Fotogrammetrian termistöä

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Fotogrammetrian termistöä"

Transkriptio

1 Fotogrammetrian termistöä Petri Rönnholm, Henrik Haggrén, 2015 Hei. Sain eilen valmiiksi mukavan mittausprojektin. Kiinnostaako kuulla yksityiskohtia? Totta kai! (Haluan tehdä vaikutuksen tähän kaveriin, koska hän on guru tekemään 3D-malleja) Otin uudella Nikonillani maakuvablokin talostani. Muuten - kameran kalibrointi paljasti, että sisäinen orientointi onnistui paremmin kuin koskaan. Hieno linssi, todellakin! Hienoa (Ymmärsin kameraosuuden, mutta mitä tuo sisäinen orientointi oli ja kalibrointi?) Olin aika innoissani, kun sädekimpputasoitus paljasti myös huikean hyvät tarkkuudet. Luulen, että myös ulkoiset orientoinnit olivat tarkemmat kuin olen koskaan ennen saanut! Öhh... Onnittelut! (Mieti! Mieti! Mitä tuo nyt oikein tarkoitti? Sädekimpputasoitus? Ulkoinen orientointi?) Datumvajeen selvitin helposti, kun tein jo aiemmin vähän maastomittauksia. Laitoin muuten valmiin 3D-mallin Google Earth:iin kaikkien nähtäväksi. Eikös sinustakin nämä fotogrammetriset mittaukset ole aivan mahtavia? Juu, totta kai. (Datum - mitä? Hei, mitä tuo fotogrammetria edes tarkoitti? Tämä keskustelu ei tainnut mennä ihan putkeen )

2 Fotogrammetria (Photogrammetry) Mittaustiede, jossa tehdään 3D-mittauksia käyttäen 2D-valokuvia. Fotogrammetrisilla mittauksilla saadaan luotettavaa tietoa pinnanmuodoista ja kappaleista etämittauksina eli kohteeseen ei tarvitse fyysisesti koskea. Mittausten lisäksi aineistoa voidaan tulkita. Projektiokeskus (Projection center) Ideaalisen neulansilmäkameran tapauksessa kaikki kameraan sisään tulevat valonsäteet kulkisivat yhden projektiokeskuksen kautta. Vaikka näin ei todellisuudessa käykään modernien linssijärjestelmien tapauksessa, voimme matemaattisesti määritellä tällaisen projektiokeskuksen. Projektiokeskus toimii myös kamerakoordinaatistojärjestelmän (3D) origona. Polttoväli, f (Principle distance/focal length) Lyhyin etäisyys projektiokeskuksen ja kuvatason välillä. Kameravakio, c (camera constant) Vastaa polttoväliä, jos kamera on fokusoitu äärettömyyteen. Muussa tapauksessa c<f.

3 Pääpiste, pp (Principle point) Piirrettäessä projektiokeskuksesta suora, joka on kohtisuorassa kuvatasoon nähden, löydetään pääpiste kohdasta, jossa suora leikkaa kuvatason. Tyypillisesti pääpiste on lähellä kuvan keskipistettä. Näin ei kuitenkaan ole aina ja erikoislinssit saattavat asettaa pääpisteen jopa kuva-alueen ulkopuolelle. Reunamerkki (Fiducial mark) Reunamerkkejä tarvittiin filmikameroiden käyttämiseksi mittaustarkoituksiin. Kun kuva valotettiin, reunamerkit tulivat filmille aina tietyllä tavalla. Näiden merkkien avulla voitiin selvittää luotettavasti, missä kuvan pääpiste on. Digitaalikameroissa ei ole tarvetta käyttää reunamerkkejä, koska kuvaussensori muodostaa luonnollisen ja vakaan koordinaatistojärjestelmän.

4 Kameran kalibrointi (Camera calibration) Kameran kalibroinnissa määritetään kameran sisäinen geometria. Ideaalisessa tapauksessa jouduttaisiin selvittämään vain pääpisteen paikka ja kameravakio. Todellisuudessa joudutaan ratkaisemaan myös linssivirheen parametrit. Vasen kuva: Alkuperäinen kuva; Oikea kuva: linssivirheet on poistettu ja kuva vastaa nyt ideaalisella neulansilmäkameralla otettua kuvaa. Sisäinen orientointi (Interior orientation) Sisäisessä orientoinnissa ratkaistaan koordinaatistomuunnos 2D kuvakoordinaatistosta ideaaliseen 3D kamerakoordinaatistoon. Muunnosta varten joudutaan ratkaisemaan kameravakio, pääpisteen paikka ja linssivirheet. Sisäisen orientoinnin parametrit saadaan kameran kalibroinnista. Ulkoinen orientointi (Exterior orientation) Ulkoinen orientointi määrittelee koordinaatistomuunnoksen maastokoordinaatiston (3D) ja kamerakoordinaatiston (3D) välillä. Muunnosta varten on tunnettava projektiokeskuksen sijainti (3 parametria) ja koordinaatiston 3 kiertoa suhteessa maastokoordinaatistoon. Tyypillisesti ulkoinen orientointi ratkaistaan käyttämällä maaston tunnettuja pisteitä. Vaihtoehtoisesti voidaan käyttää suoran georeferoinnin sensoreita (Satelliittinavigointijärjestelmät ja inertialaitteet), vaikka nämä eivät välttämättä ole riittävän tarkkoja vaativampiin sovelluksiin. Keskinäinen orientointi (Relative orientation) Kahden kuvan tapauksessa voimme selvittää niiden keskinäinen sijainti (periaatteessa 3 siirtoparametria) ja kiertoero (3 kiertoparametria). Kaikkia siirtoparametreja ei kuitenkaan voida ratkaista pelkistä kuvamittauksista, jonka takia mittakaava jää epäselväksi. Mittakaavan ratkaisemiseksi tulee tuntea ainakin yksi etäisyys kohteessa. Keskinäinen orientointi voidaan ratkaista mittaamalla riittävästi vastinpisteitä kuvien välille.

