Koesuunnittelu ja tilastolliset mallit Johdanto. TKK (c) Ilkka Mellin (2005) 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Koesuunnittelu ja tilastolliset mallit Johdanto. TKK (c) Ilkka Mellin (2005) 1"

Transkriptio

1 Koesuunnittelu ja tilastolliset mallit Johdanto TKK (c) Ilkka Mellin (2005) 1

2 Koesuunnittelu: Johdanto Johdattelevia esimerkkejä Tilastolliset kokeet TKK (c) Ilkka Mellin (2005) 2

3 Koesuunnittelu: Johdanto >> Esimerkkejä Tilastolliset kokeet TKK (c) Ilkka Mellin (2005) 3

4 Johdattelevia esimerkkejä Avainsanat Harha Hoitoryhmä Kaksoissokkokoe Koe Kokeen kohteet Satunnaistaminen Vertailu Vertailuryhmä TKK (c) Ilkka Mellin (2005) 4

5 Johdattelevia esimerkkejä: Poliorokotuskokeet USA:ssa Salkin koe 1/3 Tri Salkin johdolla tehtiin USA:ssa 1954 hänen kehittämälleen poliorokotteelle kenttäkoe. Kokeen kohteet: Peruskoulujen 1., 2. ja 3. luokkien lapset. Kokeen suoritus: Lapset jaettiin arpomalla kahteen ryhmään. (i) Hoitoryhmälle annettiin rokotetta. (ii) Vertailuryhmälle annettiin plaseboa (lumetta). (iii) Sairastavuuksia (per ) hoito- ja vertailuryhmissä verrattiin toisiinsa. TKK (c) Ilkka Mellin (2005) 5

6 Johdattelevia esimerkkejä: Poliorokotuskokeet USA:ssa Salkin koe 2/3 Tulokset kokeesta: Salkin poliorokotekoe Ryhmän koko Sairastuvuus (per ) Hoitoryhmä Vertailuryhmä Ei saanut rokottaa Huomautus: Osaa lapsista ei saanut rokottaa. TKK (c) Ilkka Mellin (2005) 6

7 Johdattelevia esimerkkejä: Poliorokotuskokeet USA:ssa Salkin koe 3/3 Salkin koe oli satunnaistettu vertaileva kaksoissokkokoe: (i) Satunnaistus: Lapset jaettiin hoito- ja vertailuryhmään arpomalla. (ii) Vertailu: Kokeen vasteena ollutta sairastavuutta (per ) hoito- ja vertailuryhmissä verrattiin toisiinsa. (iii) Kaksoisokkokoe: Kokeen tekijät ja kohteet eivät tienneet ennen seuranta-ajan päättymistä oliko kohde kuulunut hoito- vai vertailuryhmään. TKK (c) Ilkka Mellin (2005) 7

8 Johdattelevia esimerkkejä: Poliorokotuskokeet USA:ssa NFIP-koe 1/3 Tri Salkin kehittämälle poliorokotteelle tehtiin myös USA:n kansallisen lapsihalvaussäätiön (NFIP) järjestämä koe. Kokeen kohteet: Peruskoulujen 1., 2. ja 3. luokkien lapset. Kokeen suoritus: 2. luokan lapset pyrittiin rokottamaan, 1. ja 3. luokkien lapset muodostivat vertailuryhmän. (i) Hoitoryhmälle annettiin rokotetta. (ii) Sairastuvuuksia (per ) hoito- ja vertailuryhmissä verrattiin toisiinsa. TKK (c) Ilkka Mellin (2005) 8

9 Johdattelevia esimerkkejä: Poliorokotuskokeet USA:ssa NFIP-koe 2/3 Tulokset kokeesta: NFIP:n poliorokotekoe Ryhmän koko Sairastuvuus (per ) Hoitoryhmä Vertailuryhmä Ei saanut rokottaa Huomautus: Osaa 2. luokan lapsista ei saanut rokottaa. TKK (c) Ilkka Mellin (2005) 9

