Tik Tietokoneanimaatio

Koko: px
Aloita esitys sivulta:

Download "Tik-111.5450 Tietokoneanimaatio"

Transkriptio

1 Tik Tietokoneanimaatio 7.luento: motion capture & editing Tassu Animaatio luento 7 1

2 Sisältö I. Liikkeen tallennus (motion capture) Perusajatus: havaintopisteistä tulkitaan hahmon liike Sovelluksia: elokuva, pelit Sensoritekniikkaa: magneettianturit, optiset laitteet, kamera Kameran kalibrointi: optiikan korjaus, perspektiivi 3D-koordinaattien rekonstruktio monesta kuvasta Kinemaattisten parametrien laskenta II. Liikkeen muokkaus (motion editing) Liikedatan segmentointi Taajuussuodatus Ajan ja liikkeen venytys (warping) Liikkeen sovittaminen uuteen hahmoon tai tilanteeseen III. Muita kameraan perustuvia tekniikoita Ääriviivakuvan tunnistus Monikamerakuvaus, Matrix-efekti Pistejoukkomallinnus Tassu Animaatio luento 7 2

3 I. Motion capture Perusajatus: kopioidaan elävä liike animaatioon Historiaa: rotoskopia, päälle piirtäminen Nyt: hahmon liike tulkitaan laskennallisesti havaintopisteistä Sovelluksia: elokuvat, pelit, ergonomian tutkimus Tassu Animaatio luento 7 3

4 Sensoritekniikkaa Magneettianturit Mekaaniset anturit (exoskeleton) Optiset laitteet kamerat markkerit LEDejä heijastimia IR-valo Tassu Animaatio luento 7 4

5 MoCap videokuvasta Alustus Ympäristön referenssipisteiden tunnistus Kameran kalibrointi Markkereiden kiinnitys näyttelijään Datan keruu ja korjailu Hahmon markkeripisteiden tunnistus Pisteiden korrelointi eri kameroissa/frameissa 3D-pisteiden rekonstruktio Datapisteiden sovitus hahmon rajoite-ehtoihin Kinemaattisten parametrien laskenta Soveltaminen Kinemaattisen datan sovittaminen uuteen hahmoon Liikkeen editointi eri ilmaisuja varten Tassu Animaatio luento 7 5

6 Kameran optiikan kalibrointi Optiikan korjaus epälineaarisuuksien havaitsemista kuvan vanutusta (image warping) Mielivaltainen korjaus määriteltävissä paloittain lineaarisena tekstuurimuunnoksena testikuvan avainpisteiden avulla haetaan viivojen risteyskohtien koordinaatit tekstuurikoordinaatistossa (= alkuperäinen kuva) kuvataan nämä pisteet säännölliselle hilalle tuloskuvassa Tyypillinen linssivirhe: radiaalinen epälineaarisuus aiheuttaa tynnyriefektin (ks. kuva yllä) korjattavissa polaarikoordinaatistossa (r,φ) sovitetulla polynomikaavalla, esim. r = 1+c 1 r 2 +c 2 r 4 +c 3 r 6 ja φ = φ (ei yleensä tarvitse korjausta) Huom. välttämättä koko kuvatekstuuria ei tarvitse muuntaa tunnistetaan markkerit vääristyneessä kuvassa ja korjataan niiden paikat Tassu Animaatio luento 7 6

7 Kameran sijainnin laskenta Sijainti ja asento lasketaan perspektiivissä havaituista (tunnetuista) ympäristömarkkereista joka markkerille i yhtälö (u,v) i = P R T (x,y,z) i missä P=projektio, R=rotaatio, T=translaatio yhtälöryhmästä ratkaistaan kameran sijainti T ja asento R (tai koko matriisi M=PRT) tilastollisesti esim. pseudoinverssiä käyttäen U 4 n = M 4 4 X 4 n M 4 4 U 4 n X + n 4 uv xyz Muotoiltu markkeri antaa enemmän informaatiota Tarpeen myös videokuvan ja virtuaaliympäristön yhdistämisessä (Augmented Reality) näyttelijät sinitaustaa vasten, upotus virtuaalilavasteisiin animoitujen hahmojen sijoittaminen videokuvaan Tassu Animaatio luento 7 7

