinen Välitilojen arvot lasketaan lineaarisesti interpoloiden suhteessa ääritiloihin Kasvun ja laskun todennäköisyydet ovat samat Tilojen todennäköisyydet noudattavat binomijakaumaa
6 Mallin perusasetelma Kohdefunktio cxar tarkoittaa jakauman hännän odotusarvoa Todennäköisyys Jakauman hännän odotusarvo, cvar Koko jakauman odotusarvo Arvo
7 Mallin dynamiikka Tilamuuttujat: Materiaalin tasapaino eri tiloissa Varaston taso eri tiloissa Menetetty myynti Myydyt tuotteet Rahatilanne eri tiloissa Päätösmuuttujat: Optimaalinen tuotanto eri ajanhetkillä (huom. ei eri tiloissa!)
8 Mallin lähtöarvot (1/2) Yksikkökohtaiset tiedot: Myyntihinta = 3,5 Tuotantokustannus = 2,5 Varastointikustannus = 2 Menetetyn myynnin kustannus = 2 Suunnitteluajanjakson pituus = 26 Kohdefunktion muuttujat Odotettu velkarahan määrä hetkellä t = 26 huonoimmissa skenaarioissa (7,6% häntä) Odotettu varaston arvo lopussa hetkellä t = 26 huonoimmissa skenaarioissa (8,4% häntä) Odotettu menetetyn kysynnän kustannus hetkellä t = 26 huonoimmissa skenaarioissa (8,4% häntä)
9 Mallin lähtöarvot (2/2) Kysyntä alussa 1000 yksikköä Optimistisessa kasvua 1% per viikko Pessimistisessä laskua 0,25% per viikko Todennäköisimmässä kysyntä ei muutu viikoittain Optimaalinen tuotanto ratkaistaan Excelin solverilla Lasketaan optimaaliset arvot kahdelle eri tavoitetilalle: Minimaaliset riskit Maksimaalinen voitto
10 Tulokset (1/2) Riskien minimointi Odotettu tuotto: 7480 Todennäköisyys jäädä voitolle: 82%
11 Tulokset (2/2) Voiton maksimointi Odotettu tuotto: Todennäköisyys jäädä voitolle: 72%
12 Johtopäätökset (1/2) Malli vaikuttaa toimivan järkevästi tulosten perusteella Tuottojen ehdoton maksimointi vähentää voitollisen toiminnan todennäköisyyttä Tuotantoarvot vaikuttavat olevan järkeviä suhteessa muihin muuttujiin Riskien minimoinnissa tarkoituksena on vähentää menetettyä arvoa, jos päädytään kaikkein epätodennäköisimpiin tiloihin cbar periaatteessa sisältää myös muut kohdefunktion muuttujat cbar:ia laskettaessa lasketaan ciar:n sekä cdar:n arvot yhteen muiden arvojen lisäksi cbar:n painoarvo suurempi kuin muiden Ongelmallinen mallin kannalta
13 Johtopäätökset (2/2) Mallissa pystytään huomioimaan päätöksentekijän preferenssit Painokertoimien keskinäisen suhteen muuttaminen Malli voisi toimia hyvin sellaisten tuotteiden tuotantomäärän määrittämisessä, joiden kysyntä on melko tasaista pitkällä aikavälillä Mallin implementointi Excelillä mahdollista Helpompi vakuuttaa päätöksentekijät sen luotettavuudesta
Malliratkaisut Demo 1
Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,
Työvuorosuunnittelun optimointi (valmiin työn esittely)
Työvuorosuunnittelun optimointi (valmiin työn esittely) Pekka Alli 1.12.2015 Ohjaaja: Tuuli Haahtela Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
Malliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely)
Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Santtu Saijets 16.6.2014 Ohjaaja: Juuso Liesiö Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely)
Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely) Markus Losoi 30.9.2013 Ohjaaja: DI Antti Toppila Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Voitonmaksimointi esimerkkejä, L9
Voitonmaksimointi esimerkkejä, L9 (1) Yritys Valmistaa kuukaudessa q tuotetta. Kysyntäfunktio on p = 15 0, 05q ja kustannusfunktio on C(q) = 350 + 2q + 0, 05q 2. a) Yritys valmistaa nyt tuotteita kuukaudessa
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.1.213 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Lineaaristen monitavoiteoptimointitehtävien
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Kustannustehokkaat riskienhallintatoimenpiteet kuljetusverkostossa (Valmiin työn esittely)
Kustannustehokkaat riskienhallintatoimenpiteet kuljetusverkostossa (Valmiin työn esittely) Joonas Lanne 23.2.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Tuotantoprosessin optimaalinen aikataulutus (valmiin työn esittely)
Tuotantoprosessin optimaalinen aikataulutus (valmiin työn esittely) Joona Kaivosoja 01.12.2014 Ohjaaja: DI Ville Mäkelä Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
Suomen kansallisten päästövähennystoimien riskien ja kustannustehokkuuden arviointi. Aira Hast Suomen energiaekonomistit ry:n syyskokous 27.11.