5 Kun keskinäinen orientointi on valmis, voimme tehdä stereomittauksia, mikä mahdollistaa 2D kuvahavaintojen muuttamisen 3D maastonpisteiksi. Keskinäinen orientointi Kuvakanta, B (Image base) Stereokuvan tapauksessa kuvien projektiokeskusten välistä etäisyyttä (tai vektoria) kutsutaan kuvakannaksi. Jos pelkkä kuvien keskinäinen orientointi on tunnettu, kuvakannan pituus jää ratkaisematta (sille voi antaa minkä tahansa pituuden). Kuvakannan pituutta muuttamalla voi skaalata mitatun 3D-mallin mittakaavaa.

6 Stereomalli (Stereo model) Kuvilta voidaan tehdä stereomittauksia, jos kuvat kattavat (päällepeitto) yhteisen alueen maastossa. Kuvien yhteistä peittoaluetta kutsutaan stereomalliksi, koska sitä osaa voidaan katsella kolmiulotteisesti (jos kuvat on otettu stereokuvauksen normaalitapauksessa). Stereomallin alueelta voidaan tehdä myös 3D mittauksia. Absoluuttinen orientointi (Absolute orientation) Kuvien stereomallilta mitatut 3D tiedot muunnetaan maastokoordinaatistoon. Muunnosta varten tarvitaan tunnettuja maastopisteitä (lähtöpisteitä), joiden vastinpisteet etsitään mitatulta stereomallilta. Keskinäisen orientoinnin ja 3D mittausten jälkeen tulokset ovat vapaasti valitussa koordinaatistossa (vasen kuva). Absoluuttisen orientoinnin jälkeen tulokset ovat halutussa maastokoordinaatistossa (oikea kuva) Mustat pisteet kuvaavat tunnettuja lähtöpisteitä.

7 Liitospiste (Tie-point) liitospiste on mikä tahansa vastinpistehavainto eri kuvien välillä. Liitospisteitä tarvitaan sitomaan kuvat toisiinsa joko keskinäisessä orientoinnissa tai sädekimpputasoituksessa. (englanniksi käytetään useita variaatioita: tiepoint, corresponding points, conjugate points, and homologous points) Sädekimpputasoitus (Bundle block adjustment) Sädekimpputasoituksessa hyödynnetään kaikkia kuvahavointoja (liitospisteitä) usein laajaksi muodostuvassa pienimmän neliösumman tasoituksessa. Tasoitukseen voidaan liittää myös tieto tunnetuista maaston lähtöpisteistä ja/tai suoran georeferoinnin sensoreista (jotka antavat likiarvot kameroiden ulkoisille orientoinneille). Tuloksena saadaan tarkat ulkoisen orientoinnin parametrit kaikille kuville. Toisaalta saadaan myös uudet 3D koordinaatit kaikille liitospisteille, jotka mitattiin kuvien välille. Jos kuvausgeometria on erityisen hyvä, tasoitukseen voidaan liittää myös kameran sisäisen orientoinnin parametrien ratkaiseminen (kameran kalibrointi!). Sädekimpputasoituksessa liitospisteiden havaintovektorit muodostavat sädekimpun, joka kiinnittää kuvajoukon geometrian ja kohdepisteiden sijainnit. Ilmakolmiointi (Aerial triangulation) Sädekimpputasoituksen erikoistapaus, jossa kaikki kuvat ovat (ainakin lähes) pystykuvia.

8 Datumvaje (Datum deficiency) 2D kuvahavainnot eivät sisällä milloinkaan tarpeeksi informaatiota, jotta voitaisiin ratkaista kohdetason 7- parametrinen yhdenmuotoisuusmuunnos (3 siirtoa, 3 kiertoa ja mittakaava). Tasoituksessa tämä näkyy siten, että tasoituksen rakennematriisin rangivaje on 7 vaikka mitattaisiin kuinka monta kuvahavaintoa lisää. Tämä estää sädekimpputasoituksen ratkaisemisen. Tyypillisesti datumvaje hoidetaan käyttämällä tunnettuja maaston lähtöpisteitä. Vaihtoehtoisesti vapaaverkkotasoituksessa sädekimpputasoitukseen liitetään fiktiiviset rajoiteyhtälöt varmistamaan ratkaistavuus. Tässä tapauksessa mallin mittakaava jää auki ja sen voi vapaasti valita.

