Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs)

Koko: px
Aloita esitys sivulta:

Download "Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs)"

Transkriptio

1 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa sanotaan sisäkkäiseksi tai hierarkiseksi (nested,hierarchical). Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) Kaksitasoisessa hierarkiseissa asetelmassa on kaksi faktoria A ja B,jossa B : n tasot ovat hierarkisesti A:n tasojen sisällä. Esimerkki 9.1: Oletetaan että yhtiöllä on kolme raakaainetoimittajaa (faktori A). Halutaan tutkia onko kunkin toimittajan raaka-aine puhtaudeltaan samanveroista. Jokaiselta toimittajalta tilataan neljä raaka-aine-erää (faktori B) ja jokaisesta erästä otetaan kolme näytettä (toistot n = 3) puhtaustestiä varten. 1 2

2 Asetelma on seuraavanlainen: Toimittaja Erä Hav. y 111 y 121 y 131 y 141 y 112 y 122 y 132 y 142 y 211 y 221 y 231 y 241 y 212 y 222 y 232 y 242 y 311 y 321 y 331 y 341 y 312 y 322 y 332 y 342 Huom. 9.1: Esimerkissä 9.1 erien (faktori B) numerointi 1 4 kunkin toimittajan (faktori A) kohdalla on vain sopimuskysymys. Yhtä hyvin ne voisivat olla toimittajalla 1: 1 4 toimittajalla 2: 5 8 ja toimittajalla 3: Huom. 9.2: Aina ei ole itsestään selvää onko tietty koe hierarkinen vai ei. Kuitenkin periaatteena voidaan pitää,että jos faktorin tasot voidaan numeroida y 113 y 123 y 133 y 143 y 213 y 223 y 233 y 243 y 313 y 323 y 333 y 343 Figure 9.1: Two-stage nested design. Erityisesti havaitaan,että eri toimittajien erät eivät ole missään tekemisissä muiden toimittajien erien kanssa. Toimittajan 1 erällä 1 ei ole mitään tekemistä toimittajan 2 erän1kanssa,jne. 3 4

3 Tilastollinen Malli Jos tekijä B on hierarkinen (nested) A:han nähden,niin A ja B välillä ei voi olla interaktiota,sillä kukinb:n taso (arvo,luokka) on sidoksissa vain tiettyyn A:n tasoon (arvoon, luokkaan). Täten siis B luokka on A:sta riippuvainen (A:n funkiot). Kasksiasteisen hierarkisen asetelman tilastollinen malli on muotoa (1) y ijk = μ + τ i + β j(i) + ε (ij)k, i =1,...,a (= tekijän A tasot), j =1,...,b (= tekijän B tasot) ja k =1,...,n (= toistot), (2) ε (ij)k NID(0,σ 2 ). Alaindeksi j(i) osoittaa,että tekijän B luokka j: on tekijän A luokassa i (hierarkisuus). Alaindeksi (ij)k puolestaan viittaa toistoon k tekijöiden A ja B käsittelykombinaation ij sisällä. Yhdysvaikutusta (τβ) ij ei ole. 5 6

4 Jos tekijät A ja B ovat kiinteitä (ei-satunnaisia) (fixed effects), ja a i=1 b j=1 τ i =0 β j(i) =0. Jos A ja B ovat satunnaistekijöitä (random effects), (3) τ i N(0,σ 2 τ ) ja (4) β j(i) N(0,σ 2 β ). Asetelmaa,jossa B:n luokkia on kussakin A:n luokassa sama määrä ja toistojen n määrä on sama,sanotaan tasapainotetuksi hierarkiseksi asetelmaksi (balanced nested design). Neliösummahajotelma: (5) a b i=1 j=1 k=1 n (y ijk y... ) 2 = bn +n + a ( y i.. y... ) 2 i=1 a i=1 j=1 a b i=1 j=1 k=1 b ( y ij. y i.. ) 2 n (y ijk y ij. ) 2 eli (6) SS T = SS A + SS B(A) + SS E, 7 8