Suomen kansallisten päästövähennystoimien riskien ja kustannustehokkuuden arviointi Aira Hast Suomen energiaekonomistit ry:n syyskokous 27.11.2012 Suomen kansallisten päästövähennystoimien riskien ja kustannustehokkuuden
Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely)
Aihioiden priorisointi ja portfolioanalyysi ennakoinnissa (valmiin työn esittely) Juha Kännö 23..22 Ohjaajat: TkL Antti Punkka, DI Eeva Vilkkumaa Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa
Kaksintaistelun approksimatiivinen mallintaminen (valmiin työn esittely)
Kaksintaistelun approksimatiivinen mallintaminen (valmiin työn esittely) Juho Roponen 10.06.2013 Ohjaaja: Esa Lappi Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Luento 6: Monitavoitteinen optimointi
Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f
Prof. Marko Terviö Assist. Jan Jääskeläinen
Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on
Harjoitus 4: Matlab - Optimization Toolbox
Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen
Suunnitteluprosessi (Sales and Operations Planning)
Suunnitteluprosessi (Sales and Operations Planning) 23/1/2013 Michael Falck, RELEX E-mail: michael.falck@relexsolutions.com Phone: +358 44 552 0860 Tyypillisiä haasteita Selkeä SOP-prosessi Vastuut ihmisten
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen
Polkuriippuvuus trade-off-painotuksessa (valmiin työn esittely)
Polkuriippuvuus trade-off-painotuksessa (valmiin työn esittely) Riikka Siljander 8.9.2014 Ohjaaja: DI Tuomas Lahtinen Valvoja: prof. Raimo Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
Vedonlyöntistrategioiden simulointi ja evaluointi
Vedonlyöntistrategioiden simulointi ja evaluointi Aleksi Avela 15.10.2018 Ohjaaja: Juho Roponen Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin
Projektin arvon määritys
Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin
Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely)
Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Vilma Virasjoki 23.01.2012 Ohjaaja: Jouni Pousi Valvoja: Raimo P. Hämäläinen Työn saa tallentaa
Ylikerroinstrategiat ja Poissonmallit vedonlyönnissä (aihe-esittely) Jussi Kolehmainen
Ylikerroinstrategiat ja Poissonmallit vedonlyönnissä (aihe-esittely) Jussi Kolehmainen 23.01.2012 Ohjaaja: Jussi Kangaspunta Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely)
Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Jussi Hirvonen 23.03.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Diskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016
Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.
