Kertausluento. Vilkkumaa / Kuusinen 1

Koko: px
Aloita esitys sivulta:

Download "Kertausluento. Vilkkumaa / Kuusinen 1"

Transkriptio

1 Kertausluento Vilkkumaa / Kuusinen 1

2 Kokeellinen tutkimus Kokeellisessa tutkimuksessa on tavoitteena selvittää, miten erilaiset käsittelyt vaikuttavat tutkimuksen kohteisiin - Esim. miten lämpötila ja reaktioaika vaikuttavat kemiallisen prosessin vasteeseen Käsittelyllä tarkoitetaan tutkimuksen kohteiden olosuhteiden aktiivista, suunnitelmallista ja järjestelmällistä muuttamista. - Valitaan lämpötilalle ja reaktioajalle tutkittavat tasot (esim. 30 ja 40 min, 70 ja 90 C) ja havainnoidaan prosessin vastetta eri tasokombinaatioilla (30 min, 70 C), (30 min, 90 C), (40 min, 70 C), (40 min, 90 C) Vilkkumaa / Kuusinen 2

3 Kontrolloidut kokeet Kokeesta ei voida tehdä luotettavia johtopäätöksiä, ellei koe ole kontrolloitu: (i) Kokeessa on vertailtava vähintään kahden erilaisen käsittelyn vaikutuksia - Esim. lääketutkimuksessa yhdelle ryhmälle lääkettä, toiselle plaseboa (ii) Käsittelyiden kohdistamisessa on käytettävä satunnaistusta - Koehenkilöt jaetaan satunnaisesti lääke- ja plasebo-ryhmiin, ts. eliminoidaan systemaattisten erojen vaikutus (iii) Kokeessa on tehtävä riittävästi koetoistoja - Vähennetään satunnaisvaihtelun vaikutusta Vilkkumaa / Kuusinen 3

4 Tilastolliset mallit Jotta kokeista voidaan tehdä johtopäätöksiä, tulee tehdä oletuksia siitä, millaisella tilastollisella mallilla tutkimuksen kohteen havaittuja arvoja voidaan kuvata Tilastollisella mallilla tarkoitetaan satunnaismuuttujaa (jonka ilmentymiä havainnot ovat) ja sen todennäköisyysjakaumaa Esim. suomalaisen miehen pituuden (y cm) tilastollinen malli voisi olla y = ε, ε N(0, 7 2 ) Vilkkumaa / Kuusinen 4

5 Kurssilla käsitellyt asiat 1/2 Estimointi: Arvioidaan havaintoaineiston perusteella jotakin havainnot generoineen jakauman parametria. Tilastollinen testaus: Testataan hypoteeseja koskien havainnot generoineen jakauman muotoa tai parametreja. Lineaarinen regressio: Oletetaan tutkimuksen kohteen havaittujen arvojen riippuvan lineaarisesti selittävistä muuttujista - estimoidaan tämän lineaarisen mallin parametrit Varianssianalyysi: Tutkitaan ryhmäkohtaisten odotusarvojen eroja, kun aineisto on ryhmitelty k:n tekijän suhteen - k = 1 yksisuuntainen varianssianalyysi - k = 2 kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 5

6 Kurssilla käsitellyt asiat 2/2 Varianssianalyysin erikoistapaukset: - Kullakin tekijällä vain kaksi tasoa (matala ja korkea) 2 k -faktorikokeet ja osafaktorikokeet - Aineisto jaettu ryhmiin kahden tekijän suhteen, joista toinen ei kiinnostava satunnaistettu täydellinen lohkoasetelma - Aineisto jaettu ryhmiin kolmen tekijän suhteen, joista kaksi eivät kiinnostavia latinalaisten neliöiden koeasetelma Vastepintamenetelmä: Halutaan etsiä sellainen tekijöiden tasokombinaatio, jolla vaste on optimaalinen (mahdollisimman suuri / pieni). Optimin löytämiseksi estimoidaan vasteen ja tekijöiden välistä riippuvuutta kuvaava vastepinta. Vilkkumaa / Kuusinen 6