Luento 6: Stereo- ja jonomallin muodostaminen

Luento 6: Stereo- ja jonomallin muodostaminen Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 5.10.2004) Luento 6: Stereo- ja jonomallin muodostaminen AIHEITA Keskinäinen orientointi Esimerkki

Lisätiedot

Luento 4 Georeferointi

Luento 4 Georeferointi Luento 4 Georeferointi 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)

Lisätiedot

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1 Luento 4 Georeferointi 2007 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)

Lisätiedot

Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus

Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 27.9.2005) Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus Mitä pitäsi oppia? Nyt pitäisi viimeistään ymmärtää, miten kollineaarisuusyhtälöillä

Lisätiedot

Luento 7: Fotogrammetrinen mittausprosessi

Luento 7: Fotogrammetrinen mittausprosessi 7Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 7.2.2003, Päivityksiä: Katri Koistinen, 5.2.2004 ) Luento 7: Fotogrammetrinen mittausprosessi

Lisätiedot

Luento 6: 3-D koordinaatit

Luento 6: 3-D koordinaatit Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 6: 3-D koordinaatit AIHEITA (Alkuperäinen luento: Henrik Haggrén, 16.2.2003, Päivityksiä: Katri Koistinen 5.2.2004

Lisätiedot

Luento 8: Kolmiointi AIHEITA. Kolmiointi. Maa-57.301 Fotogrammetrian yleiskurssi. Luento-ohjelma 1 2 3 4 5 6 7 8 9 10

Luento 8: Kolmiointi AIHEITA. Kolmiointi. Maa-57.301 Fotogrammetrian yleiskurssi. Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 12.10.2004) Luento 8: Kolmiointi AIHEITA Kolmiointi Nyrkkisääntöjä Kuvablokki Blokin pisteet Komparaattorit

Lisätiedot

Luento 3: Kuvahavainnot

Luento 3: Kuvahavainnot Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 22.9.2004) Luento 3: Kuvahavainnot Mitä pitäsi oppia? Viimeistään nyt pitäisi ymmärtää kuva-, komparaattori- ja kamerakoordinaatistojen

Lisätiedot

Luento 5: Stereoskooppinen mittaaminen

Luento 5: Stereoskooppinen mittaaminen Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 5: Stereoskooppinen mittaaminen AIHEITA Etäisyysmittaus stereokuvaparilla Esimerkki: "TKK" Esimerkki: "Ritarihuone"

Lisätiedot

Luento 11: Stereomallin ulkoinen orientointi

Luento 11: Stereomallin ulkoinen orientointi Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 17.2.2003, Päivityksiä: Katri Koistinen, 23.2.2004 ) Luento 11: Stereomallin ulkoinen

Lisätiedot

Luento 7: Kuvan ulkoinen orientointi

Luento 7: Kuvan ulkoinen orientointi Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 6.10.2004) Luento 7: Kuvan ulkoinen orientointi AIHEITA Ulkoinen orientointi Suora ratkaisu Epäsuora

Lisätiedot

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Luento 2 Stereokuvan laskeminen 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Aiheet Stereokuvan laskeminen stereokuvan piirto synteettisen stereokuvaparin tuottaminen laskemalla stereoelokuva kollineaarisuusyhtälöt

Lisätiedot

Luento 4: Kiertomatriisi

Luento 4: Kiertomatriisi Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 28.9.2004) Luento 4: Kiertomatriisi Mitä pitäisi oppia? ymmärtää, että kiertomatriisilla voidaan kiertää koordinaatistoa ymmärtää, että

Lisätiedot

MAA-C2001 Ympäristötiedon keruu

MAA-C2001 Ympäristötiedon keruu MAA-C2001 Ympäristötiedon keruu Luento 1b Petri Rönnholm, Aalto-yliopisto 1 Laserkeilauksen, fotogrammetrian ja kaukokartoituksen harjoituksista Laserkeilausharjoitus Tarkempi aikataulu julkaistaan lähiaikoina

Lisätiedot

Luento Fotogrammetrian perusteet. Henrik Haggrén

Luento Fotogrammetrian perusteet. Henrik Haggrén Luento 8 6.5.2016 Fotogrammetrian perusteet Henrik Haggrén Sisältö Fotogrammetrinen kuvaaminen Avaruussuorat ja sädekimput Sisäinen ja ulkoinen orientointi Kollineaarisuusehto kohteen ja kuvan välillä

Lisätiedot

Maa-57.260. Kameran kalibrointi. TKK/Fotogrammetria/PP

Maa-57.260. Kameran kalibrointi. TKK/Fotogrammetria/PP Kameran kalibrointi Kameran kalibroinnilla tarkoitetaan sen kameravakion, pääpisteen paikan sekä optiikan aiheuttamien virheiden määrittämistä. Virheillä tarkoitetaan poikkeamaa ideaalisesta keskusprojektiokuvasta.