10 Johdattelevia esimerkkejä: Poliorokotuskokeet USA:ssa NFIP-koe 3/3 Koska NFIP-kokeessa ei oltu käytetty satunnaistusta, tulokset olivat harhaisia. Tämä nähdään vertaamalla vertailuryhmien sairastuvuuksia Salkin kokeessa (71 per ) ja NFIP-kokeessa (54 per ). Syynä NFIP-kokeen harhaisuuteen oli se, että koe- ja vertailuryhmät eivät NFIP-kokeessa olleet samanlaisia: NFIP-kokeen vertailuryhmässä olivat mukana myös ne, joita ei olisi saanut rokottaa ja sairastuvuus polioon oli niiden 2. ja 3. luokkien lasten joukossa, jotka olisi saanut rokottaa suurempaa kuin niiden joukossa, joita ei olisi saanut rokottaa. Tämä johtui siitä, että lastensa rokotuksen kielsivät tavallisemmin alempien sosiaaliryhmien vanhemmat, joiden lapsissa oli varhaislapsuudessa kehittänyt immuniteetti poliota vastaan useammin kuin ylempien sosiaaliryhmien lapsissa. TKK (c) Ilkka Mellin (2005) 10

11 Johdattelevia esimerkkejä: Lujuuskoe Vetolujuuskoe 1/4 Tavoitteena on tutkia uudesta synteettisestä kuidusta tehdyn langan vetolujuutta (lb/in 2 ). Lankaan sekoitetaan aina puuvillaa ja jo ennestään tiedetään, että puuvillan määrä vaikuttaa langan vetolujuuteen. Tarkoituksena on selvittää vetolujuuden kannalta optimaalinen puuvillan määrä. Asian selvittämiseksi järjestetään koe, jossa puuvillan määrää langoissa vaihdellaan (5 painoprosenttia) ja vetolujuudet mitataan useasta eri lankanäytteestä (5 näytettä kutakin lankaa). TKK (c) Ilkka Mellin (2005) 11

12 Johdattelevia esimerkkejä: Lujuuskoe Vetolujuuskoe 2/4 Tulokset kokeesta: Tensile strenght (lb/in 2 ) Obs Cotton weight % Mean Total TKK (c) Ilkka Mellin (2005) 12

13 Johdattelevia esimerkkejä: Lujuuskoe Vetolujuuskoe 3/4 Keskiarvoprofiili: Means of TnslStrngth TnslStrngth CttnWghtPrctg TKK (c) Ilkka Mellin (2005) 13

14 Johdattelevia esimerkkejä: Lujuuskoe Vetolujuuskoe 4/4 Kysymys 1: Eroavatko keskiarvoprofiililla kuvatut ryhmäkohtaiset (vetolujuuksien) keskiarvot tilastollisesti merkitsevästi toisistaan? Kysymys 2: Jos ryhmäkohtaiset (vetolujuuksien) keskiarvot eroavat toisistaan, mikä puuvillan määrä tuottaa optimaalisen vetolujuuden langalle? Kysymyksiin voidaan vastata soveltamalla aineistoon yksisuuntaista varianssianalyysia. TKK (c) Ilkka Mellin (2005) 14

15 Johdattelevia esimerkkejä: Akkukoe Akun kesto 1/4 Tavoitteena on tutkia eri materiaaleista valmistettujen akkujen kestoa (tunteina) eri lämpötiloissa. Tarkoituksena on selvittää lämpötilan suhteen optimaalinen materiaali. Asian selvittämiseksi järjestetään koe, jossa eri materiaaleista (3 materiaalia) valmistettujen akkujen kesto mitataan useassa eri lämpötilassa (3 lämpötilaa; F). TKK (c) Ilkka Mellin (2005) 15

16 Johdattelevia esimerkkejä: Akkukoe Akun kesto 2/4 Tulokset kokeesta: Life (h) Temp ( F) Material TKK (c) Ilkka Mellin (2005) 16

17 Johdattelevia esimerkkejä: Akkukoe Akun kesto 3/4 Keskiarvoprofiili: Means of BatteryLife Material BatteryLife Temp TKK (c) Ilkka Mellin (2005) 17