8 3D-koordinaattien rekonstruktio Ideaalisesti: kahdesta kuvasta tunnistettu sama markkeri lähetetään säde kamerasta markkerin kuvapisteen suuntaan 3D-piste = eri kameroiden säteiden leikkaus Käytännössä: tietyn markkerin tunnistus kuvasta epävarmaa (useita vaihtoehtoja) säteet eivät tarkasti osu yhteen siis: haetaan useista kamerapareista vastinpisteet, lasketaan jokaisesta säteiden lyhintä etäisyyttä vastaavat pisteet, ja nämä klusteroidaan yhdeksi Tassu Animaatio luento 7 8

9 Kuvapisteiden korrelointi Periaate kameran A kuvasta tunnistetusta pisteestä lähetetään säde säde projisoidaan kameran B kuvatasolle ns. epipolaariviivaksi etsitään tunnistettuja pisteitä epipolaarilinjalta tarkistetaan ratkaisun yksikäsitteisyys kolmannen kameran kuvasta Käytännössä pyritään ottamaan kaikkien kameroiden havainnot tasapuolisesti huomioon iteratiivinen rekonstruktio virheellisiä korrelaatioita ei voida täysin välttää cam A cam B? Tassu Animaatio luento 7 9

10 Muita rekonstruktio-ongelmia Markkerit sekottuvat toisiinsa Usein markkeri joutuu näkymättömiin Vääriä tunnistuksia (esim. häiriöitä valaistuksessa) Rekonstruktiolaskennan epätarkkuus kohinaa liikesignaalissa Ratkaisukeinona kinematiikkaa ja dynamiikkaa koskevien rajoitusten käyttö kiinteässä kappaleessa etäisyyssuhteet vakioita kinemaattiset sidokset rajaavat vapausasteita kohteen nopeus/kiihtyvyys tiedetään rajallisiksi liikkeen jatkuvuus ennustava tilastollinen suodatus, esim. Kalman filter Tassu Animaatio luento 7 10

11 Kinemaattisten parametrien laskenta Usein markkerit eivät sellaisinaan riitä sijainti vaatteissa, ei nivelissä epätarkkuudet mittauksessa animoitava hahmo eri kokoinen Sovittaminen anatomiseen malliin approksimoidaan nivelen paikka useammasta markkerista otetaan mallin tunnetut rajoitteet avuksi esim. jäsenten pituudet, nivelten ääriasennot Käänteiskinematiikkaa sovitetaan kiinnekohdat, esim. jalat maahan Anatominen malli auttaa myös näkyvistä kadonneiden markkereiden löytämisessä Tassu Animaatio luento 7 11

12 Lopuksi Tuloksena joukko markkereiden ja/tai kinemaattisten parametrien arvoja aikasarjana Ei-reaaliaikaisessa animaatiotuotannossa usein jälkikäsittelyvaihe, jossa saatua dataa korjaillaan käsityönä Reaaliaika-animaatiossa sovellus voi auttaa liikkeentunnistusohjelmaa ratkaisemaan moniselitteisiä tilanteita Tassu Animaatio luento 7 12

13 II. Motion editing Käsitellään liikedataa signaalina Ei pelkästään kaapatun liikkeen käsittelyä; lähteenä voi olla myös mallinnettu/animoitu liike (esim. Endorphin) Muistuttaa äänen editointia Kukin liikeparametri omalla kanavallaan Tassu Animaatio luento 7 13

14 Menetelmiä suodatus eri taajuuskaistoilla (vrt. audio equalizing) liikesaumojen sulauttaminen (vrt. cross-fading) synkronointi ajallisiin tapahtumiin (warping) interpolointi taajuusavaruudessa tiettyjen liikkeen osien korostaminen liikekäyrien käsittely splineinä (keyframing) rajoitusehtojen täyttäminen (IK, space-time constraints) Tassu Animaatio luento 7 14