7 Estimointi Havaintoja generoivan tilastollisen mallin parametreja ei usein tunneta, vaan ne on estimoitava havaintoaineistosta - Esim. tiedetään x N(μ, σ 2 ), mutta ei μ:n arvoa - Estimoidaan odotusarvoa μ harhattoman estimaattorinsa ˉX = 1 n n i x i avulla Estimaatille on useimmiten hyvä muodostaa luottamusväli, jossa parametrin todellisen arvon voi riittävän suurella todennäköisyydellä olettaa olevan Luottamustason 1 α luottamusväli sisältää parametrin todellisen arvon todennäköisyydellä 1 α. Vilkkumaa / Kuusinen 7

8 Esimerkki: Normaalijakauman odotusarvon luottamusväli, kun varianssi σ 2 on tuntematon Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos normaalijakaumasta N(μ, σ 2 ) ja olkoon ˉX = havaintojen aritmeettinen keskiarvo s 2 = havaintojen harhaton otosvarianssi n = havaintojen lukumäärä t α/2 = t-jakauman arvo merkitsevyystasolla α/2 ja vapausasteilla (n 1). Normaalijakauman odotusarvon μ luottamusväli luottamustasolla (1 α) on muotoa ( ˉX t α/2 ) s s, ˉX + tα/2 n n Vilkkumaa / Kuusinen 8

9 Tilastollinen testaaminen Tilastollisen testin suorittaminen sisältää seuraavat vaiheet: (1) Asetetaan testin hypoteesit. (2) Valitaan testisuure. (3) Valitaan merkitsevyystaso α ja muodostetaan sitä vastaava hylkäysalue. (4) Poimitaan otos niin, että yleisen hypoteesin oletukset pitävät. (5) Lasketaan testisuureen arvo havainnoista. (6) Tehdään päätös nollahypoteesin hylkäämisestä Vilkkumaa / Kuusinen 9

10 Esimerkki: testi perusjoukon odotusarvolle, kun otos on normaalijakaumasta Yleinen hypoteesi H : (1) X i N(μ, σ 2 ), i = 1,..., n (2) Satunnaismuuttujat X 1,..., X n ovat riippumattomia Nollahypoteesi H 0 : μ = μ 0 Vaihtoehtoiset hypoteesit H 1 : μ > μ 0, H 1 : μ < μ 0, H 1 : μ μ 0 Testisuure T = ˉX μ 0 s/ n Testisuureen jakauma: jos nollahypoteesi pätee, T t(n 1). Vilkkumaa / Kuusinen 10

11 Johtopäätöksen tekeminen - α vs. p-arvo Nollahypoteesin hylkäys- ja hyväksymisalueet määrittyvät valitun merkitsevyystason α perusteella Jos merkitsevyystasoa ei haluta etukäteen kiinnittää, voidaan johtopäätös tehdä havaintoaineiston määrittämän p-arvon perusteella Testin p-arvo on todennäköisyys sille, että saataisiin vielä saatuakin poikkeuksellisempi testisuureen arvo H 0 :n pätiessä Pieni p-arvo kertoo, että saatu testisuure on H 0 :n kannalta erittäin poikkeuksellinen H 0 on syytä hylätä p-arvo onkin pienin merkitsevyystaso, jolla H 0 voidaan hylätä Vilkkumaa / Kuusinen 11

12 Hylkäys- ja hyväksymisvirheet Hylkäysvirhe: H 0 hylätään sen pätiessä - Hylkäysvirheen tn merkitsevyystasolla α on α Hyväksymisvirhe: H 0 hyväksytään, vaikka se ei todellisuudessa päde - Hyväksymisvirheen tn β riippuu "todellisuudesta", siis esim. parametrin θ todellisesta arvosta θ - Testin voimakkuus γ(θ ) = 1 β(θ ) on tn sille, että H 0 hylätään kun testattavan paramterin todellinen arvo on θ Vilkkumaa / Kuusinen 12