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 9 3-D mittaus. fotogrammetriaan ja kaukokartoitukseen

Luento 9 3-D mittaus. fotogrammetriaan ja kaukokartoitukseen Luento 9 3-D mittaus 1 Luennot 2008 JOHDANTO Koko joukko kuvia! Kuvien moniulotteisuus. LUENNOT I. Kuvien ottaminen Mitä kuvia ja miten? Mitä kuvista nähdään? II. III. IV. Kuvien esikäsittely Miten kartoituskuvat

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 6 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Maa-57.1030 Fotogrammetrian perusteet

Maa-57.1030 Fotogrammetrian perusteet Maa-57.1030 Fotogrammetrian perusteet Luento 8 Kartoitussovellukset Petri Rönnholm/Henrik Haggrén Mitä fotogrammetrisella kartoituksella tuotetaan? 3D koordinaatteja kohteesta Maaston korkeusmalli Topograafiset

Lisätiedot

Luento 2: Kuvakoordinaattien mittaus

Luento 2: Kuvakoordinaattien mittaus Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 14.9.2005) Luento 2: Kuvakoordinaattien mittaus Mitä pitäisi oppia? Muunnokset informaatiokanavassa (osin kertausta) Erotella kuvaan ja

Lisätiedot

(Petri Rönnholm / Henrik Haggrén, ) Luento 1: Opintojakson järjestäytyminen. Motivointia. Kertausta. Kuvamittauksen vaihtoehdot.

(Petri Rönnholm / Henrik Haggrén, ) Luento 1: Opintojakson järjestäytyminen. Motivointia. Kertausta. Kuvamittauksen vaihtoehdot. Maa-57.301 Fotogrammetrian yleiskurssi (Petri Rönnholm / Henrik Haggrén, 12.9.2005) Luento 1: Opintojakson järjestäytyminen. Motivointia. Kertausta. Kuvamittauksen vaihtoehdot. Mitä pitäisi oppia? Palauttaa

Lisätiedot

Luento 5. Stereomittauksen tarkkuus Maa Fotogrammetrian perusteet 1

Luento 5. Stereomittauksen tarkkuus Maa Fotogrammetrian perusteet 1 Luento 5 Stereomittauksen tarkkuus 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Stereokuvauksen * tarkkuuteen vaikuttavat asiat tarkkuuden arviointi, kuvauksen suunnittelu ja simulointi stereomallin

Lisätiedot

Ilmakolmioinnin laadunvalvonta fotogrammetristen pintamallien ja laserkeilausaineiston avulla

Ilmakolmioinnin laadunvalvonta fotogrammetristen pintamallien ja laserkeilausaineiston avulla Ilmakolmioinnin laadunvalvonta fotogrammetristen pintamallien ja laserkeilausaineiston avulla Aalto-yliopiston insinööritieteiden korkeakoulun maankäyttötieteiden laitoksella tehty diplomityö Espoo, toukokuu

Lisätiedot

Luento 4: Kolmiointihavainnot

Luento 4: Kolmiointihavainnot Maa-57.220 Fotogrammetrinen kartoitus Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 4: Kolmiointihavainnot Luento 4: Kolmiointihavainnot Reconstruction procedure Kuvahavainnot Kollineaarisuusyhtälö

Lisätiedot

Malleja ja menetelmiä geometriseen tietokonenäköön

Malleja ja menetelmiä geometriseen tietokonenäköön Malleja ja menetelmiä geometriseen tietokonenäköön Juho Kannala 7.5.2010 Johdanto Tietokonenäkö on ala, joka kehittää menetelmiä automaattiseen kuvien sisällön tulkintaan Tietokonenäkö on ajankohtainen

Lisätiedot

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg 3D-kuvauksen tekniikat ja sovelluskohteet Mikael Hornborg Luennon sisältö 1. Optiset koordinaattimittauskoneet 2. 3D skannerit 3. Sovelluskohteet Johdanto Optiset mittaustekniikat perustuvat valoon ja

Lisätiedot

Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry)

Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry) Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry) -luennot: --ti 12-14 M5, to 12-14 M5 --Henrik Haggrén (HH), Petteri Pöntinen (PP) 1. Johdanto ja teoreettisia perusteita I,

Lisätiedot

Deformoituvan metallirakenteen fotogrammetrinen muodonmuutosmittaus

Deformoituvan metallirakenteen fotogrammetrinen muodonmuutosmittaus Deformoituvan metallirakenteen fotogrammetrinen muodonmuutosmittaus Diplomityö, joka on jätetty opinnäytteenä tarkastettavaksi diplomi-insinöörin tutkintoa varten. Espoo, huhtikuu 2015 Tekniikan kandidaatti