5 jossa (7) SS T = a b n (y ijk y... ) 2, i=1 j=1 k=1 a (8) SS A = bn ( y i.. y... ) 2, (9) SS B(A) = n ja i=1 a b i=1 j=1 ( y ij. y i.. ) 2 Varianssitaulu: Source SS df MS A SS A a 1 MS A BwithinA SS B(A) a(b 1) MS B(A) Error SS E ab(n 1) MS E Total SS T abn 1 (11) MS A = SS A (a 1), (10) SS E = a b n (y ijk y ij. ) 2. i=1 j=1 k=1 (12) MS B(A) = SS B(A) a(b 1), (13) SS E = SS E ab(n 1). Huom. 9.3: Testisuureet määräytyvät sen mukaan ovatko tekijät kiinteitä vai satunnaisia. 9 10

6 (a) Molemmat tekijät A ja B kiinteitä (fixed effects model): (b) Tekijät satunnaismuuttujia (random effects model [variance component model]): Hypoteesi: (14) H 0 : τ i = 0 kaikilla i =1,...,a. Testisuure: (15) F = MS A. MS E Hypoteesi: (16) H 0 : β j(i) = 0 kaikilla j =1,...,b,i=1,...,a. Testisuure: (17) F = MS B(A) MS E. Hypoteesi: (18) H 0 : σ 2 τ =0. Testisuure: (19) F = MS A. MS B(A) Hypoteesi: (20) H 0 : σ 2 β =0. Testisuure: (21) F = MS B(A) MS E

7 (c) A kiinteä jab satunnaistekijä (mixed model): Sekatapauksessa,jossa A kiinteä jab satunnainen,testattavat hypoteesit ovat (14) ja (20). Hypoteesin (14) testisuure: (22) F = MS A MS B(A). Hypoteesin (20) testisuure: (23) F = MS B(A) MS E Esimerkki 9.2: Tarkastellaan kolmella menetelmällä valmistetun polttoaineen palamisominaisuuksia. Valitaan satunnaisesti neljä näyte-erää kustakin valmistusmenetelmästä jatehdään kolme palamiskoetta kustakin näytteestä. Kysymyksessä on siis sekamalli. =========================================================== Tyotantoprosessi (A) Era(B) =========================================================== 13 14

8 SAS: Title "Design of Experiments, Example 9.2": options ls = 80; data example92; input A B y label A = "Propellant manufacturing process" B = "Batch within process" y = "Propellant burning rate"; datalines; ; run; proc glm data = example92; Title "Nested Random Effects Model"; class A B; model y = A B(A); random B(A) /test; run; quit; Tulokset: Source A B(A) The GLM Procedure Type III Expected Mean Square Var(Error) + 3 Var(B(A)) + Q(A) Var(Error) + 3 Var(B(A)) Source DF Type III SS Mean Square F Value Pr > F A Error: MS(B(A)) Source DF Type III SS Mean Square F Value Pr > F B(A) <.0001 Error: MS(Error) Tekijän A vaikutus ei ole tilastollisesti merkitsevä. Tekijä B on tilstollisesti merkitsevä. Täten tuotantoprosessilla ei näytä olevan vaikutusta palamiseen. Sen sijaan näyte-erien välillä oneroa. Tuotannon optimoinnissa tulisi tten vaatia toimittajilta tasalaatuisempaa raaka-ainetta

9 Huom 9.1: Kiinteän tekijän mallissa parametrien estimaatit ovat (24) ˆτ i = y i.. y.. ja (25) ˆβ j(i) = y ij. y i... Huom 9.2: Satunnaistekijän mallissa (random effects model),saadaan varianssit στ 2 ja σ2 β estimoitua kaavoilla Esimerkki 9.3: Esimerkissä 9.2 on sekamalli. Vaikutusten estimaatit ovat kaavojen (24) ja (27) mukaisesti ja ˆτ 1 = = 3.97, ˆτ 2 = = 2.05, ˆσ 2 β ˆτ 3 = =6.03 = (26) ˆσ 2 τ = MS A MS B(A) bn ja (27) ˆσ 2 β = MS B(A) MS E n Huom. 9.3: Virhetermin ε (ij)k varianssin σ 2 estimaattori on (28) ˆσ 2 = MS E = SS E ab(n 1). Huom 9.4: Usein hierariksiset asetelmissa malli on niin sanottu sekamalli (mixed model),jossa tekijä A on kiinteä jab satunnaismuuttuja