Toimitusketjun hallinnan uudet kehityssuunnat. Mikko Kärkkäinen Tammiseminaari 2015
1 Toimitusketjun hallinnan uudet kehityssuunnat Mikko Kärkkäinen Tammiseminaari 2015 2 Toimitusketjun suunnittelun uudet tuulet Muistinvarainen laskenta mullistaa toimitusketjun suunnittelun Välitön näkyvyys
Päätösanalyysi Teknologföreningenin kiinteistöuudistuksen tukena (valmiin työn esittely)
Päätösanalyysi Teknologföreningenin kiinteistöuudistuksen tukena (valmiin työn esittely) Sara Melander 1.11.2016 Ohjaaja: DI Malin Östman Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen
Portfoliolähestymistapa CO2 - kiilapelin analysoinnissa (valmiin työn esittely) Tuomas Lahtinen 07.05.2012 Ohjaaja: Raimo Hämäläinen Valvoja: Raimo Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Osakesalkun optimointi
Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän
Optimal Harvesting of Forest Stands
Optimal Harvesting of Forest Stands (Presentation of the topic) 24 January 2010 Instructor: Janne Kettunen Supervisor: Ahti Salo Tausta Ass. Prof. Janne Kettunen käsitteli osana väitöskirjatyötään stokastisen
Harjoitus 8: Excel - Optimointi
Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen
Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)
Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa
Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä
Varastonhallinnan optimointi
Varastonhallinnan optimointi Komponenttien ostojen optimointi OPTIMI-hanke Matti Säämäki tutkimusapulainen Nopea tiedonvälitys, kansainvälistyvä kilpailu ja konsulttien vaikutusvallan kasvu on tuonut vallitseviksi
OPERAATIOANALYYSI ORMS.1020
VAASAN YLIOPISTO Talousmatematiikka Prof. Ilkka Virtanen OPERAATIOANALYYSI ORMS.1020 Tentti 2.2.2008 1. Yrityksen tavoitteena on minimoida tuotannosta ja varastoinnista aiheutuvat kustannukset 4 viikon
Säkylän Pyhäjärven kalataloudellinen kannattavuus tulevaisuudessa
Säkylän Pyhäjärven kalataloudellinen kannattavuus tulevaisuudessa EMMI NIEMINEN, TOHTORIKOULUTETTAVA EMMI.E.NIEMINEN@HELSINKI.FI TALOUSTIETEEN LAITOS, MAATALOUS-METSÄTIETEELLINEN TIEDEKUNTA HELSINGIN YLIOPISTO
Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi
Preference Programming viitekehys: epätäydellisen preferenssi-informaation elisitointi ja mallintaminen, dominanssi Mat-2.4142 Optimointiopin seminaari 9.2.2011 Lähteet: Salo, A. & Hämäläinen, R. P., 2010.
Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero
Y56 Kevät 2010 1 Y56 Laskuharjoitukset 4 Palautus viim. ti 30.3. klo 12-14 (luennolla!) Opiskelijan nimi Opiskelijanumero Harjoitus 1. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa
Joonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen
Hävittäjälentokoneen reitin suunnittelussa käytettävän dynaamisen ja monitavoitteisen verkko-optimointitehtävän ratkaiseminen A*-algoritmilla (valmiin työn esittely) Joonas Haapala 8.6.2015 Ohjaaja: DI
Luodin massajakauman optimointi
Luodin massajakauman optimointi Janne Lahti 01.09.2017 Ohjaaja: DI Mikko Harju Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki
Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely)
Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) 17.09.2015 Ohjaaja: TkT Eeva Vilkkumaa Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Päätöksentekomenetelmät
L u e n t o Hanna Virta / Liikkeenjohdon systeemit Päätöksentekomenetelmät Luennon sisältö Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Päätösongelmia löytyy joka paikasta Päästökauppa:
Lentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely)
Lentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely) Tuukka Stewen 1.9.2017 Ohjaaja: DI Juho Roponen Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.01.2013 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi Ohjaaja: Prof. Kai Virtanen Valvoja: Prof.