Lisätiedot

Luento 10 3-D maailma. fotogrammetriaan ja kaukokartoitukseen

Luento 10 3-D maailma. fotogrammetriaan ja kaukokartoitukseen Luento 10 3-D maailma 1 Luennot 2007 JOHDANTO Koko joukko kuvia! Kuvien moniulotteisuus. LUENNOT I. Kuvien ottaminen Mitä kuvia ja miten? Mitä kuvista nähdään? II. III. IV. Kuvien esikäsittely Miten kartoituskuvat

Lisätiedot

Luento 3: Keskusprojektiokuvaus

Luento 3: Keskusprojektiokuvaus Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 11.3.2003, Päivityksiä: Katri Koistinen, 20.1.2004) Luento 3: Keskusprojektiokuvaus

Lisätiedot

JUHTA - Julkisen hallinnon tietohallinnon neuvottelukunta

JUHTA - Julkisen hallinnon tietohallinnon neuvottelukunta JHS 197 EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako Liite 6: EUREF-FIN:n ja KKJ:n välinen kolmiulotteinen yhdenmuotoisuusmuunnos ja sen tarkkuus Versio: 1.0 / 3.2.2016

Lisätiedot

FOTOGRAMMETRINEN PISTETIHENNYS

FOTOGRAMMETRINEN PISTETIHENNYS FOTOGRAMMETRINEN PISTETIHENNYS 1. Yleistä 2. Ilmakuvaus SKM Gisair Oy Työssä määritettiin ulkoinen orientointi Sotkamon kunnan keskustan alueen ilmakuvaukselle. Ilmakuvauksen teki SKM Gisair Oy keväällä

Lisätiedot

EUREF-FIN/N2000-MUUNNOKSET HELSINGIN KAUPUNGISSA

EUREF-FIN/N2000-MUUNNOKSET HELSINGIN KAUPUNGISSA 1 (10) EUREF-FIN/N2000-MUUNNOKSET HELSINGIN KAUPUNGISSA 5.3.2012 2 (10) Sisältö: 1 Johdanto... 3 1.1 Muunnosasetukset paikkatieto-ohjelmistoissa... 3 1.2 Lisätiedot... 3 2 Korkeusjärjestelmän muunnos NN

Lisätiedot

1. STEREOKUVAPARIN OTTAMINEN ANAGLYFIKUVIA VARTEN. Hyvien stereokuvien ottaminen edellyttää kahden perusasian ymmärtämistä.

1. STEREOKUVAPARIN OTTAMINEN ANAGLYFIKUVIA VARTEN. Hyvien stereokuvien ottaminen edellyttää kahden perusasian ymmärtämistä. 3-D ANAGLYFIKUVIEN TUOTTAMINEN Fotogrammetrian ja kaukokartoituksen laboratorio Teknillinen korkeakoulu Petri Rönnholm Perustyövaiheet: A. Ota stereokuvapari B. Poista vasemmasta kuvasta vihreä ja sininen

Lisätiedot

Luento 4: Kolmiointihavainnot

Luento 4: Kolmiointihavainnot Maa-57.220 Fotogrammetrinen kartoitus Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 4: Kolmiointihavainnot Luento 4: Kolmiointihavainnot Reconstruction procedure Kuvahavainnot Kollineaarisuusyhtälö

Lisätiedot

Luento 9. Stereokartoituskojeet

Luento 9. Stereokartoituskojeet Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 9. Stereokartoituskojeet AIHEITA Analogiset stereokartoituskojeet Analyyttiset stereokartoituskojeet Digitaalinen

Lisätiedot

Mittausten suunnittelu I

Mittausten suunnittelu I Mittausten suunnittelu I Eteenpäinleikkaukseen perustuvan mittauksen tarkkuus riippuu kahdesta asiasta (C.S. Fraser, 1996): 1) kuvaus-/tähtäyssäteen määritystarkkuudesta 2) kuvausgeometriasta Saavutettavaa

Lisätiedot

Puun geometrisen laatutiedon mittaukset monikameramenetelmällä

Puun geometrisen laatutiedon mittaukset monikameramenetelmällä Metsätehon raportti 183 11.3.2005 Rajoitettu jakelu Järvi-Suomen Uittoyhdistys Kuhmo Oy Metsähallitus Metsäliitto Osuuskunta Metsäteollisuus ry Pölkky Oy Stora Enso Oyj UPM-Kymmene Oyj Vapo Timber Oy Visuvesi

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Luento 9: Analyyttinen stereomittaus. Kuvien oikaisu. Ortokuvaus

Luento 9: Analyyttinen stereomittaus. Kuvien oikaisu. Ortokuvaus Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 13.10.2004) Luento 9: Analyyttinen stereomittaus. Kuvien oikaisu. Ortokuvaus AIHEITA Stereomittaus

Lisätiedot

Luento 10: Optinen 3-D mittaus ja laserkeilaus

Luento 10: Optinen 3-D mittaus ja laserkeilaus Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 19.10.2004) Luento 10: Optinen 3-D mittaus ja laserkeilaus AIHEITA Optinen 3-D digitointi Etäisyydenmittaus