10 Yleinen m-tason hierarkinen asetelma (The general m-stage nested design) Kaksitasoinen malli yleistyy suoraviivaisesti useampitasoiseksi. Esimerkki 9.4: Oletetaan esimerkiksi,että valimossa tutkitaan kahden eri valutavan kovuutta. Tilastollinen malli yleiselle kolmitasoiselle asetelmalle (tekijät A, B ja C) on (29) y ijkl = μ + τ i + β j(i) + γ k(ij) + ε (ijk)l i =1,...,a, j =1,...,b, k =1,...,c ja l =1,...,n (n = toistojen lukumäärä). Neliösummajajotelma: Valu voi tapahtua kolmessa lämpötilassa. (30) SS T = SS A + SS B(A) + SS C(B) + SS E. Valitaan kaksi valutuotetta satunnaisesti kustakin lämpötilavaihtoehdosta joista mitataan kovuudet. Näin syntyy kolme tasoa: valutavat (2 kappaletta), lämpötila (3 vaihtoehtoa) ja lopputuotteet (2 kappaletta kussakin lämötilassa tuotetusta valutuotteesta). Tässä on siis kolmitasoisnen hierarkinen asetelma

11 jossa (31) SS T = (y ijkl y... ) 2, i j k l a (32) SS A = bcn (y i... y... ) 2, i=1 a b (33) SS B(A) = cn ( y ij.. y i... ) 2, i=1 j=1 a b c (34) SS B(C) = n ( y ijk. y ij.. ) 2 i=1 j=1 k=1 Varianssitaulu: Source SS df MS A SS A a 1 MS A B(within A) SS B(A) a(b 1) MS B(A) C(within B) SS C(B) ab(n 1) MS C(B) Error SS E abc(n 1) MS E Total SS T jossa keskineliösummat (MS) saadaan jakamalla vastaava neliösumma (SS) vapausasteilla (df). (35) SS E = i (y ijkl y ijk. ) 2. j k l 21 22

12 Hierarkiset faktoriasetelmat (Designs with both nested and factorial factors) Kun osa faktoreista on faktorikokeen mukaisia (ei-hierarkisia) ja osa hierarkisia,sanotaan asetelmaa hierarkiseksi faktoriasetelmaksi (nestedfactorial design). Esimerkki 9.5: Piirilevylle aseteltavien elektronisten komponenttien käsinladontaprosessia halutaan parantaa. Vaihtoehtoina on kaksi erilaista kokoamislinjaa ja kolme erilaista kokoamiseen tarvittavaa laitteistoa. Käytännön syistä (tutantolinjat eri tehdasrakennuksissa) valitaan satunnaisesti neljä kokoajaa kumpaankin tuotantolinjaan,(eli yhteensä kahdeksan). Kuitenkin esimerkiksi tuotantolinjalle 1 valitut työntekijät kokoavat testissä kaikilla laitekokoonpanoilla (satunnaistetussa järjestyksessä)

13 Kokoamiseen menevä aika(y) mitataan sekunteina. Faktorit: A: Laitteisto (1,2,3) B: Kokoamislinja (1,2) C: Kokoaja (1,2,3,4). Toistoja tehdään kaksi (n =2). Tekijä C (kokoajat) on hierarkinen tuotantolinjan (B) suhteen. Tekijät A (laitteisto) ja B (tuotantolinja) eivät ole hierarkinen minkään faktorin suhteen,suhteen,sillä kaikkia laitekokoonpanoja testataan molemmilla linjoilla ja kaikki kokoajat operoivat jokaisella laitteella. Havaintoainisto: =============================================== layout/ tuotantolinja (B) Linja 1 Linja 2 Operator/ kokoaja (C) fixture/ laitteisto (A) Laitteisto Laitteisto Laitteisto =============================================== 25 26