Epätäydellisen preferenssiinformaation hyödyntäminen monitavoitteisissa päätöspuissa (Valmiin työn esittely) Mio Parmi 15.1.2018 Ohjaaja: Prof. Kai Virtanen Valvoja: Prof. Kai Virtanen Tausta Päätöspuu
SUOMINEN YHTYMÄ OYJ OSAVUOSIKATSAUS ESITYS
SUOMINEN YHTYMÄ OYJ OSAVUOSIKATSAUS 1.1. - 31.3.2006 ESITYS 26.4.2006 Liikevaihdon jakauma 1-3/2006 49,2 milj. euroa Joustopakkaukset 18,6 milj. euroa 38 % Kosteuspyyhkeet 34 % Kuitukankaat 28 % Pyyhkeet
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla
Päätöksentekomenetelmät
L u e n t o Päätöksentekomenetelmät Luennon sisältö Hanna Virta / Liikkeenjohdon systeemit Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Johdanto päätöksentekoon Päätösongelmia löytyy
Vesivoimaketjun optimointi mehiläisalgoritmilla (Valmiin työn esittely)
Vesivoimaketjun optimointi mehiläisalgoritmilla (Valmiin työn esittely) Sakke Rantala 2.12.2013 Ohjaaja: DI Hannu Korva Valvoja: Professori Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization
Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana
Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä
Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Vesa Husgafvel 19.11.2012 Ohjaaja: DI Mirko Ruokokoski Valvoja: Prof. Harri Ehtamo Työn
Verkko-optimointiin perustuva torjuntatasan laskenta mellakkapoliisin resurssien kohdentamisessa (valmiin työn esittely) Paavo Kivistö
Verkko-optimointiin perustuva torjuntatasan laskenta mellakkapoliisin resurssien kohdentamisessa (valmiin työn esittely) Paavo Kivistö 21.01.2013 Ohjaaja: Kai Virtanen Valvoja: Raimo P. Hämäläinen Työn
Luento 6: Monitavoiteoptimointi
Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman
Simulation model to compare opportunistic maintenance policies
Simulation model to compare opportunistic maintenance policies Noora Torpo 31.08.18 Ohjaaja/Valvoja: Antti Punkka Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin
Optimization of Duties in Railway Traffic (valmiin työn esittely)
Optimization of Duties in Railway Traffic (valmiin työn esittely) Teemu Kinnunen 03.03.2014 Ohjaaja: Mikko Alanko Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus
Eräs tyypillinen virhe monitavoitteisessa portfoliopäätösanalyysissa + esimerkkitapaus Mat-2.4142 Optimointiopin seminaari 2.3.2011 Lähteet: Clemen, R. T., & Smith, J. E. (2009). On the Choice of Baselines
Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Tavaratilausten tietovirrat ja datan hyödyntäminen -case S-ryhmä ja Satakunnan Osuuskauppa
Tavaratilausten tietovirrat ja datan hyödyntäminen -case S-ryhmä ja Satakunnan Osuuskauppa Esityksessä Lyhyt Satakunnan Osuuskaupan ja S-ryhmän esittely Tietovirtojen hyödyntäminen tavaratilauksissa Ennakointi
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely)
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Riku Hyytiäinen 23.02.2015 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa
Rypsin viljely riskeistä ja kannattavuudesta. Pellervo Kässi
Rypsin viljely riskeistä ja kannattavuudesta Pellervo Kässi Riski rypsin ja viljan viljelyssä Keväällä sidotaan panoksia maahan epävarmuudessa tulevan kesän sääoloista: Siemenet Lannoitteet Työ Sadon varmistamiseksi
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Tasaväliset PO pisteet? Painokerroinmenetelmä: muutetaan painoja systemaattisesti
Simulointimalli mellakkapoliisin resurssien kohdentamiseen (valmiin työn esittely)
Simulointimalli mellakkapoliisin resurssien kohdentamiseen (valmiin työn esittely) Eero Rantala 21.1.2013 Ohjaaja: Kai Virtanen Valvoja: Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Viherlannoituksen biologistaloudellinen. vihannesten viljelykierrossa. Tutkija Anu Koivisto, Luke. Luonnonvarakeskus