15 Taajuussuodatus Käsitellään liikesignaalia taajuuskaistoittain (vrt. equalizer) Alipäästö (matalat taajuudet) tekee liikkeestä laiskan Ylipäästö (korkeat) tekee hermostuneen vaikutelman Keskikaistalla saadaan liioiteltuja rauhallisia liikkeitä Vastaa multiresoluutiomallintamista [Bruderlin95] Tassu Animaatio luento 7 15

16 Blending Kahden tai useamman liikedatan summaus painokertoimet ja taajuussuodatus kullekin erikseen Interpolaatio (cross-fading) painokertoimia muutetaan, summa pysyy (=1.0) Eri painokertoimet ja suodatus eri osille kehoa voidaan kombinoida eri liikkeistä kokonaisuuksia esim. vasen+oikea käsi Tassu Animaatio luento 7 16

17 Synkronointi Yhdistettävien liikesarjojen oltava samassa vaiheessa eri tallennuskerroilla liikkeen tempo voi olla erilainen (esim. laahustava ja reipas kävely) epälineaarinen paikallinen venytys ja tiivistys ajassa (=warp) sovittaa signaalit samaan tahtiin Periodisille liikkeille (esim. kävely) toimii Fourier-muunnos [Unuma95] skaalataan perustaajuus samaksi (=rescaling) interpoloidaan signaaleja taajuustasossa skaalataan takaisin ja muunnetaan aika-avaruuteen Tassu Animaatio luento 7 17

18 Muita menetelmiä Dataan voidaan lisätä uusia piirteitä muotoilu epälineaarisella funktiolla (=waveshaping) displacement (bump) mapping esim. lisätään vapinaa käsiin Korostetaan yksittäisiä liikkeitä esim. näkyvä käden heilautus normaalin kävelyn aikana Tassu Animaatio luento 7 18

19 Retargeting Liikkeen sovittaminen uuteen hahmoon tai tilanteeseen ks. Gleicherin artikkeli, Siggraph 98 Figure 1: Differently sized characters pick up an object. Their positions are determined by the position of the object. The left shows the original actress. The center shows a figure 60% as large. The right shows a figure with extremely short legs and arms and an extremely long body. The yellow cones represent footplant positions. -> -> Videos Tassu Animaatio luento 7 19

20 III. Special techniques Hahmon löytäminen videokuvasta ääriviivat, tekstuurit, kasvomarkkerit luurangon sovittaminen kuvaan Monikamerakuvaus elävästä hahmosta saadaan monta perspektiiviä yhtä aikaa katselu virtuaalikameralla Point set modeling 3D skannerit renderointi Tassu Animaatio luento 7 20

21 Ääriviivakuvan tunnistus Kuvankäsittely poistetaan tausta (usein bluescreen) tunnistetaan ääriviivat Sovittaminen malliin = hahmontunnistusta ääriviivan piirteiden tunnistus, esim. sormet muodon (pikseleiden) jakauman momentit tekstuurin liikeen tunnistus (optical flow) Tassu Animaatio luento 7 21

22 Sovelluksia M.Krueger: Videoplace Vivid group: Mandala P.Hämäläinen et al: Kukakumma muumaassa ja Kick-ass kung-fu Tassu Animaatio luento 7 22

23 Monikamerakuvaus Matrix -efekti: näyttelijä pysähtyy, mutta kamera jatkaa liikettään Digital Air Movia digital camera array on location Tassu Animaatio luento 7 23

24 Pistejoukkomallinnus (point cloud modeling) Geometrisen kohteen esittäminen joukkona pinnalta mitattuja 3D-pisteitä saadaan laser-skannerilla tai usealla kameralla esimerkkejä: ja Digital Michelangelo (Stanford) Käytetään usein mocap:in yhteydessä 3D-mallin lähtökohtana Kolmioinnilla muunnettavissa polygonipinnaksi Voidaan myös renderoida sellaisenaan joka pisteen paikalle väripiste joukolle pisteitä yhteinen tekstuuriläiskä (splat rendering) Tassu Animaatio luento 7 24