14 Tilastollinen malli: (36) y ijkl = μ + τ i + β j + γ k(j) +(τβ) ij +(τγ) ik(j) + ε (ijk)l, jossa τ i on tekijän A (laitteisto) vaikutus (i =1, 2, 3), β j on tekijän B (tuotantolinja) vaikutus (j =1, 2), γ k(j) tekijän C (kokoaja) vaikutus tekijän B (tuotantolinja) tasolla j, (τβ) ij on ei-hierarkisten tekijöiden A ja B yhdysvaikutus ja (τγ) ik(j) on AC (kokoaja laitteisto) yhdysvaikutus,tekijän B (tuotantolinja) tasolla j. SAS-toteutus: options ls = 80; Title "Esimerkki 9.5: Hierarkinen kolmen faktorin sekamalli"; data example95; input layout fixture operator time datalines; ; run; proc glm data = example95; Title2 "Piirilevyn valmistusmenetlmat"; class layout fixture operator; model time = layout fixture operator(layout) layout*fixture fixture*operator(layout); random operator(layout) fixture*operator(layout) / test; run; quit; 27 28

15 Dependent Variable: time Source DF Type III SS Mean Square F Value Pr > F layout Error Error: MS(operator(layout)) Source DF Type III SS Mean Square F Value Pr > F fixture operator(layout) layout*fixture Error Error: MS(fixtu*operat(layout)) Source DF Type III SS Mean Square F Value Pr > F fixtu*oper(layout) Error: MS(Error) Tuotantolinjalla (layout) ei ole vaikutusta eikä kokoajalla (operator). Sen sijaan laitteistolla (fixture) ja laitteiston ja kokoajan yhdysvaikutus tuotantolinjan sisällä on tilastollisesti merkitsevä vaikutus. Täten eri laitteistot näyttävät vaikuttavan eri tavoin kokoajien suoriutumiseen tehtävästä. 9.2 Osapalsta-asetelma (The Split-Plot Design) Joissakin useamman tekijän asetelmissa (useampisuuntaisessa varianssianalyysissa) ei ole mahdollista satunnaistaa toistoja täydellisesti. Esimerkki 9.6: Tutkitaan sellun valmistusprosessin vaikutusta paperin vetolujuuteen (y). Koetta varten päätetään valmistaa sellua kolmella eri menetelmällä (puun määrä seoksessa,faktori A) neljässä eri keittolämpötilassa (faktori B): ( o C) 90,110,130 ja 150. Kysymyksessä on siis 3 4 kahden tekijän koeasetelma (kaksisuuntainen varianssianalyysi),jossa on 12 käsittelykombinaatiota. Tarkastelemalla yksittäisiä keskiarvoja,saadaan selville koonpano,jolla suoriutumisaika on lyhin

16 Toistoja tehdään kolme per käsittelykombinaatio. Päivässä ehditään tehdä 12 koetta. Niinpä päätetään toteuttaa yksi täysi koe jokaisena seuraavana kolmena päivänä. Päivät muodostavat täten periaatteessa lohkotekijän (toistot eivät ole satunnaistettavissa päivien yli). Kunakin päivänä koe toteutetaan seuraavasti: Tehdään ensin erä selluraaka-ainetta tietyllä mentelmällä (järjestys päivän sisällä voidaan satunnaistaa),jaetaan erä neljään osaan ja keitetään niistä lopulliset selluerät eri lämpötilassa. Näin saadaan kunakin päivänä 12 selluerää,yksi kullakin valmistustavalla (menetelmä/lämpötila)

17 Tilanne näyttää lohkokeelta,jossa päivät muodostavat lohkon. Kuitenkin päivän sisällä ei tapahdu täydellistä satunnaistamista,sillä käytännön syistä valmistetaan kerrallaan yhdellä valmistusmenetelmällä erä,jaetaan se neljään osaan yksi kutakin lämpötilavaihtoehtoa varten. Täydellinen satunnaistaminen vaatisi satunnaistamisen valmistusmentelmä-lämpötila kombinaatioiden eli kaikkien 12:n käsittely-yhdistelmän yli,mikä käytännön toteutuksena olisi liian hankala. Data: ============================================================== Toisto 1 Toisto 2 Toisto 3 (lohko) (lohko) (lohko) Valmistusmenetelma (A) Lampotila (Factor B) ============================================================== Tällä tavoin toteutettu koe on esimerkki ns. osapalsta (split-plot) asetelmasta,jossa jokainen lohko (päivä) jaetaan kolmeen osaan (pääpalstaan,main plots),jotka muodostuvat valmistusmenetelmistä ja joiden toteutusjärjestys voidaan satunnaistaa. Pääpalstan mukaisia käsittelyjä sanotaan pääkäsittelyiksi (main plots,main treatments)

18 Jokainen pääpalsta (main plot) jaetaan osapalstaan (subplot,split-plot). Yllä nämä muodostuvat lämpötiloista (voidaan myös toteuttaa satunnaisessa järjestyksessä). Näitä vastaavia käsittelyjä sanotaan alikäsittelyiksi (subplot treatments). Split-lot asetelman tilastollinen malli: (37) y ijk = μ + τ i + β j +(τβ) ij + γ k +(τγ) ik +(βγ) jk +(τβγ) ijk + ε ijk i =1,...,r, j =1,...,a, k =1,...,b,jossa τ i, β j ja (τβ) ij liittyvät pääpalstaan (main plot), edustaen lohkovaikutusta τ i,pääkäsittelyn A vaikutusta β j ja koko palstan virhetermiin (τβ) ij (whole plot error) (= lohko A). γ k,(τγ) ik,(βγ) jk ja (τβγ) ijk liittyvät alipalstaan (subplot); alipalstan käsittelyn B (subplot treatment) vaikutus γ k,lohko B vaikutus (τγ) ik, AB yhdysvaikus (βγ) jk ja alipalstan virhetermi (lohko AB) (τβγ) ijk

19 Huom 9.5: Split-plot asetelmassa perusajatuksena on, että varsinaisilla faktoreilla ja lohko tekijällä ei ole yhdysvaikutusta. Täten niihin liittyvä vaihtely on virhevaihtelua,jota voidaan käyttää varsinaisten faktoreiden vaikutustan F -testeissä. Koeasetelman neliösummat lasketaan samalla tavalla kuin kolmisuuntaisessa (kolmen tekijän) varianssianalyysissa,jossa on vain yksi toisto (täten virhevarianssi ei ole estimoitavissa). Esimerkki 9.7: Paperikuidun vetolujuuden SAS-toteutus: data example96; * input R A B y label R = "Replicate (toisto), Block factor" A = "Pulp preparation method (valmistusmenetelma)" B = "Temperateure (lampotila)"; do B = 90 to 150 by 20; do R = 1 to 3; do A = 1 to 3; input y output; end; end; end; datalines; ; run; 37 38

20 proc glm data = example96; Title2 "Pulp tensile"; class R A B; model y = R A R*A B R*B A*B R*A*B /ss3; Random R; test h = A e = R*A; test h = B e = R*B; test h = A*B e = R*A*B; run; quit; Split-Plot example Pulp tensile The GLM Procedure Class Level Information Class Levels Values R A B Number of Observations Read 36 Number of Observations Used 36 Dependent Variable: y Sum of Source DF Squares Mean Square F Value Pr > F Model Error Total R-Square Coeff Var Root MSE y Mean Source DF Type III SS Mean Square F Value Pr > F R A R*A B R*B A*B R*A*B

21 Source R A R*A B R*B A*B R*A*B Type III Expected Mean Square Var(Error) + 12 Var(R) + Q(R*A,R*B,R*A*B) Var(Error) + Q(A,R*A,A*B,R*A*B) Var(Error) + Q(R*A,R*A*B) Var(Error) + Q(B,R*B,A*B,R*A*B) Var(Error) + Q(R*B,R*A*B) Var(Error) + Q(A*B,R*A*B) Var(Error) + Q(R*A*B) Tests of Hypotheses Using the Type III MS for R*A as an Error Term Source DF Type III SS Mean Square F Value Pr > F A Tests of Hypotheses Using the Type III MS for R*B as an Error Term Source DF Type III SS Mean Square F Value Pr > F B Tests of Hypotheses Using the Type III MS for R*A*B as an Error Term Source DF Type III SS Mean Square F Value Pr > F A*B Havaitaan,että vetolujuuteen vaikuttaa ensisijaisesti lämpötila (faktori B). Myös valmistusmenetelmä (faktori A) on 5 prosentin tasolla tilastollisesti merkitsevä (kuitenkin rajalla),samoin yhdysvaikutus (AB) on rajalla. Lämpötilaluokissa laskettujen keskiarvojen perusteella vetolujuus näyttää kasvavan paperissa sen mukaan mitä korkeammassa läpötilassa sellu on keitetty

9.1 Hierarkiset asetelmat (Nested Designs)

9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa 5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla

Lisätiedot

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä:

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä: 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

A250A0050 Ekonometrian perusteet Tentti

A250A0050 Ekonometrian perusteet Tentti A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin

Lisätiedot

3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).

3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). 3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). tulee katettua (complete replicate). Havaintojen

Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). tulee katettua (complete replicate). Havaintojen 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N = 2

Lisätiedot

Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).

Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). 3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,

Lisätiedot

Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 k -faktorikokeet 2 2 -faktorikokeet 2 3 -faktorikokeet 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 2 k -faktorikokeet: Mitä opimme?

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). määrä per faktoritasokombinaatio (balansoidussa)kokeessa. 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2

Lisätiedot

Lohkoasetelmat. Heliövaara 1

Lohkoasetelmat. Heliövaara 1 Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Osafaktorikokeet. Heliövaara 1

Osafaktorikokeet. Heliövaara 1 Osafaktorikokeet Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeentekijän resurssit. Myös estimoitavien korkean asteen yhdysvaikutustermien

Lisätiedot

Hierarkkiset koeasetelmat. Heliövaara 1

Hierarkkiset koeasetelmat. Heliövaara 1 Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman

8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman 8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi

Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi (c) lkka Mellin (005) Useampisuuntainen varianssianalsi ohdatus tilastotieteeseen Useampisuuntainen varianssianalsi (c) lkka Mellin (005) Useampisuuntainen varianssianalsi: Mitä opimme? arkastelemme tässä

Lisätiedot

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1 Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Hierarkkiset koeasetelmat -faktorikokeet Vastepintamenetelmä Aritmeettinen keskiarvo, Estimaatti, Estimaattori, -testi, aktorikokeet,

Lisätiedot

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien

Lisätiedot

Lohkoasetelmat. Kuusinen/Heliövaara 1

Lohkoasetelmat. Kuusinen/Heliövaara 1 Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan

Lisätiedot

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalyysi Bonferronin menetelmä, F-testi, Jäännösneliösumma, Kaksisuuntainen varianssianalyysi Kokonaiskeskiarvo,

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Koesuunnittelu ja tilastolliset mallit Johdanto. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu ja tilastolliset mallit Johdanto. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu ja tilastolliset mallit Johdanto TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu: Johdanto Johdattelevia esimerkkejä Tilastolliset kokeet TKK (c) Ilkka Mellin (2005) 2 Koesuunnittelu: Johdanto

Lisätiedot

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501 Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662

Lisätiedot

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). määrä per faktoritasokombinaatio (balansoidussa)kokeessa. 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede

Lisätiedot

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Opetus talteen ja jakoon oppilaille Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Aurajoen lukio ISOverstaan jäsen syksystä 2010 lähtien ISOverstas on maksullinen verkko-oppimisen

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita risto.lehtonen@helsinki.fi OHC Survey Tilastollinen analyysi Kysymys: Millä

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Otanta-aineistojen analyysi

Otanta-aineistojen analyysi Helsingin yliopisto Otanta-aineistojen analyysi Kevät 2010 Periodi III Risto Lehtonen Teema 2 Estimaattoreiden varianssien estimointi Survey-analyysin lähestymistavat Kuvaileva survey Descriptive survey

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

2 2 -faktorikokeen määritelmä

2 2 -faktorikokeen määritelmä TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tai useamman tekijän vaikutusta

Lisätiedot

Kertausluento. Vilkkumaa / Kuusinen 1

Kertausluento. Vilkkumaa / Kuusinen 1 Kertausluento Vilkkumaa / Kuusinen 1 Kokeellinen tutkimus Kokeellisessa tutkimuksessa on tavoitteena selvittää, miten erilaiset käsittelyt vaikuttavat tutkimuksen kohteisiin - Esim. miten lämpötila ja

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

Terra Preta kasvatuskoe Pilkon pellolla 2012-2013

Terra Preta kasvatuskoe Pilkon pellolla 2012-2013 Terra Preta kasvatuskoe Pilkon pellolla 2012-2013 Karelia ammattikorkeakoulu Biotalouden keskus Simo Paukkunen Lokakuu 2013 Sisällys 1 Johdanto... 1 2 Aineisto ja menetelmät... 1 3 Tulokset... 6 3.1 Oraiden

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1 Estimointi - tehdään päätelmiä perusjoukon ominaisuuksista (keskiarvo, riskisuhde jne.) otoksen perusteella - mitä suurempi otos, sitä tarkemmat estimaatit Otokseen perustuen määritellään otantajakaumalta

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Hypoteesin testaus Alkeet

Hypoteesin testaus Alkeet Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan

Lisätiedot

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti. 2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Sisällysluettelo 6 VARIANSSIANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...

Sisällysluettelo 6 VARIANSSIANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...5 SISÄLLYSLUETTELO... 6 LYHYT SANASTO VASTA-ALKAJILLE... 7 1. MONIMUUTTUJAMENETELMÄT IHMISTIETEISSÄ... 9 1.1 MONIMUUTTUJA-AINEISTON ERITYISPIIRTEITÄ...

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

SSL syysseminaari 29.10.2013 Juha Hyssälä

SSL syysseminaari 29.10.2013 Juha Hyssälä SSL syysseminaari 29.10.2013 Juha Hyssälä Lääketieteellisessä tutkimuksessa on perinteisesti käytetty elinaika-analyysissä Coxin suhteellisen vaaran mallia ja/tai tämän johdannaisia. Kyseinen malli kuitenkin

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Kemometriasta Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Mistä puhutaan? Määritelmiä Määritys, rinnakkaismääritys Mittaustuloksen luotettavuus Kalibrointi Mittausten

Lisätiedot

Harjoitus 4 (7.4.2014)

Harjoitus 4 (7.4.2014) Harjoitus 4 (7.4.2014) Tehtävä 1 Tarkastellaan Harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä solmusta

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

1 Johdatus varianssianalyysiin

1 Johdatus varianssianalyysiin Tilastollisia malleja 1 & 2: Varianssianalyysi Jarkko Isotalo Y131A & Y132A 15.1.2013 1 Johdatus varianssianalyysiin 1.1 Milloin varianssianalyysiä käytetään? Varianssianalyysi on tilastotieteellinen menetelmä,

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua Havaintoaineiston perusteella näyttää ilmeiseltä, että alkuperäisen laastin sidoslujuus on suurempi. Ero sattumasta johtuvaa? Palataan tuonnempana. Tension bond strength data for Portland Cement formulation

Lisätiedot

Capacity utilization

Capacity utilization Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure

Lisätiedot

Laskennallisesti Älykkäät Järjestelmät. Sumean kmeans ja kmeans algoritmien vertailu

Laskennallisesti Älykkäät Järjestelmät. Sumean kmeans ja kmeans algoritmien vertailu Laskennallisesti Älykkäät Järjestelmät Sumean kmeans ja kmeans algoritmien vertailu Annemari Auvinen (annauvi@st.jyu.fi) Anu Niemi (anniemi@st.jyu.fi) 28.5.2002 1 Tehtävän kuvaus Tehtävänämme oli verrata

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

Ohjelmointi 1 C#, kevät 2013, 2. tentti

Ohjelmointi 1 C#, kevät 2013, 2. tentti ITKP102 Ohjelmointi 1 C# 15.5.2013 1 / 6 Ohjelmointi 1 C#, kevät 2013, 2. tentti Tentaattori Antti-Jussi Lakanen Tässä tentissä saa olla mukana omia muistiinpanoja yhden arkin verran. Tentin valvojalla

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1 ATH-aineiston tilastolliset analyysit SPSS/PASW 16.2.2011 SPSS analyysit / Risto Sippola 1 Aineiston avaaminen Aineisto on saatu SPSS-muotoon ja tallennettu koneelle sijaintiin, josta sitä voidaan käyttää

Lisätiedot

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011

Lisätiedot

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 811122P (5 op.) 12.12.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 V ls. Uusintamahdollisuus on rästitentissä.. ke 6 PR sali. Siihen tulee ilmoittautua WebOodissa 9. 8.. välisenä aikana. Soveltuvan

Lisätiedot

Estimointi. Otantajakauma

Estimointi. Otantajakauma Otantajakauma Otantajakauma kuvaa jonkin parametrin arvojen (esim. keskiarvon) jakauman kaikille tietyn kokoisille otoksille. jotka perusjoukosta voidaan muodostaa Histogrammissa otantajakauman parametrin

Lisätiedot