13 Lineaarinen regressio Oletetaan, että selitettävän muuttujan y havaitut arvot riippuvat selittävien muuttujien x 1,..., x k arvoista lineaarisesti y = β 0 + β 1 x β k x k + ε Lineaarisen regression tavoite on estimoida paramterit β j s.e. estimoitu regressiotaso ŷ = b 0 + b 1 x b k x k kulkee mahdollisimman läheltä havaittuja arvoja y Tämä tehdään minimoimalla jäännöstermien ε j neliösummaa havainnoissa j = 1,..., n, ts. PNS-menetelmällä Vilkkumaa / Kuusinen 13

14 Varianssianalyysihajotelma Lineaarisessa regressiossa pätee varianssianalyysihajotelma SST = SSM + SSE, missä SST = SSE = SSM = n (y j ȳ) 2 (Kokonaisvaihtelu) j=1 n (y j ŷ j ) 2 (Mallin selittämättä jättämä vaihtelu) j=1 n (ŷ j ȳ) 2 (Mallin selittämä vaihtelu) j=1 Mallin selitysaste R 2 = SSM/SST Vilkkumaa / Kuusinen 14

15 Lineaarinen regressio - esimerkki Vilkkumaa / Kuusinen 15

16 Yksisuuntainen varianssianalyysi Oletetaan, että perusjoukko voidaan jakaa k ryhmään tekijän A suhteen. Yksisuuntaisen varianssianalyysin tilastollinen malli: y ji = μ i + ε ij, ε ij N(0, σ 2 ), j = 1, 2,..., n i, i = 1, 2,..., k Testataan nollahypoteesia H 0 : μ i = μ i - Jos nollahypoteesi H 0 pätee, ryhmät voidaan yhdistää havaintojen keskimääräisiä arvoja koskevissa tarkasteluissa. - Jos nollahypoteesi H 0 ei päde, tiedetään, että muuttujan y ryhmäkohtaiset odotusarvot eroavat toisistaan ainakin kahdessa ryhmässä. Vilkkumaa / Kuusinen 16

17 Varianssianalyysihajotelma Yksisuuntaisessa varianssianalyysissa pätee varianssianalyysihajotelma on Neliösummat: Vapausasteet: SST = SSG + SSE, N 1 = (k 1) + (N k), H 0 :n pätiessä F = N k k 1 SSG SSE F (k 1, N k) Vilkkumaa / Kuusinen 17

18 Varianssianalyysitaulukko Vaihtelun SS df M S F lähde Ryhmien välinen SSG k 1 MSG = 1 k 1 SSG vaihtelu F = N k k 1 SSG SSE Ryhmien sisäinen SSE N k MSE = 1 N k SSE vaihtelu Kokonaisvaihtelu SST N 1 Vilkkumaa / Kuusinen 18

19 Yksisuuntainen varianssianalyysi - esimerkki Vilkkumaa / Kuusinen 19

20 Kontrastit Kontrastien avulla voidaan testata parivertaiua monimutkaisempia nollahypoteeseja, esim. H 0 : μ 1 + μ 2 = μ 3 + μ 4 tai H 0 : 2μ 1 = μ 2 + μ 3. Muodollisesti: parametrien μ 1, μ 2,..., μ k lineaarikombinaatio Γ = k i=1 c i μ i on kontrasti, jos k i=1 c i = 0. Kontrastia koskeva nollahypoteesi: H 0 : Γ = 0 Vilkkumaa / Kuusinen 20

21 F -testi kontrasteille Nollahypoteesin pätiessä testisuure F = SS C MSE F (1, N k), missä MSE = SSE/(N k) ja SS C = ( k i=1 c i ȳ i ) 2 / k i=1 c 2 i n i. SS C on kontrastin neliösumma Vilkkumaa / Kuusinen 21