18 Johdattelevia esimerkkejä: Akkukoe Akun kesto 4/4 Kysymys 1: Eroavatko keskiarvoprofiililla kuvatut ryhmäkohtaiset (kestoajan) keskiarvot tilastollisesti merkitsevästi toisistaan? Kysymys 2: Jos ryhmäkohtaiset (kestoaikojen) keskiarvot eroavat toisistaan, mikä materiaali toimii eri lämpötilat huomioiden optimaalisen keston akulle? Kysymyksiin voidaan vastata soveltamalla aineistoon kaksisuuntaista varianssianalyysia. TKK (c) Ilkka Mellin (2005) 18

19 Koesuunnittelu: Johdanto Esimerkkejä >> Tilastolliset kokeet TKK (c) Ilkka Mellin (2005) 19

20 Tilastolliset kokeet Avainsanat Harha Hoitoryhmä Kaksoissokkokoe Kausaliteetti Koe Koeasetelma Koetoisto Kokeen kohteet Kontrolli Käsittely Satunnaistaminen Satunnaisvaihtelu Sekoittava tekijä Systemaattiset erot Syy-yhteys Vertailu Vertailuryhmä TKK (c) Ilkka Mellin (2005) 20

21 Tilastolliset kokeet Koe Kokeellisessa tutkimuksessa tavoitteena on selvittää, millaisia vaikutuksia tutkimuksen kohteisiin kohdistetuilla erilaisilla käsittelyillä on kohteisiin. Käsittelyllä tarkoitetaan tutkimuksen kohteiden olosuhteiden aktiivista, suunnitelmallista ja järjestelmällistä muuttamista. Tiukasti ottaen vain kokeiden perusteella voidaan tehdä kausaalisia eli syy-yhteyksiä koskevia päätelmiä. Huomautus: Tutkimus perustuu suorien havaintojen tekemiseen, jos havaintojen kohteiden olosuhteisiin ei tutkimuksessa puututa. TKK (c) Ilkka Mellin (2005) 21

22 Tilastolliset kokeet Koeasetelmat Koeasetelmalla tarkoitetaan kokeen tekemiseen liittyviä periaatteita ja sääntöjä: (i) Mitä käsittelyitä kokeen kohteisiin sovelletaan? (ii) Miten kokeen kohteet valitaan? (iii) Mikä on tehtävien koetoistojen lukumäärä? TKK (c) Ilkka Mellin (2005) 22

23 Tilastolliset kokeet Kontrolloidut kokeet Kokeesta ei voida tehdä luotettavia johtopäätöksiä, ellei koe ole kontrolloitu: (i) Koetuloksiin vaikuttavien ulkopuolisten sekoittavien tekijöiden kontrolloimiseksi kokeessa on vertailtava vähintään kahden erilaisen käsittelyn vaikutuksia. (ii) Erilaisten käsittelyiden kohteiksi valittavien perusjoukon alkioiden välisten systemaattisten erojen kontrolloimiseksi käsittelyiden kohdistamisessa on käytettävä satunnaistusta. (iii) Koetuloksiin liittyvän satunnaisvaihtelun kontrolloimiseksi kokeessa on tehtävä riittävästi koetoistoja. TKK (c) Ilkka Mellin (2005) 23

24 Tilastolliset kokeet Yksinkertainen kontrolloitu koe Alla oleva kaavio kuvaa yksinkertaista kontrolloitua koetta: (1) Jaetaan kokeen kohteet satunnaisesti kahteen ryhmään. (2) Kohdistetaan ryhmiin erilaiset käsittelyt. (3) Vertaillaan käsittelyiden vaikutuksia. Ryhmä 1 Käsittely 1 Satunnaistus Vertailu Ryhmä 2 Käsittely 2 TKK (c) Ilkka Mellin (2005) 24