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

Luento 6 Mittausten suunnittelu II. erikoissovellukset

Luento 6 Mittausten suunnittelu II. erikoissovellukset Luento 6 Mittausten suunnittelu II 1 Aiheita Mittausongelman määrittely Tarkkuusluvut Suhteellinen tarkkuusluku Suhteellinen tarkkuus Tarkkuuden arvioiminen Kuvahavainnon keskivirhe Verkon rakennevakio

Lisätiedot

S11-04 Kompaktikamerat stereokamerajärjestelmässä. Projektisuunnitelma

S11-04 Kompaktikamerat stereokamerajärjestelmässä. Projektisuunnitelma AS-0.3200 Automaatio- ja systeemitekniikan projektityöt S11-04 Kompaktikamerat stereokamerajärjestelmässä Projektisuunnitelma Ari-Matti Reinsalo Anssi Niemi 28.1.2011 Projektityön tavoite Projektityössä

Lisätiedot

Luento 7 Stereokartoituskojeet. 2007 Maa-57.1030 Fotogrammetrian perusteet 1

Luento 7 Stereokartoituskojeet. 2007 Maa-57.1030 Fotogrammetrian perusteet 1 Luento 7 Stereokartoituskojeet 1 Stereokartoitus (Hannu Hyyppä, Petri Rönnholm, TKK) 2 Fotogrammetrinen prosessi 3 Stereokartoituskoje Stereokartoituskojeessa kuvaparin stereoskooppinen tarkastelu ja tarkka

Lisätiedot

Teknillinen Korkeakoulu Fotogrammetrian ja kaukokartoituksen laboratorio Maa-57.270 Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari

Teknillinen Korkeakoulu Fotogrammetrian ja kaukokartoituksen laboratorio Maa-57.270 Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Teknillinen Korkeakoulu Fotogrammetrian ja kaukokartoituksen laboratorio Maa-57.270 Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Phantogrammit Espoossa 22.4.2005 Laura Liikkanen 58271V

Lisätiedot

Symmetrioiden tutkiminen GeoGebran avulla

Symmetrioiden tutkiminen GeoGebran avulla Symmetrioiden tutkiminen GeoGebran avulla Tutustutaan esimerkkien kautta siihen, miten geometrista symmetriaa voidaan tutkia ja havainnollistaa GeoGebran avulla: peilisymmetria: peilaus pisteen ja suoran

Lisätiedot

Luento 5: Kolmioinnin laskenta

Luento 5: Kolmioinnin laskenta Maa-57.0 Fotogrammetrinen kartoitus Luento-ohjelma 1 3 4 5 6 7 8 9 10 11 1 13 Luento 5: Kolmioinnin laskenta Luento 5: Kolmioinnin laskenta Ilmakolmiointi Blokkitasoitus painotetulla PNS-menetelmällä Kolmioinnin

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Luento 1 Fotogrammetria prosessina Maa Fotogrammetrian perusteet 1

Luento 1 Fotogrammetria prosessina Maa Fotogrammetrian perusteet 1 Luento 1 Fotogrammetria prosessina. 2007 Maa-57.1030 Fotogrammetrian perusteet 1 Maa-57.1030 Fotogrammetrian perusteet (3 op) Sisältyy geomatiikan koulutusohjelman perusmoduuliin A1. Kurssin kuvaus Stereofotogrammetria.

Lisätiedot

Muutoksen arviointi differentiaalin avulla

Muutoksen arviointi differentiaalin avulla Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin

Lisätiedot

Raidegeometrian geodeettiset mittaukset osana radan elinkaarta

Raidegeometrian geodeettiset mittaukset osana radan elinkaarta Raidegeometrian geodeettiset mittaukset osana radan elinkaarta Suunnittelija (Maanmittaus DI) 24.1.2018 Raidegeometrian geodeettisen mittaukset osana radan elinkaarta Raidegeometrian geodeettisilla mittauksilla

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 4 Suora ja taso Ennakkotehtävät 1. a) Kappale kulkee yhdessä sekunnissa vektorin s, joten kahdessa sekunnissa kappale kulkee vektorin 2 s. Pisteestä A = ( 3, 5) päästään pisteeseen P, jossa kappale sijaitsee,

Lisätiedot

iwitness-harjoitus, kohteen mallinnus

iwitness-harjoitus, kohteen mallinnus Maa-57.1010, Johdanto valokuvaukseen, fotogrammetriaan ja kaukokartoitukseen iwitness-harjoitus, kohteen mallinnus Harjoituksen kulku tiivistettynä A. Aloitustilaisuus 29.1. klo 14.15. B. Mallinnuskuvien

Lisätiedot

Radiotekniikan sovelluksia

Radiotekniikan sovelluksia Poutanen: GPS-paikanmääritys sivut 72 90 Kai Hahtokari 11.2.2002 Konventionaalinen inertiaalijärjestelmä (CIS) Järjestelmä, jossa z - akseli osoittaa maapallon impulssimomenttivektorin suuntaan standardiepookkina

Lisätiedot

Luento 4 Kolmiulotteiset kuvat. fotogrammetriaan ja kaukokartoitukseen

Luento 4 Kolmiulotteiset kuvat. fotogrammetriaan ja kaukokartoitukseen Luento 4 Kolmiulotteiset kuvat 1 Kuvan kolmiulotteisuus 2 Stereokuva 3 Aiheita Parallaksi. Stereoskopia. Stereoskooppinen näkeminen. Stereomallin kokonaisplastiikka. Stereokuvaus. Dokumentointi stereodiakuvin.