22 Ortogonaaliset kontrastit Kontrastit Γ = k i=1 c iμ i ja Δ = k i=1 d iμ i ovat ortogonaalisia, jos k i=1 c i d i n i = 0. Jos ryhmiä on k kpl, on ortogonaalisia kontrasteja k 1 kpl k 1 kpl ortogonaalisia kontrasteja dekomponoi ryhmittelyn selittämää vaihtelua kuvaavan neliösumman k 1 osaan, joista kunkin vapausaste on 1: Neliösummat: SSG = SS C SS Ck 1 Vapausasteet: k 1 = Vilkkumaa / Kuusinen 22

23 Kaksisuuntainen varianssianalyysi Perusjoukko jaetaan ryhmiin tekijöiden A ja B suhteen siten, että tekijällä A on I ja tekijällä B on J tasoa IJ ryhmää Testataan kolmea nollahypoteesia: H AB : H A : H B : Ei yhdysvaikutusta Ei A-vaikutusta Ei B-vaikutusta Jos H AB pätee, voidaan A- ja B-vaikutuksia tarkastella erillisinä Jos myös H A ja H B pätevät, voidaan ryhmät yhdistää havaintojen keskimääräisiä arvoja koskevissa tarkasteluissa. Vilkkumaa / Kuusinen 23

24 Testit Kaksisuuntaiselle varianssianalyysille päätee varianssianalyysihajotelma Neliösummat SST = SSA + SSB + SSAB + SSE Vapausasteet IJK 1 = (I 1) + (J 1) + (I 1)(J 1) + IJ(K 1) Nollahypoteesin H pätiessä IJ(K 1) df( ) SS SSE F (df( ), IJ(K 1)). Vilkkumaa / Kuusinen 24

25 Varianssianalyysitaulukko Vaihtelun SS df M S F lähde A SSA I 1 MSA = SSA/df F A = MSA/MSE B SSB J 1 MSB = SSB/df F B = MSB/MSE AB SSAB (I 1)(J 1) MSAB = SSAB/df F AB = MSAB/MSE Jäännös SSE IJ(K 1) M SE = SSE/df Kokonais- SST IJK 1 vaihtelu Vilkkumaa / Kuusinen 25

26 Kaksisuuntainen varianssianalyysi - esimerkki Vilkkumaa / Kuusinen 26

27 2 k -faktorkokeet 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta käytetään usein tutkimuksen alkuvaiheessa, jossa tutkittavia faktoreita on yleensä paljon - 2 k -faktorikoe vaatii pienimmän mahdollisen havaintomäärän k:n tekijän vaikutusten tutkimisessa (2 k+1 kpl) - Koeasetelman erityisrakenteen takia neliösummien laskemisessa ja testien tekemisessä voidaan käyttää kontrasteja koskevia tuloksia, mikä yksinkertaistaa laskutoimituksia - Kokeen perusteella voidaan tunnistaa tärkeimmät tekijät, joiden tasojen määrää voidaan lisätä Vilkkumaa / Kuusinen 27

28 Yhden toiston 2 k -faktorikoe Täyden k-suuntaisen varianssianalyysin suorittamiseen tarvitaan vähintään 2 k+1 havaintoja, ts. 2 kpl kustakin ryhmästä Ottamalla vai yksi havainto kustakin ryhmästä saadaan havaintojen määrä puolitettua Tällöin vaikutuksia ei voi testata Vaikutuksia kuvaavat neliösummat voivat kuitenkin antaa osviittaa niiden merkityksellisyydestä / merkityksettömyydestä Merkittäviä vaikutuksia voidaan testata muodostamalla jäännösneliösumma merkityksettömiä vaikutuksia vastaavista neliösummista Vilkkumaa / Kuusinen 28

29 Esimerkki Vilkkumaa / Kuusinen 29

30 Yhden toiston 2 k -faktorikoe Vilkkumaa / Kuusinen 30

31 Yhden toiston 2 k -faktorikoe Vaikutusta B vastaavat summat pieniä asetetaan satunnaisvaihteluksi SSE = SSB + SSAB + SSBC SSABCD Source SS df M S F p-value A C D AC AD CD ACD Within Total Vilkkumaa / Kuusinen 31

32 Osafaktorikokeet Jos voidaan olettaa, että tietyt korkeamman asteen yhdysvaikutukset ovat merkityksettömiä, on kiinnostavien vaikutusten selvittäminen mahdollista ottamalla vain 1/2, 1/4, 1/8 jne. täyden 2 k -faktorikokeen havainnoista, eli 2 k p havaintoa. Poimittavat havainnot valitaan siten, että saadusta datasta voidaan estimoida mahdollisimman hyvin päävaikutukset ja matalan asteen yhdysvaikutukset, ts. kokeen resoluutio on mahdollisimman korkea. Myöhemmässä vaiheessa merkityksellisiä tekijöitä voidaan tutkia tarkemmin uusilla koejärjestelyillä. Vilkkumaa / Kuusinen 32

33 2 k 1 -osafaktorikoesuunnitelman muodostaminen Korkeimman mahdollisen resoluutio 2 k 1 -osafaktorikoesuunnitelma muodostetaan seuraavasti: 1. Muodostetaan täysi faktorikoesuunnitelma (k 1):lle faktorille 2. Asetetaan k:nnen faktorin tasoiksi kussakin havainnossa sama kuin on korkeimman asteen yhdysvaikutuksen ABC (K 1) merkki: K = ABC (K 1) Vilkkumaa / Kuusinen 33

34 Esimerkki: koesuunnitelma Vaikutus Käsittely I A B C AB AC BC ABC a b c abc

35 Määrittelevä relaatio ja aliakset Kokeen määrittelevä relaatio on niiden yhdysvaikutusten joukko, jotka ovat aina korkealla (+) tasolla (esim. edellä ABC) Myös identiteettisarake on aina korkealla tasolla, jolloin I = ABC Määrittelevän relaation avulla voidaan laskea alias-vaikutukset, ts. ne, joita ei voi osafaktorikokeessa erottaa toisistaan Esim. edellä A = A ABC = A 2 BC = BC, eli A ja BC ovat aliasvaikutuksia Täten kun estimoidaan A-vaikutusta, estimoidaan oikeasti vaikutusta A + BC Tämä on se hinta, joka pienemmästä havaintomäärästä on maksettava Vilkkumaa / Kuusinen 34

36 Esimerkki Vilkkumaa / Kuusinen 35

37 Esimerkki Esim. tekijän A vaikutus: A = 1 ( (1) + ad bd + ab cd + ac bc + abcd) = 1 ( ) = Koska A = A ABCD = A 2 BCD = BCD, estimoidaan itse asiassa vaikutusta A + BCD Vilkkumaa / Kuusinen 36

38 Esimerkki Vaikutus A = B = 1.50 C = D = AB = 1.00 AC = AD = Alias-rakenne A A + BCD B B + ACD C C + ABD D D + ABC AB AB + CD AC AC + BD AD AD + BC Havainnot muodostavat merkittäville tekijöille A, C ja D yhden otoksen 2 3 -faktorikokeen. Vilkkumaa / Kuusinen 37

39 Vastepintamenetelmä Vastepintamenetelmässä on tavoitteena löytää se tekijöiden tasokombinaatio, joka optimoi (minimoi/maksimoi) vasteen Tämä edellyttää tekijöiden ja vasteen välisen funktionaalisen riippuvuuden eli vastepinnan estimointia Useimmiten vastepintaa voidaan riittävän hyvin estimoida 1. tai 2. asteen polynomilla: ŷ = b 0 + b 1 x 1 + b 2 x 2 + b 12 x 1 x 2 ŷ = b 0 + b 1 x 1 + b 2 x 2 + b 12 x 1 x 2 + b 11 x b 22 x 2 2 Estimointi tehdään vastepintamenetelmällä Vilkkumaa / Kuusinen 38

40 Vastepintamenetelmän vaiheet 1/2 Valitaan tekijöiden korkeat ja matalat tasot sopivaksi katsotun aloituspisteen ympärillä (2 2 -faktorikoeasetelma) Siirrytään koodattuihin muuttujiin (matala taso -1, korkea +1) tekijöiden skaalaerojen tasoittamiseksi Testataan koodatussa neliössä (kulma- ja keskipistehavaintojen avulla) vastepinnan kvadraattista kaarevuutta Jos kaarevuutta ei ole, estimoidaan ensimmäisen asteen vastepinta ja lähdetään ottamaan havaintoja vastepinnan gradientin suunnassa (tai minimoitaessa sitä vastaan) sopivaksi katsotulla askelpituudella Lopetetaan, kun vaste ei enää kasva (tai minimoitaessa vähene) Vilkkumaa / Kuusinen 39

41 Vastepintamenetelmän vaiheet 2/2 Testataan gradienttimentetelmän antaman maksimi- tai minimivasteen ympäristössä jälleen kvadraattista kaarevuutta Jos kaarevuutta löytyy, estimoidaan toisen asteen vastepinta ottamalla lisähavaintoja ns. tähtipisteistä Määritetään ne tekijöiden tasot, jotka maksimoivat / minimoivat estimoidun vastepinnan arvon Vilkkumaa / Kuusinen 40

42 Esimerkki Vilkkumaa / Kuusinen 41

43 Satunnaistettu täydellinen lohkoasetelma Kaksisuuntaisessa varianssianalyysissa tarvitaan vähintään 2 IJ havaintoa Tarvittavien havaintojen määrää voidaan vähentää, jos toisen tekijän B (kiusatekijän) vaikutuksesta ei olla kiinnostuneita Satunnaistetussa täydellisessä lohkoasetelmassa - Jaetaan perusjoukko B:n tasojen suhteen homogeenisiin lohkoihin - Arvotaan A-käsittelyn tasot satunnaisesti tutkimuksen kohteille kunkin lohkon sisällä Satunnaistetun täydellisen lohkoasetelman nollahypoteesi: H A : Ei A-vaikutusta Jos A:lla ja B:llä on kummallakin P tasoa, tarvitaan H A :n testaamiseen vähintään P 2 < 2P 2 havaintoa Vilkkumaa / Kuusinen 42

44 Varianssianalyysihajotelma ja testit Satunnaistetussa täydellisessä lohkoasetelmassa pätee varianssianalyysihajotelma SST = SSA + SSB + SSE IJ 1 = (I 1) + (J 1) + (I 1)(J 1) H A :n pätiessä F A = (I 1)(J 1) I 1 SSA SSE F (I 1, (I 1)(J 1)) Vilkkumaa / Kuusinen 43

45 Varianssiananlyysitaulukko Vaihtelun SS df M S F lähde A SSA I 1 MSA = SSA/df F A = MSA/MSE B SSB J 1 MSB = SSB/df Jäännös SSE (I 1)(J 1) MSE = SSE/df Kokonais- SST IJ 1 vaihtelu Vilkkumaa / Kuusinen 44

46 Latinalaisten neliöiden koeasetelma Jos perusjoukko on ryhmitelty kolmen tekijän (A, R, C) suhteen siten, että kullakin on P tasoa, vaatisi kolmisuuntaisen varianssianalyysin suorittaminen 2 P 3 havaintoa Jos kahden tekijän (R, C) vaikutuksista ei olla kiinnostuneita, selvitään A-vaikutuksen testaamisesta P 2 havainnolla Tämä tehdään jakamalla perusjoukko R- ja C-tekijöiden tasojen kannalta homogeenisiin lohkoihin (P 2 kappaletta) Jokaisesta lohkosta poimitaan satunnaisesti yksi yksilö kokeeseen ja arvotaan A-käsittelyt ko. yksilöille siten, että A:n tasot muodostavat ns. latinalaisen neliön. Nollahypoteesi on tällöin H A : Ei käsittelyvaikutusta Vilkkumaa / Kuusinen 45

47 Varianssianalyysihajotelma ja testaus Latinalaisten neliöiden koeasetelmassa pätee varianssianalyysihajotelma SST = SSA + SSR + SSC + SSE P 2 1 = (P 1) + (P 1) + (P 1) + (P 2)(P 1) Nollahypoteesin pätiessä F A = (P 2)(P 1) P 1 SSA SSE F (P 1, (P 2)(P 1)) Vilkkumaa / Kuusinen 46

48 Varianssianalyysitaulukko Vaihtelun SS df M S F lähde A SSA P 1 MSA = SSA/df F A = MSA/MSE R SSR P 1 MSR = SSR/df C SSC P 1 MSC = SSC/df Jäännös SSE (P 2)(P 1) MSE = SSE/df Kokonais- SST P 2 1 vaihtelu Vilkkumaa / Kuusinen 47

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

Lohkoasetelmat. Vilkkumaa / Kuusinen 1

Lohkoasetelmat. Vilkkumaa / Kuusinen 1 Lohkoasetelmat Vilkkumaa / Kuusinen 1 Motivointi 1/3 Kaksisuuntaisella varianssianalyysilla voidaan tutkia kahden tekijän A ja B vaikutusta sekä niiden yhdysvaikutusta tutkimuksen kohteeseen Kaksisuuntaisessa

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

Osafaktorikokeet. Kurssipalautetta voi antaa Oodissa Kuusinen/Heliövaara 1

Osafaktorikokeet. Kurssipalautetta voi antaa Oodissa Kuusinen/Heliövaara 1 Osafaktorikokeet Kurssipalautetta voi antaa Oodissa 27.4.-25.5. Kuusinen/Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeen

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

Lohkoasetelmat. Heliövaara 1

Lohkoasetelmat. Heliövaara 1 Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,

Lisätiedot

Vastepintamenetelmä. Heliövaara 1

Vastepintamenetelmä. Heliövaara 1 Vastepintamenetelmä Kurssipalautteen antamisesta saa hyvityksenä yhden tenttipisteen. Palautelomakkeeseen tulee lähiaikoina linkki kurssin kotisivuille. Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä

Lisätiedot

Lohkoasetelmat. Kuusinen/Heliövaara 1

Lohkoasetelmat. Kuusinen/Heliövaara 1 Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan

Lisätiedot

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1 Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Vastepintamenetelmä. Vilkkumaa / Kuusinen 1

Vastepintamenetelmä. Vilkkumaa / Kuusinen 1 Vastepintamenetelmä Vilkkumaa / Kuusinen 1 Motivointi Varianssianalyysissa tutkitaan tekijöiden vaikutusta vasteeseen siten, että tekijöiden tasot on ennalta valittu. - Esim. tutkitaan kemiallisen prosessin

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 k -faktorikokeet 2 2 -faktorikokeet 2 3 -faktorikokeet 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 2 k -faktorikokeet: Mitä opimme?

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

Osafaktorikokeet. Heliövaara 1

Osafaktorikokeet. Heliövaara 1 Osafaktorikokeet Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeentekijän resurssit. Myös estimoitavien korkean asteen yhdysvaikutustermien

Lisätiedot

Hierarkkiset koeasetelmat. Heliövaara 1

Hierarkkiset koeasetelmat. Heliövaara 1 Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Käytännön järjestelyt Luennot: Luennot maanantaisin (sali E) ja keskiviikkoisin (sali U4) klo 10-12 Luennoitsija: (lauri.viitasaari@aalto.fi)

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Koesuunnittelu Vastepintamenetelmä. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu Vastepintamenetelmä. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu Vastepintamenetelmä TKK (c) Ilkka Mellin (2005) 1 Vastepintamenetelmä Vastepintamenetelmä: Johdanto 2 k -faktorikokeet Vastefunktion kaarevuuden testaaminen 1. asteen vastepintamallin varianssianalyysihajotelma

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Todennäköisyyslaskennan kertaus Satunnaismuuttujat ja tn-jakaumat Tunnusluvut χ 2 -, F- ja t-jakauma Riippumattomuus Tilastotieteen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi

Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi (c) lkka Mellin (005) Useampisuuntainen varianssianalsi ohdatus tilastotieteeseen Useampisuuntainen varianssianalsi (c) lkka Mellin (005) Useampisuuntainen varianssianalsi: Mitä opimme? arkastelemme tässä

Lisätiedot

Johdatus regressioanalyysiin. Heliövaara 1

Johdatus regressioanalyysiin. Heliövaara 1 Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5 TKK (c) Ilkka Mellin (4) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (4) : Mitä opimme? 1/5 Tilastollisessa tutkimuksessa tutkimuksen kohteena olevasta perusjoukosta esitetään tavallisesti väitteitä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman

Lisätiedot

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1 Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Johdatus tilastotieteeseen Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2004) 1 Yleinen lineaarinen malli Usean selittäjän lineaarinen regressiomalli Yleisen lineaarisen mallin matriisisesitys Yleisen

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tilastollisen analsin perusteet, kevät 007. luento: Kaksisuuntainen varianssianalsi Kai Virtanen Kaksisuuntaisen varianssianalsin perusasetelma Jaetaan perusjoukko rhmiin kahden tekän A ja B suhteen

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5 MS-A Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko Tilastollinen testaus Tilastollisten testaaminen Tilastollisen tutkimuksen kohteena olevasta perusjoukosta on esitetty jokin väite tai

Lisätiedot

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 11 (vko 48/003) (Aihe: Tilastollisia testejä, Laininen luvut 4.9, 15.1-15.4, 15.7) Nordlund 1. Kemiallisen prosessin

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2007) 1 Yleinen lineaarinen malli >> Usean selittäjän lineaarinen regressiomalli

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu 10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1 Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia Heliövaara 1 Regressiokertoimien PNS-estimaattorit Määritellään havaintojen x j ja y j, j = 1, 2,...,n

Lisätiedot

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa:

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa: Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalsi Aritmeettinen keskiarvo, Estimointi, F-testi,

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

1. Tilastollinen malli??

1. Tilastollinen malli?? 1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen

Lisätiedot

Yleinen lineaarinen malli

Yleinen lineaarinen malli MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: 1 Määritelmä ja standardioletukset 2

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

2 2 -faktorikokeen määritelmä

2 2 -faktorikokeen määritelmä TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tai useamman tekijän vaikutusta

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu 5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 5

031021P Tilastomatematiikka (5 op) viikko 5 031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

Yleistetyistä lineaarisista malleista

Yleistetyistä lineaarisista malleista Yleistetyistä lineaarisista malleista Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Klassinen lineaarinen malli y = Xb + e eli E(Y) = m, jossa m = Xb Satunnaiskomponentti: Y:n komponentit

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6) Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

VARIANSSIANALYYSI ANALYSIS OF VARIANCE

VARIANSSIANALYYSI ANALYSIS OF VARIANCE VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.

Lisätiedot

11. laskuharjoituskierros, vko 15, ratkaisut

11. laskuharjoituskierros, vko 15, ratkaisut 11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

Korrelaatiokertoinen määrittely 165

Korrelaatiokertoinen määrittely 165 kertoinen määrittely 165 Olkoot X ja Y välimatka- tai suhdeasteikollisia satunnaismuuttujia. Havaintoaineistona on n:n suuruisesta otoksesta mitatut muuttuja-arvoparit (x 1, y 1 ), (x 2, y 2 ),..., (x

Lisätiedot