25 Tilastolliset kokeet Yksinkertainen kontrolloitu koe: Esimerkki Oletetaan, että haluamme tutkia vastakehitetyn lääkkeen tehoa tautiin, johon aikaisemmin ei ole ollut lääkettä, mutta josta osa potilaista saattaa parantua myös ilman hoitoa (vrt. rokotuskokeet edellä). Tällöin lääkkeen tehon selvittämiseksi voidaan järjestää kontrolloitu koe esimerkiksi seuraavalla tavalla: (1) Jaetaan riittävän suuri joukko potilaita satunnaisesti kahteen ryhmään. (2) Annetaan toiselle ryhmälle uutta lääkettä ja toiselle ryhmälle plaseboa eli lumelääkettä. (3) Vertaillaan parantuneiden suhteellisia osuuksia. Pohdi seuraavia kysymyksiä: Miksi potilaita pitää olla riittävästi? Miksi potilaat jaetaan ryhmiin satunnaisesti? Miksi toiselle ryhmälle annetaan plaseboa? TKK (c) Ilkka Mellin (2005) 25

26 Tilastolliset kokeet Kontrolloidut kokeet: Kommentteja 1/3 Jos koe on kontrolloitu eli kokeessa on käytetty suunnitelmallisesti ja järjestelmällisesti vertailua, satunnaistusta ja koetoistoja niin koetuloksien analysointi tilastotieteen keinoin on mahdollista. Jos koe on kontrolloitu, koetuloksiin liittyvät systemaattiset ja satunnaiset tekijät voidaan erottaa ja kuvata ja kuvauksen luotettavuus voidaan arvioida. Jos koe on kontrolloitu, käsittelyiden vaikutuksista kokeen kohteisiin voidaan tehdä luotettavia johtopäätöksiä. TKK (c) Ilkka Mellin (2005) 26

27 Tilastolliset kokeet Kontrolloidut kokeet: Kommentteja 2/3 Jos koe ei ole kontrolloitu eli kokeessa ei ole käytetty suunnitelmallisesti ja järjestelmällisesti vertailua, satunnaistusta ja koetoistoja niin koetuloksien analysointi tilastotieteen keinoin ei ole mahdollista. Jos koe ei ole kontrolloitu, koetuloksiin liittyviä systemaattisia ja satunnaisia tekijöitä ei voida erottaa ja kuvata ja kuvauksen luotettavuutta ei voida arvioida. Jos koe ei ole kontrolloitu, käsittelyiden vaikutuksista kokeen kohteisiin ei voida tehdä luotettavia johtopäätöksiä. TKK (c) Ilkka Mellin (2005) 27

28 Tilastolliset kokeet Kontrolloidut kokeet: Kommentteja 3/3 Jos koe ei ole kontrolloitu, koeasetelma saattaa systemaattisesti suosia joitakin tulosvaihtoehtoja. Jos koeasetelma suosii systemaattisesti joitakin tulosvaihtoehtoja, asetelmaa sanotaan harhaiseksi. Harhaisten koeasetelmien perusteella ei voida tehdä luotettavia johtopäätöksiä. TKK (c) Ilkka Mellin (2005) 28

29 Tilastolliset kokeet Kontrolloidut kokeet ja satunnaistus 1/2 Kokeen satunnaistus tarkoittaa sitä, että käsittelyiden kohdistamisessa käytetään arvontaa. Arvonta on ainoa puolueeton tapa kohdistaa käsittelyitä, koska arpominen ei suosi mitään perusjoukon osaa. Satunnaistettujen kokeiden tulosten analysointiin voidaan soveltaa tilastollisia menetelmiä, koska arvonta noudattaa todennäköisyyslaskennan lakeja. TKK (c) Ilkka Mellin (2005) 29

30 Tilastolliset kokeet Kontrolloidut kokeet ja satunnaistus 2/2 Satunnaistus takaa suurella todennäköisyydellä sen, että kokeessa erilaisten käsittelyiden kohteiksi joutuvat perusjoukon osajoukot ovat ennen käsittelyiden soveltamista ominaisuuksiltaan keskimäärin samankaltaisia. Satunnaistus takaa suurella todennäköisyydellä sen, että kokeen tuloksista voidaan tehdä kausaalipäätelmiä: Jos koe on satunnaistettu, kokeen tuloksissa havaitut systemaattisten erojen on johduttava erilaisista käsittelyistä. TKK (c) Ilkka Mellin (2005) 30