Viherlannoituksen biologistaloudellinen optimointi vihannesten viljelykierrossa Tutkija Anu Koivisto, Luke Viherlannoituksen tuotantokustannukset ja kannattavuus Tuotantokustannuksia ja kannattavuutta
Monopoli 2/2. S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Monopoli / Monopolimarkkinat - oletuksia Seuraavissa tarkasteluissa oletetaan, että monopolisti tuntee kysyntäkäyrän täydellisesti monopolisti myy suoraan tuotannosta, ts. varastojen vaikutusta ei huomioida
Markovin ketju, L26b. Populaatio ja siirtymätodennäköisyydet. Tasapaino. Markovin ketju. Aiheet. Populaatio ja. Mallin rakentaminen
, L26b Teemme mallin markkinaosuuden kehityksestä. Kaupungissa on 10000 taloutta, jotka ostavat kerran päivässä litran laktoositonta maitoa. Tarjolla on ollut kaksi perinteistätuotemerkkiä. A-lakto, jota
4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =
BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B
Varastonhallinnan optimointi
Varastonhallinnan optimointi Timo Ranta Tutkijatohtori TTY Porin laitos OPTIMI 4.6.215 Peruskysymykset Kuinka paljon tilataan? Milloin tilataan? 2 (46) Kustannuksia Tavaran hinta Varastointikustannukset
Experiment on psychophysiological responses in an economic game (valmiin työn esittely) Juulia Happonen
Experiment on psychophysiological responses in an economic game (valmiin työn esittely) Juulia Happonen 13.01.2014 Ohjaaja: DI Ilkka Leppänen Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa
Tuotantotalouden tutkinto-ohjelma Korvavuusluettelo, päivitetty TU-22 TEOLLISUUSTALOUS
Tuotantotalouden tutkinto-ohjelma Korvavuusluettelo, päivitetty 8.8.2011 TU-22 TEOLLISUUSTALOUS Korvattava Korvaava Korvaava Korvaava Korvaava Korvaava 1 TU-0.1100 Johdatus tieteenfilosofiaan 3op TU-0.3100
Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu
Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee
b 1. b m ) + ( 2b Ax) + (b b)
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}
Asymmetrinen informaatio
Asymmetrinen informaatio Luku 36 Marita Laukkanen November 24, 2016 Marita Laukkanen Asymmetrinen informaatio November 24, 2016 1 / 10 Entä jos informaatio tuotteen laadusta on kallista? Ei ole uskottavaa,
Lean Sales Talent Vectia Renewal forum 5.11.2013
Lean Sales Talent Vectia Renewal forum 5.11.2013 Talent Vectia 1 Myynti on jäänyt jälkeen muista toiminnoista?? vs. Liidejä ei osata tuottaa systemaattisesti Myyjät eivät ymmärrä asiakastaan Myynnin johtaminen
Trichoderma reesein geenisäätelyverkoston ennustaminen Oskari Vinko
Trichoderma reesein geenisäätelyverkoston ennustaminen Oskari Vinko 04.11.2013 Ohjaaja: Merja Oja Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely)
Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely) Lauri Nyman 17.9.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
ehdolla y = f(x1, X2)
3.3. Kustannusten minimointi * Voiton maksimointi: panosten määrän sopeuttaminen -----> tuotanto * Kustannusten minimointi: tiett tuotannon taso -----> etsitään optimaalisin panoskombinaatio tuottamaan
Harjoitus 9: Optimointi I (Matlab)
Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien
Jalkapallovedonlyöntistrategioiden. evaluointi. Aleksi Avela Ohjaaja: Juho Roponen Valvoja: Ahti Salo
Jalkapallovedonlyöntistrategioiden simulointi ja evaluointi Aleksi Avela 26.2.2019 Ohjaaja: Juho Roponen Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu
Kandidaatintyön esittely: Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu Vilma Virasjoki 19.11.2012 Ohjaaja: DI Jouni Pousi Valvoja: Professori Raimo P.