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

HAMMASVALOSTEN AUTOMATISOITU MITTAUSMENETELMÄ

HAMMASVALOSTEN AUTOMATISOITU MITTAUSMENETELMÄ SÄHKÖ- JA TIETOTEKNIIKAN OSASTO TIETOTEKNIIKAN KOULUTUSOHJELMA HAMMASVALOSTEN AUTOMATISOITU MITTAUSMENETELMÄ Työn tekijä Anne Pulli Työn valvoja Janne Heikkilä Hyväksytty / 2008 Arvosana Pulli A. (2008)

Lisätiedot

Paraabeli suuntaisia suoria.

Paraabeli suuntaisia suoria. 15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Stereokameran tarkkuuden mittausmenetelmä lisätyn todellisuuden

Stereokameran tarkkuuden mittausmenetelmä lisätyn todellisuuden TEKNILLINEN KORKEAKOULU Mediatekniikan laitos Diplomityö Mikko Kytö Stereokameran tarkkuuden mittausmenetelmä lisätyn todellisuuden sovellusalueella Valvoja Professori Pirkko Oittinen Ohjaaja Mikko Nuutinen

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2 8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason

Lisätiedot

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Uusi koordinaatti- ja korkeusjärjestelmä

Uusi koordinaatti- ja korkeusjärjestelmä Uusi koordinaatti- ja korkeusjärjestelmä Markku Poutanen Geodeettinen laitos Uusi koordinaatti- ja korkeusjärjestelmä Taustaa Uuden koordinaattijärjestelmän perusteet JHS ja käyttöönotto Uusi korkeusjärjestelmä

Lisätiedot

Luento 7 Stereokartoituskojeet Maa Fotogrammetrian perusteet 1

Luento 7 Stereokartoituskojeet Maa Fotogrammetrian perusteet 1 Luento 7 Stereokartoituskojeet 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Stereokartoitus (Hannu Hyyppä, Petri Rönnholm, TKK) 2008 Maa-57.1030 Fotogrammetrian perusteet 2 Fotogrammetrinen prosessi 2008

Lisätiedot

Luento 4 Kolmiulotteiset kuvat. fotogrammetriaan ja kaukokartoitukseen

Luento 4 Kolmiulotteiset kuvat. fotogrammetriaan ja kaukokartoitukseen Luento 4 Kolmiulotteiset kuvat 1 Kuvan kolmiulotteisuus 2 Stereokuva 3 Aiheita Parallaksi. Stereoskopia. Stereoskooppinen näkeminen. Stereomallin kokonaisplastiikka. Stereokuvaus. Dokumentointi stereodiakuvin.

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot 5. Grafiikkaliukuhihna: () geometriset operaatiot Johdanto Grafiikkaliukuhihnan tarkoitus on kuvata kolmiulotteisen kohdeavaruuden kuva kaksiulotteiseen kuva eli nättöavaruuteen. aikka kolmiulotteisiakin

Lisätiedot

iwitness-harjoitus, kohteen mallinnus

iwitness-harjoitus, kohteen mallinnus Maa-57.1010, Johdanto valokuvaukseen, fotogrammetriaan ja kaukokartoitukseen iwitness-harjoitus, kohteen mallinnus Harjoituksen kulku tiivistettynä A. Aloitustilaisuus 25.1. klo 11.45. B. Mallinnuskuvien

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 5 Päivitett 9..7 Pramidi 4 Luku 8..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 865 ratkaisua. 8..7 Korjattu tehtävässä 85 luku 5 luvuksi

Lisätiedot

Stereopaikannusjärjestelmän tarkkuus (3 op)

Stereopaikannusjärjestelmän tarkkuus (3 op) Teknillinen korkeakoulu AS 0.3200 Automaatio ja systeemitekniikan projektityöt Stereopaikannusjärjestelmän tarkkuus (3 op) 19.9.2008 14.01.2009 Työn ohjaaja: DI Matti Öhman Mikko Seppälä 1 Työn esittely

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

TIETOTEKNIIKAN OSASTO. Marko Seppälä YMPÄRISTÖN 3D-MALLINTAMINEN QUADROKOPTERILLA KUVATUN 2D-VIDEON POHJALTA

TIETOTEKNIIKAN OSASTO. Marko Seppälä YMPÄRISTÖN 3D-MALLINTAMINEN QUADROKOPTERILLA KUVATUN 2D-VIDEON POHJALTA TIETOTEKNIIKAN OSASTO Marko Seppälä YMPÄRISTÖN 3D-MALLINTAMINEN QUADROKOPTERILLA KUVATUN 2D-VIDEON POHJALTA Diplomityö Tietotekniikan koulutusohjelma Tammikuu 2014 Seppälä M. (2013) Ympäristön 3D-mallintaminen

Lisätiedot

Suuriformaattiset digitaaliset ilmakuvakamerat

Suuriformaattiset digitaaliset ilmakuvakamerat Maa 57.270, Fotogrammetrian, kaukokartoituksen ja kuvantulkinnan seminaari Suuriformaattiset digitaaliset ilmakuvakamerat 2007 Lauri Saarinen Sisällysluettelo 1 Johdanto...3 2 Digitaalinen ilmakuvakamera...3

Lisätiedot

Camflight x8:n RPAS-ilmakuvaus väylämäisessä

Camflight x8:n RPAS-ilmakuvaus väylämäisessä Markus Hagelberg Camflight x8:n RPAS-ilmakuvaus väylämäisessä kohteessa Metropolia Ammattikorkeakoulu Insinööri (AMK) Maanmittaustekniikka Insinöörityö 1.9.2017 Tiivistelmä Tekijä Otsikko Sivumäärä Aika

Lisätiedot

ILMALASERKEILAUSAINEISTOJEN JA ILMAKUVIEN KESKINÄINEN ORIENTOINTI. Petri Rönnholm 1, Juha Hyyppä 2. petri.ronnholm@aalto.fi, juha.hyyppa@fgi.

ILMALASERKEILAUSAINEISTOJEN JA ILMAKUVIEN KESKINÄINEN ORIENTOINTI. Petri Rönnholm 1, Juha Hyyppä 2. petri.ronnholm@aalto.fi, juha.hyyppa@fgi. The Photogrammetric Journal of Finland, Vol. 22, No. 3, 2011 ILMALASERKEILAUSAINEISTOJEN JA ILMAKUVIEN KESKINÄINEN ORIENTOINTI Petri Rönnholm 1, Juha Hyyppä 2 1 Aalto-yliopisto, Insinööritieteiden korkeakoulu,

Lisätiedot

Mittaustekniikka (3 op)

Mittaustekniikka (3 op) 530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

MATEMATIIKKA JA TAIDE I

MATEMATIIKKA JA TAIDE I 1 MATEMATIIKKA JA TAIDE I Tehtävät sopivat peruskoulun alaluokille. Ne on koostettu Matematiikkalehti Solmun Matematiikkadiplomeista I VI. Sivunumerot viittaavat näiden diplomitehtävien sivuihin. Aihepiirejä:

Lisätiedot

Digitaalikameran asemointi pallopanoraamajalustaan

Digitaalikameran asemointi pallopanoraamajalustaan Maa-57.290 Fotogrammetrian erikoistyö Digitaalikameran asemointi pallopanoraamajalustaan Espoo, elokuussa 2001 Antero Kukko Sisällysluettelo 1. Johdanto 3 2. Perspektiivinen kameramalli ja kuvasäteiden

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Oppimistavoitteet. MAA-C2001 Ympäristötiedon keruu. Kinect Flash lidar Muita 3D-mittausinstrumentteja Sovelluksia

Oppimistavoitteet. MAA-C2001 Ympäristötiedon keruu. Kinect Flash lidar Muita 3D-mittausinstrumentteja Sovelluksia MAA-C2001 Ympäristötiedon keruu Luento 11, Muut mittausinstrumentit, 2017 Petri Rönnholm, Aalto-yliopisto 1 Oppimistavoitteet Kinect Flash lidar Muita 3D-mittausinstrumentteja Sovelluksia 2 1 Kinect Kinect,

Lisätiedot

TTY Mittausten koekenttä. Käyttö. Sijainti

TTY Mittausten koekenttä. Käyttö. Sijainti TTY Mittausten koekenttä Käyttö Tampereen teknillisen yliopiston mittausten koekenttä sijaitsee Tampereen teknillisen yliopiston välittömässä läheisyydessä. Koekenttä koostuu kuudesta pilaripisteestä (

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Luento 4: Kuvien geometrinen tulkinta

Luento 4: Kuvien geometrinen tulkinta Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 4: Kuvien geometrinen tulkinta AIHEITA Muunnokset informaatiokanavassa Geometrisen tulkinnan vaihtoehdot Mittakaava

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

2016/06/21 13:27 1/10 Laskentatavat

2016/06/21 13:27 1/10 Laskentatavat 2016/06/21 13:27 1/10 Laskentatavat Laskentatavat Yleistä - vaakageometrian suunnittelusta Paalu Ensimmäinen paalu Ensimmäisen paalun tartuntapiste asetetaan automaattisesti 0.0:aan. Tämä voidaan muuttaa

Lisätiedot