Salkin poliorokotekoe Ryhmän koko Sairastuvuus (per 100000) Hoitoryhmä 200000 28 Vertailuryhmä 200000 71 Ei saanut rokottaa 350000 46

Salkin poliorokotekoe Ryhmän koko Sairastuvuus (per 100000) Hoitoryhmä 200000 28 Vertailuryhmä 200000 71 Ei saanut rokottaa 350000 46 TKK (c) Ilkka Mellin (2005) 1 suunnittelu: Johdanto Johdattelevia esimerkkejä suunnittelu ja tilastolliset mallit Johdanto TKK (c) Ilkka Mellin (2005) 2 suunnittelu: Johdanto Johdattelevia esimerkkejä

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2004) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2004) 1 ja mittaaminen Johdatus tilastotieteeseen ja mittaaminen TKK (c) Ilkka Mellin (2004) 2 ja mittaaminen: Mitä opimme? 1/3 Tilastollisen tutkimuksen kaikki mahdolliset kohteet

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Käytännön järjestelyt Luennot: Luennot maanantaisin (sali E) ja keskiviikkoisin (sali U4) klo 10-12 Luennoitsija: (lauri.viitasaari@aalto.fi)

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Testaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486.

Testaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486. Mat-.103 Koesuunnittelu ja tilastolliset mallit Harjoitus 8, kevät 004 Esimerkkiratkaisut. 1. Myrkyllistä ainetta oli kaadettu jokeen, joka johtaa suurelle kalastusalueelle. Tie- ja vesirakennusinsinöörit

Lisätiedot

Tutkimusasetelmat. - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla

Tutkimusasetelmat. - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla Tutkimusasetelmat - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla Jotta kokonaisuus ei unohdu Tulisi osata Tutkimusasetelmat Otoskoko,

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Poimi yrityksistä i) neljän, ii) kymmenen suuruinen otos. a) yksinkertaisella satunnaisotannalla palauttaen, b) systemaattisella otannalla

Poimi yrityksistä i) neljän, ii) kymmenen suuruinen otos. a) yksinkertaisella satunnaisotannalla palauttaen, b) systemaattisella otannalla 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Harjoitus 2, viikko 38, syksy 2012 1. Tutustu liitteen 1 kuvaukseen Suuresta bränditutkimuksesta v. 2009. Mikä tämän kuvauksen perusteella on ko.

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

Lectio praecursoria. Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin. Markus Ojala. 12.

Lectio praecursoria. Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin. Markus Ojala. 12. Lectio praecursoria Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin Markus Ojala 12. marraskuuta 2011 Käsitteet Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

Parametrittomat ja robustit menetelmät. Jukka Nyblom Jyväskylän yliopisto 2009

Parametrittomat ja robustit menetelmät. Jukka Nyblom Jyväskylän yliopisto 2009 Parametrittomat ja robustit menetelmät Jukka Nyblom Jyväskylän yliopisto 2009 1 Sisältö 1 Satunnaistamismalli ja permutaatiotestit 4 1.1 Täysin satunnaistettu koe, käsittely ja kontrolli 4 1.2 Vastinparivertailu,

Lisätiedot

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa:

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa: Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalsi Aritmeettinen keskiarvo, Estimointi, F-testi,

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden aksioomat >> Todennäköisyyden määritteleminen Todennäköisyyden

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Mitä kausaalivaikutuksista voidaan päätellä havainnoivissa tutkimuksissa?