Pohjoismaisen JMIhankintaverkoston. kysyntäennusteita hyödyntäen. Eglo-seminaari Helsinki, 30.5.2006 Heli Laurikkala ja Tero Kankkunen
Pohjoismaisen JMIhankintaverkoston kehittäminen kysyntäennusteita hyödyntäen Eglo-seminaari Helsinki, 30.5.2006 Heli Laurikkala ja Tero Kankkunen Sisällys Lähtökohta Osallistujat Tavoitteet Aikataulu Toimenpiteet
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
ln S(k) = ln S(0) + w(i) E[ln S(k)] = ln S(0) + vk V ar[ln S(k)] = kσ 2
Moniperiodisten investointitehtäviä tarkasteltaessa sijoituskohteiden hintojen kehitystä mallinnetaan diskeetteinä (binomihilat) tai jatkuvina (Itô-prosessit) prosesseina. Sijoituskohteen hinta hetkellä
Tehokas ilmaisku. Terminologiaa. Ilmaisku. Tavoitteiden saavuttaminen. Suunnittelun tavoitteet. S ysteemianalyysin Laboratorio Teknillinen korkeakoulu
Tehokas ilmaisku -Päätösanalyysi suunnittelun tukena- Ilmaisku Terminologiaa saattajat viholliskohde lento saattajat yhteinen viholliskohde määrittää lennon maantieteellinen läheisyys t tukevat toisiaan
Optimal Harvesting of Forest Stands
Optimal Harvesting of Forest Stands (Presentation of the Complete Work) 11 April 2011 Instructor: Janne Kettunen Supervisor: Ahti Salo Tausta Ass. Prof. Janne Kettunen käsittelee osana väitöskirjatyötään
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
Demo 1: Branch & Bound
MS-C05 Optimoinnin perusteet Malliratkaisut 7 Ehtamo Demo : Branch & Bound Ratkaise lineaarinen kokonaislukuoptimointitehtävä käyttämällä Branch & Boundalgoritmia. max x + x s.e. x + 4x 9 5x + x 9 x Z
30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset
30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään
Logistiikkajärjestelmien mallintaminen - käytännön sovelluksia
FORS-seminaari 2005 - Infrastruktuuri ja logistiikka Logistiikkajärjestelmien mallintaminen - käytännön sovelluksia Ville Hyvönen EP-Logistics Oy Taustaa Ville Hyvönen DI (TKK, teollisuustalous, tuotannon
Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17)
Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen
TTY Porin laitoksen optimointipalvelut yrityksille
TTY Porin laitoksen optimointipalvelut yrityksille Timo Ranta, TkT Frank Cameron, TkT timo.ranta@tut.fi frank.cameron@tut.fi Automaation aamukahvit 28.8.2013 Optimointi Tarkoittaa parhaan ratkaisun valintaa
LP-mallit, L19. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto. Graafisen ratkaisun vaiheet. Optimin olemassaolo
LP-mallit, L19 Yleistä 1 LP-mallit on yksi Operaatioanalyysin (Operations Research) perustyökaluista. Perusongelma: Miten pitää suorittaa operaatio mahdollisimman hyvin, kun käytettävissä on rajalliset
Optimoinnin monet tavoitteet
+ Optimoinnin monet tavoitteet FORS-iltapäivä 15.11.2012: Monitavoitteisen päätöksenteon soveltaminen käytännössä Veli-Pekka Heikkinen + Esitykset aihealueet Sijoitustoiminnan kvantitatiiviset menetelmät
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen 16.06.2014 Ohjaaja: Urho Honkanen Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Monitavoiteoptimointi
Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa
Digiajan menestyksekäs toimitusketju / Expak Materiaalivirtojen ohjaus ja optimointi Caset - Vilpe Oy, Airam Electric Oy Ab
Etelä Digiajan menestyksekäs toimitusketju 24.10.2018 / Expak Materiaalivirtojen ohjaus ja optimointi Caset - Vilpe Oy, Airam Electric Oy Ab Expak Systems Oy Tommi Hyyrynen WWW.EXPAK.FI Suomen Osto- ja