25 Tassu Animaatio luento 7 25

26 References Menache: Understanding Motion Capture for Computer Animation and Video Games. Morgan Kaufmann 1999 Artikkeleita Bruderlin, Williams: Motion signal processing. Siggraph 95 Unuma et al: Fourier principles for emotion-based human figure animation. Siggraph Witkin, Popovic: Motion warping. Siggraph 95 Michael Gleicher: Retargeting motion to new characters. Siggraph 98 State et al: Superior augmented reality registration by integrating landmark tracking and magnetic tracking. Siggraph 96 Lisää informaatiota, linkkejä ja monia muita firmoja Tassu Animaatio luento 7 26

27 Videot (myöhemmin) Sovelluksia filmeissä Star Wars: Episode #1 (virtuaalinäyttelijä JarJar) Matrix (ajanpysähtymisefekti) Simpsons (parodia mocapista) Tekniikkaa Moxy, Acclaim (Siggraph Video Review #101) Siggraph 97 näyttely (omaa materiaalia) Siggraph 95 proceedings CD-ROM (examples) Gleicher (Siggraph 98 video) AR tracking (Siggraph 96 video, #25) Tassu Animaatio luento 7 27

T Tietokoneanimaatio

T Tietokoneanimaatio T-111.5450 Tietokoneanimaatio Tassu Takala Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio 1. Luento 19.9.2005 Sisältö Henkilökunta Suoritustapa ja aikataulu Kurssimateriaali

Lisätiedot

Malleja ja menetelmiä geometriseen tietokonenäköön

Malleja ja menetelmiä geometriseen tietokonenäköön Malleja ja menetelmiä geometriseen tietokonenäköön Juho Kannala 7.5.2010 Johdanto Tietokonenäkö on ala, joka kehittää menetelmiä automaattiseen kuvien sisällön tulkintaan Tietokonenäkö on ajankohtainen

Lisätiedot

Tik Tietokoneanimaatio

Tik Tietokoneanimaatio Tik-111.5450 Tietokoneanimaatio 4. Kinematiikka 10.10.05 - Tassu Animaatio 2005 - luento 4 1 Sisältö Nivelikäs olio hierarkkisena mallina liitosten vapausasteet ja rajoitteet, eri lajeja DH-notaatio Suora

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Kohdeyleisö: toisen vuoden teekkari

Kohdeyleisö: toisen vuoden teekkari Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y

Lisätiedot

1 Vrms 2 Skewness 3 Kurtosis 4 Amax 5 Amin. 11 A4xbf 12 A7xbf 13 A14xbf 14 A1xrotf 15 A2xrotf. 16 A3xrotf 17 A4xrotf 18 A1to4xrotf 19 Vrms10to100

1 Vrms 2 Skewness 3 Kurtosis 4 Amax 5 Amin. 11 A4xbf 12 A7xbf 13 A14xbf 14 A1xrotf 15 A2xrotf. 16 A3xrotf 17 A4xrotf 18 A1to4xrotf 19 Vrms10to100 JAVO mittaukset 4..006 -Primaari-ilmapuhallin I - keruutaajuus.56 x khz, kiihtyvyysmittaus - aikasarjan talletus, T 1s, 15 min välein, 500 kertaa 8 6 4 5 7 1 'PA fan 1, motor current' 'PA fan, motor current'

Lisätiedot

Tapio Takala / Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio

Tapio Takala / Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka Tapio Takala / Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio T-110.1100

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

T-111.210 Studio 4. luento 1: kurssin järjestelyt k-2005 tietokonegrafiikan perusteita. 20.1.2005 Tassu Takala 1

T-111.210 Studio 4. luento 1: kurssin järjestelyt k-2005 tietokonegrafiikan perusteita. 20.1.2005 Tassu Takala 1 T-111.210 Studio 4 luento 1: kurssin järjestelyt k-2005 tietokonegrafiikan perusteita 20.1.2005 Tassu Takala 1 Kurssin tavoitteet ohjelmoitavan tietokonegrafiikan alkeet grafiikan soveltaminen luovalla

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki

Lisätiedot

Mekanismisynteesi. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta)

Mekanismisynteesi. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta) Mekanismisynteesi Kari Tammi, Tommi Lintilä (Janne Ojalan kalvojen pohjalta) 1 Sisältö Synteesin ja analyysin erot Mekanismisynteesin vaiheita Mekanismin konseptisuunnittelu Tietokoneavusteinen mitoitus

Lisätiedot

Luento 2: Viivan toteutus

Luento 2: Viivan toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento : Viivan toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 GRAAFISTEN PRIMITIIVIEN TOTEUTUS HUOM! Oletuksena on XY-koordinaatisto Suorien viivojen

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Adobe Premiere 6.0 ohjelmasta

Adobe Premiere 6.0 ohjelmasta 1 Adobe Premiere 6.0 ohjelmasta 1. Ohjelman käynnistys...2 2 Ohjelman näkymän esittely...3 Työskentelytila...3 3 VIDEON KAAPPAUS:...6 3.1. Tallennuspaikka valitaan valitsemalla...6 3. 2. Kaappaus aloitetaan

Lisätiedot

Mittaushavaintojen täsmällinen käsittelymenenetelmä

Mittaushavaintojen täsmällinen käsittelymenenetelmä Tasoituslaskun periaate Kun mittauksia on tehty enemmän kuin on toisistaan teoreettisesti riippumattomia suureita, niin tasoituslaskun tehtävänä ja päätarkoituksena on johtaa tuntemattomille sellaiset

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, yhteenveto

Havaitsevan tähtitieteen peruskurssi I, yhteenveto Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 23.4.2009, T. Hackman & J. Näränen 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannatta käyttää? Minkälaista teleskooppia millekin

Lisätiedot

Fotogrammetrian termistöä

Fotogrammetrian termistöä Fotogrammetrian termistöä Petri Rönnholm, Henrik Haggrén, 2015 Hei. Sain eilen valmiiksi mukavan mittausprojektin. Kiinnostaako kuulla yksityiskohtia? Totta kai! (Haluan tehdä vaikutuksen tähän kaveriin,

Lisätiedot

TIES411 Konenäkö ja kuva-analyysi Oppimispäiväkirja.

TIES411 Konenäkö ja kuva-analyysi Oppimispäiväkirja. TIES411 Konenäkö ja kuva-analyysi Oppimispäiväkirja. Tämän oppimispäiväkirjan on kirjoittanut Peter Ciszek, kurssista TIES411 Konenäkö ja kuvaanalyysi. Viikko 43 Ensimmäisellä viikko kurssilla käytettiin

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI

KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI Asko Poikela Samuli Hujo TULOSKALVOSARJAN SISÄLTÖ I. Vanha mittauskäytäntö -s. 3-5 II. Keskusmuotolukujen funktiointi -s. 6-13 III.Uusi mittauskäytäntö -s.

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

TAITAJA 2007 ELEKTRONIIKKAFINAALI 31.01-02.02.07 KILPAILIJAN TEHTÄVÄT. Kilpailijan nimi / Nro:

TAITAJA 2007 ELEKTRONIIKKAFINAALI 31.01-02.02.07 KILPAILIJAN TEHTÄVÄT. Kilpailijan nimi / Nro: KILPAILIJAN TEHTÄVÄT Kilpailijan nimi / Nro: Tehtävän laatinut: Hannu Laurikainen, Deltabit Oy Kilpailutehtävä Kilpailijalle annetaan tehtävässä tarvittavat ohjelmakoodit. Tämä ohjelma on tehty laitteen

Lisätiedot

Digitaalisen tarinan koostaminen HTKS Tanja Välisalo

Digitaalisen tarinan koostaminen HTKS Tanja Välisalo Digitaalisen tarinan koostaminen HTKS152 17.2.2014 Tanja Välisalo Digitaalisen tarinan käytännön toteutus 1. Kuva-, ääni- ja videomateriaalin muokkaaminen 2. Digitaalisen tarinan koostaminen Editointi

Lisätiedot

Luento 7: 3D katselu. Sisältö

Luento 7: 3D katselu. Sisältö Tietokonegrafiikka / perusteet Tik-.3/3 4 ov / 2 ov Luento 7: 3D katselu Lauri Savioja /4 3D katselu / Sisältö Koorinaattimuunnokset Kameran ja maailmankoorinaatiston yhteys Perspektiivi 3D katselu / 2

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Bootstrap / HTDP2 / Realm of Racket. Vertailu

Bootstrap / HTDP2 / Realm of Racket. Vertailu Bootstrap / HTDP2 / Realm of Racket Vertailu Bootstrap http://www.bootstrapworld.org/ Tarkoitettu yläkoululaisille (12-15v) Ohjelmointi on integroitu matematiikan opetukseen Materiaalina tuntisuunnitelmat

Lisätiedot

Matematiikan tukikurssi, kurssikerta 4

Matematiikan tukikurssi, kurssikerta 4 Matematiikan tukikurssi, kurssikerta 4 1 Raja-arvo äärettömyydessä Tietyllä funktiolla f() voi olla raja-arvo äärettömyydessä, jota merkitään f(). Tämä tarkoittaa, että funktio f() lähestyy jotain tiettyä

Lisätiedot

Esimerkki - Näkymätön kuu

Esimerkki - Näkymätön kuu Inversio-ongelmat Inversio = käänteinen, päinvastainen Inversio-ongelmilla tarkoitetaan (suoran) ongelman ratkaisua takaperin. Arkipäiväisiä inversio-ongelmia ovat mm. lääketieteellinen röntgentomografia

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 9.3.2016 Susanna Hurme Päivän aihe: Palkin leikkausvoima- ja taivutusmomenttijakaumat ja kuviot (Kirjan luvut 7.2 ja 7.3) Osaamistavoitteet: Ymmärtää, miten leikkausvoima

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku

Lisätiedot

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tällä luennolla Algebralliset tietotyypit Hahmonsovitus (pattern matching) Primitiivirekursio Esimerkkinä binäärinen hakupuu Muistattehan...

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

A11-07 Measurements with machine vision Projektisuunnitelma

A11-07 Measurements with machine vision Projektisuunnitelma AS-0.3200 Automaatio- ja systeemitekniikan projektityöt A11-07 Measurements with machine vision Projektisuunnitelma Niko Nyrhilä 25.9.2011 Niko Nyrhilä 2 1 Projektityön tavoite Projektityön tavoitteena

Lisätiedot

Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat

Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat 1 Tukivektoriluokittelija Tukivektorikoneeseen (support vector machine) perustuva luoikittelija on tilastollisen koneoppimisen teoriaan perustuva lineaarinen luokittelija. Perusajatus on sovittaa kahden

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

KAISTANLEVEYDEN JA TEHON KÄYTÖN KANNALTA OPTIMAALINEN MODULAATIO TRELLISKOODATTU MODULAATIO (TCM)

KAISTANLEVEYDEN JA TEHON KÄYTÖN KANNALTA OPTIMAALINEN MODULAATIO TRELLISKOODATTU MODULAATIO (TCM) 1 KAISTANLEVEYDEN JA TEHON KÄYTÖN KANNALTA OPTIMAALINEN MODULAATIO TRELLISKOODATTU MODULAATIO (TCM) CPM & TCM-PERIAATTEET 2 Tehon ja kaistanleveyden säästöihin pyritään, mutta yleensä ne ovat ristiriitaisia

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

Markkinoiden helpoin ja käytännöllisin IP Kamera

Markkinoiden helpoin ja käytännöllisin IP Kamera No.1. Plug and Play IP Kamera Markkinoiden helpoin ja käytännöllisin IP Kamera Helppo Käyttäjän ei tarvitse tietää mitään verkkotekniikasta eikä tehdä mitään asetuksia tai porttiohjauksia reitittimeen.

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 12, Astrometria Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 12. Astrometria 1. 2. 3. 4. 5. Astrometria Meridiaanikone Suhteellinen astrometria Katalogit

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan

Lisätiedot

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

lnx x 1 = = lim x = = lim lim 10 = x x0

lnx x 1 = = lim x = = lim lim 10 = x x0 BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

MTTTP1 Tilastotieteen johdantokurssi Luento JOHDANTO

MTTTP1 Tilastotieteen johdantokurssi Luento JOHDANTO 8.9.2016/1 MTTTP1 Tilastotieteen johdantokurssi Luento 8.9.2016 1 JOHDANTO Tilastotiede menetelmätiede, joka käsittelee - tietojen hankinnan suunnittelua otantamenetelmät, koejärjestelyt, kyselylomakkeet

Lisätiedot

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Jouni Räisänen Helsingin yliopiston fysiikan laitos 15.1.2010 Vuorokauden keskilämpötila Talvi 2007-2008

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Tietokonegrafiikka. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014

Tietokonegrafiikka. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014 Tietokonegrafiikka Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014 1. Sovellusalueita 2. Rasterigrafiikkaa 3. Vektorigrafiikkaa 4. 3D-grafiikkaa 1. Säteenheitto

Lisätiedot

PLAY. TP1 Mobiili musiikkikasvatusteknologia MEDIAT Kuvan ja äänen tallentaminen, muokkaaminen ja jakaminen (v1.1)

PLAY. TP1 Mobiili musiikkikasvatusteknologia MEDIAT Kuvan ja äänen tallentaminen, muokkaaminen ja jakaminen (v1.1) PLAY TP1 Mobiili musiikkikasvatusteknologia MEDIAT Kuvan ja äänen tallentaminen, muokkaaminen ja jakaminen 4.2.2016 (v1.1), projektipäällikkö Sisältö Kuvan ja äänen tallentaminen, muokkaaminen ja jakaminen

Lisätiedot

Tik Tietokoneanimaatio

Tik Tietokoneanimaatio Tik-111.5450 Tietokoneanimaatio 9.luento: flexible materials, shape deformations 28.11.05 - Tassu Animaatio 2005 - luento 9 1 Sisältö Tavoite: malli elävämpi jos ei ole jäykkä kiinteä kappale Sovelluksia:

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

2. luento. CS-C2110 Ohjelmointistudio 1: mediaohjelmointi Syksy 2016 [Studio 1] Antti Tolppanen, Sanna Suoranta, Lauri Savioja

2. luento. CS-C2110 Ohjelmointistudio 1: mediaohjelmointi Syksy 2016 [Studio 1] Antti Tolppanen, Sanna Suoranta, Lauri Savioja 2. luento CS-C2110 Ohjelmointistudio 1: mediaohjelmointi Syksy 2016 [Studio 1] Antti Tolppanen, Sanna Suoranta, Lauri Savioja Tänään Ensimmäinen tehtävä Vinkkejä projektin aloittamiseen OLO-työskentelyn

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Kuntoutus. Asiakaskäyttö (Running injury clinic, Salming run lab)

Kuntoutus. Asiakaskäyttö (Running injury clinic, Salming run lab) Elokuvat, pelit Tutkimus Kuntoutus Asiakaskäyttö (Running injury clinic, Salming run lab) Markkerit Kamerat : -Resoluutio 4 MP -Keräystaajuus 315Hz täydellä resoluutiolla -Max kuvausetäisyys 20-30m Hipposhalli

Lisätiedot

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Luento 2 Stereokuvan laskeminen 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Aiheet Stereokuvan laskeminen stereokuvan piirto synteettisen stereokuvaparin tuottaminen laskemalla stereoelokuva kollineaarisuusyhtälöt

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Lineaarialgebra MATH.1040 / Piirianalyysiä

Lineaarialgebra MATH.1040 / Piirianalyysiä Lineaarialgebra MATH.1040 / Piirianalyysiä 1 Kirchoffin ensimmäinen laki: Missä tahansa virtapiirin liitoskohdassa pisteeseen saapuvien sähkövirtojen summa on yhtä suuri kuin siitä poistuvien sähkövirtojen

Lisätiedot

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3] Lukuväleistä MB Funktio - < < tai ]-,] < tai ]-,] Yksikäsitteisyys Täytyy tuntea/arvata tyyppi T 0. (sivu ) f() = a) f () = = 9 = 4 T 0. (sivu ) T 0. (sivu ) f() = f() = b) f(k) = k c) f(t + ) = (t + )

Lisätiedot

ELEC-C1110 Automaatio- ja systeemitekniikan. Luento 11 Esimerkki automaation soveltamisesta

ELEC-C1110 Automaatio- ja systeemitekniikan. Luento 11 Esimerkki automaation soveltamisesta ELEC-C1110 Automaatio- ja systeemitekniikan perusteet Luento 11 Esimerkki automaation soveltamisesta Tämän luennon aihe Esimerkki automaation soveltamisesta käytännössä: WorkPartner-palvelurobotti WorkPartner

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Korkean resoluution ja suuren kuva-alueen SAR

Korkean resoluution ja suuren kuva-alueen SAR Korkean resoluution ja suuren kuva-alueen SAR MATINE tutkimusseminaari 17.11.2016 Risto Vehmas, Juha Jylhä, Minna Väilä, Ari Visa Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos Hankkeelle myönnetty

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä

Lisätiedot

Signaalien datamuunnokset. Digitaalitekniikan edut

Signaalien datamuunnokset. Digitaalitekniikan edut Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Datan analysointi ja visualisointi Teollisen internetin työpaja

Datan analysointi ja visualisointi Teollisen internetin työpaja Datan analysointi ja visualisointi Teollisen internetin työpaja Jouni Tervonen, Oulun yliopisto, Oulun Eteläisen instituutti 14.3.2016 Johdanto Tavoite yhdessä määritellä miten data-analytiikkaa voi auttaa

Lisätiedot

AV-muotojen migraatiotyöpaja - video. KDK-pitkäaikaissäilytys seminaari / Juha Lehtonen

AV-muotojen migraatiotyöpaja - video. KDK-pitkäaikaissäilytys seminaari / Juha Lehtonen AV-muotojen migraatiotyöpaja - video KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen Elävän kuvan muodot Videoon vaikuttavia asioita Kuvamuotojen ominaisuudet Audiomuotojen ominaisuudet

Lisätiedot

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,

Lisätiedot

Kevään 2011 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä /

Kevään 2011 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä / Kevään 0 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä / 8.7.0 a) b) c) a) Tehtävä Yhtälö ratkaistaan yleensä Solve-funktiolla: Solve x 3 x, x x 4 Joissakin tapauksissa

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Johdanto: Jaetut näytöt Jaetun näytön asetukset ja näytöstä poistuminen Aktiivisen sovelluksen valitseminen

Johdanto: Jaetut näytöt Jaetun näytön asetukset ja näytöstä poistuminen Aktiivisen sovelluksen valitseminen Kappale 14: Jaetut näytöt 14 Johdanto: Jaetut näytöt... 232 Jaetun näytön asetukset ja näytöstä poistuminen... 233 Aktiivisen sovelluksen valitseminen... 235 TI-89 / TI-92 Plus:ssä voit jakaa näytön ja

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Luento 11: Stereomallin ulkoinen orientointi

Luento 11: Stereomallin ulkoinen orientointi Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 17.2.2003, Päivityksiä: Katri Koistinen, 23.2.2004 ) Luento 11: Stereomallin ulkoinen

Lisätiedot

PURO Osahanke 3 Annikki Mäkelä, HY Anu Kantola Harri Mäkinen Edistyminen -mallin adaptointi kuuselle mittaukset kuusen yleisestä rakenteesta, kilpailun vaikutus siihen Anu Kantola kuusen oksamittaukset

Lisätiedot