Mitä kausaalivaikutuksista voidaan päätellä havainnoivissa tutkimuksissa? Mitä kausaalivaikutuksista voidaan päätellä havainnoivissa tutkimuksissa? Mervi Eerola Turun yliopisto Sosiaalilääketieteen päivät 3.-4.11.2014 HS 27.9.2014: Juhana Vartiainen ja Kari Hämäläinen (VATT):

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden aksioomat Todennäköisyyden määritteleminen Todennäköisyyden aksioomat äärellisissä otosavaruuksissa

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

Perimmäinen kysymys. Työllistämisen tukitoimien vaikuttavuuden arvioinnista. Mitkä ovat tukitoimen X vaikutukset Y:hyn? Kari Hämäläinen (VATT)

Perimmäinen kysymys. Työllistämisen tukitoimien vaikuttavuuden arvioinnista. Mitkä ovat tukitoimen X vaikutukset Y:hyn? Kari Hämäläinen (VATT) Työllistämisen tukitoimien vaikuttavuuden arvioinnista Kari Hämäläinen (VATT) VATES päivät, 5.5.2015 Perimmäinen kysymys Mitkä ovat tukitoimen X vaikutukset Y:hyn? 1 Kolme ehtoa kausaaliselle syy seuraussuhteelle

Lisätiedot

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi. 10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastotiede tieteenalana

Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastotiede tieteenalana Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastotiede tieteenalana TKK (c) Ilkka Mellin (2006) 1 Tilastotiede tieteenalana >> Mitä tilastotiede on? Tilastotieteen sovellukset TKK (c) Ilkka

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

Tilastotiede tieteenalana. Tilastotiede tieteenalana. Tilastotiede tieteenalana. Tilastotiede tieteenalana: Mitä opimme? Mitä tilastotiede on?

Tilastotiede tieteenalana. Tilastotiede tieteenalana. Tilastotiede tieteenalana. Tilastotiede tieteenalana: Mitä opimme? Mitä tilastotiede on? TKK (c) Ilkka Mellin (2004) 1 Tilastotiede tieteenalana Johdatus todennäköisyyslaskentaan ja tilastotieteeseen Tilastotiede tieteenalana TKK (c) Ilkka Mellin (2004) 2 Tilastotiede tieteenalana: Mitä opimme?

Lisätiedot

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta...

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta... JHS 160 Paikkatiedon laadunhallinta Liite III: Otanta-asetelmat Sisällysluettelo 1. Johdanto... 2 2. Todennäköisyysotanta... 2 2.1 Yksinkertainen satunnaisotanta... 3 2.2 Ositettu otanta... 3 2.3 Systemaattinen

Lisätiedot

Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus )

Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus 7.2.2017) Tämän harjoituskerran tehtävät

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

Teema 7: Todennäköisyyksien laskentaa

Teema 7: Todennäköisyyksien laskentaa Teema 7: Todennäköisyyksien laskentaa Teemassa 6 tutustuttiin todennäköisyyden ja satunnaisuuden käsitteisiin sekä todennäköisyyslaskennan perusteisiin. Seuraavaksi tätä aihepiiriä syvennetään perehtymällä

Lisätiedot

Lohkoasetelmat. Heliövaara 1

Lohkoasetelmat. Heliövaara 1 Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,

Lisätiedot

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen

Lisätiedot

11. laskuharjoituskierros, vko 15, ratkaisut

11. laskuharjoituskierros, vko 15, ratkaisut 11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Lohkoasetelmat. Kuusinen/Heliövaara 1

Lohkoasetelmat. Kuusinen/Heliövaara 1 Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1 Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n

Lisätiedot

Näyttötutkinnot 20 vuotta, , klo

Näyttötutkinnot 20 vuotta, , klo Näyttötutkinnot 20 vuotta, 21.10.2014, klo 10.45 15.30 NÄYTTÖTUTKINTOJEN VAIKUTTAVUUDEN KYSYMYS? Mitä rekisteriaineistot ja vertailuasetelmat kertovat? Asko Suikkanen, emeritusprofessori (YTT), Lapin yliopisto

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 V ls. Uusintamahdollisuus on rästitentissä.. ke 6 PR sali. Siihen tulee ilmoittautua WebOodissa 9. 8.. välisenä aikana. Soveltuvan

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 2016 Laskuharjoitus 5, Kotitehtävien palautus laskuharjoitusten

Lisätiedot

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

Otoskoon arviointi. Tero Vahlberg

Otoskoon arviointi. Tero Vahlberg Otoskoon arviointi Tero Vahlberg Otoskoon arviointi Otoskoon arviointi (sample size calculation) ja tutkimuksen voima-analyysi (power analysis) ovat tilastollisen tutkimuksen suunnittelussa keskeisiä kysymyksiä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden peruslaskusäännöt >> Uusien tapahtumien muodostaminen

Lisätiedot

Vaikuttavuusarvioinnin tutkimusmenetelmät

Vaikuttavuusarvioinnin tutkimusmenetelmät Vaikuttavuusarvioinnin tutkimusmenetelmät Kari Hämäläinen (VATT) Mittaaminen vaikuttavuusinvestoimisen kova ydin, Sitra, 26.1.2015 Perimmäinen kysymys Mitkä ovat toimenpiteen X seuraukset Y:ssä? Kolme

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Todennäköisyyslaskennan kertaus Satunnaismuuttujat ja tn-jakaumat Tunnusluvut χ 2 -, F- ja t-jakauma Riippumattomuus Tilastotieteen

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot

Lisätiedot

Palkansaajien sairauspoissaolot

Palkansaajien sairauspoissaolot Palkansaajien sairauspoissaolot Kaikilla mausteilla Artikkeleita työolotutkimuksesta Julkaisuseminaari 2.6.2006 Marko Ylitalo Asetelma! Tutkimuksessa selvitettiin " omaan ilmoitukseen perustuvien sairauspoissaolopäivien

Lisätiedot

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Lataa Sydänpysähdyksestä elvytetyn potilaan tehohoito - Tuomas Oksanen

Lataa Sydänpysähdyksestä elvytetyn potilaan tehohoito - Tuomas Oksanen Lataa Sydänpysähdyksestä elvytetyn potilaan tehohoito - Tuomas Oksanen Lataa Kirjailija: Tuomas Oksanen ISBN: 9789529995547 Sivumäärä: 140 Formaatti: PDF Tiedoston koko: 22.10 Mb Tavoitteet Sydänpysähdyksestä

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot

Järvitesti Ympäristöteknologia T571SA 7.5.2013

Järvitesti Ympäristöteknologia T571SA 7.5.2013 Hans Laihia Mika Tuukkanen 1 LASKENNALLISET JA TILASTOLLISET MENETELMÄT Järvitesti Ympäristöteknologia T571SA 7.5.2013 Sarkola Eino JÄRVITESTI Johdanto Järvien kuntoa tutkitaan monenlaisilla eri menetelmillä.

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1

Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1 Liite: Verkot TKK (c) Ilkka Mellin (2004) 1 : Mitä opimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa, operaatiotutkimuksessa, peli-ja päätösteoriassa

Lisätiedot

Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 k -faktorikokeet 2 2 -faktorikokeet 2 3 -faktorikokeet 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 2 k -faktorikokeet: Mitä opimme?

Lisätiedot

8.1. Tuloperiaate. Antti (miettien):

8.1. Tuloperiaate. Antti (miettien): 8.1. Tuloperiaate Katseltaessa klassisen todennäköisyyden määritelmää selviää välittömästi, että sen soveltamiseksi on kyettävä määräämään erilaisten joukkojen alkioiden lukumääriä. Jo todettiin, ettei

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Mitä on näyttö vaikuttavuudesta. Matti Rautalahti Suomalainen Lääkäriseura Duodecim

Mitä on näyttö vaikuttavuudesta. Matti Rautalahti Suomalainen Lääkäriseura Duodecim Mitä on näyttö vaikuttavuudesta Matti Rautalahti Suomalainen Lääkäriseura Duodecim Sidonnaisuudet Päätoimi Suomalaisessa Lääkäriseurassa Duodecimissa Suomen ASH ry hallitus Tieteellinen näyttö Perustana

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Olkoon S = {s 1,s 2,...,s n } äärellinen otosavaruus. Oletetaan, että Pr(s i ) = 1, kaikille i = 1, 2,...,n n Tällöin alkeistapahtumat

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 11 (vko 48/003) (Aihe: Tilastollisia testejä, Laininen luvut 4.9, 15.1-15.4, 15.7) Nordlund 1. Kemiallisen prosessin

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot