1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

Koko: px
Aloita esitys sivulta:

Download "1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi"

Transkriptio

1 Mat Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti, Päätössääntö, Nollahypoteesi, Normaalisuuden testaaminen, p-arvo, Rankit Plot, Testi, Testisuure, Testisuureen normaaliarvo, Vaihtoehtoinen hypoteesi, Wilkin ja Shapiron testi, Yhteensopivuustestit, Yleinen hypoteesi 1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi (a) (b) (c) Ratkaisu: (a) Generoi STATISTIX-ohjelman pseudosatunnaislukuja tuottavilla aliohjelmilla tiedostoon RANDOM1 seuraavat muuttujat (50 havaintoa): NORMA NORMB NORMC TAS N(0,1) N(0,1) N(0,1) Uniform(0,1) Muodosta STATISTIX-ohjelman transformaatiokomennoilla tiedostoon RANDOM1 seuraavat muuttujat: KHI = NORMA^2 + NORMB^2 + NORMC^2 2 (3) IKHI = 20 - KHI EXP = Ln(1 - TAS)/(-0.2) Exp(0.2) Tutki muuttujien NORMA, TAS, KHI, IKHI, EXP normaalisuutta: Piirrä histogrammit Määrää aritmeettiset keskiarvot, mediaanit, vinoudet, huipukkuudet Testaa normaalisuutta Bowmanin ja Shentonin testillä Piirrä Rankit Plot kuviot ja testaa normaalisuutta Wilkin ja Shapiron testillä (taulukot: STATISTIX-ohjelman HELP) Satunnaislukujen generointi Generoidaan tiedostoon RANDOM1 satunnaislukuja jakaumasta N(0,1) muuttujiksi NORMA, NORMB, NORMC: Data > Transformations Transformation Expression NORMA / NORMB / NORMC = NRandom (0,1) TKK Systeemianalyysin laboratorio (2009) 1/23

2 Generoidaan tiedostoon RANDOM1 satunnaislukuja jakaumasta Uniform(0,1) muuttujaksi TAS: Data > Transformations Transformation Expression TAS = Random (b) Transformaatiot Generoidaan tiedostoon RANDOM1 satunnaislukuja jakaumasta 2 (3) muuttujaksi KHI käyttämällä hyväksi 2 (3)-jakauman määritelmää: Olkoon Tällöin X, X, X N(0,1) X, X, X X X X (3) Data > Transformations Transformation Expression KHI = NORMA^2 + NORMB^2 + NORMC^2 Muodostetaan muuttuja IKHI = 20 - KHI: Data > Transformations Transformation Expression IKHI = 20 - KHI Generoidaan tiedostoon RANDOM1 satunnaislukuja jakaumasta Exp(0.2) muuttujaksi EXP, käyttämällä hyväksi seuraavaa todennäköisyyslaskennan yleistä tulosta: Olkoon F mielivaltaisen todennäköisyysjakauman kertymäfunktio. Tällöin pätee seuraava tulos: Jos U ~ Uniform(0,1) niin satunnaismuuttuja Z = F 1 (U) noudattaa todennäköisyysjakaumaa, jonka kertymäfunktio on F. TKK Systeemianalyysin laboratorio (2009) 2/23

3 Frequency Mat Tilastollisen analyysin perusteet Koska eksponenttijakauman kertymäfunktio on F( x) 1exp( x) niin satunnaismuuttuja log e(1 U) Z Exp( ) Data > Transformations Transformation Expression EXP = Ln(1 - TAS)/(-0.2) (c) Normaalisuuden tutkiminen: Histogrammit Statistics > Summary Statistics > Histogram Histogram Variables = NORMA / KHI / IKHI / TAS / EXP Low, High, Step = valitaan muuttujan arvojen mukaan sopivasti Histogram Variables = NORMA Low, High, Step = -2.4, +2.4, 0.4 Histogram NORMA Muuttujan NORMA jakauma on (käytännössä) yksihuippuinen ja melko symmetrinen. TKK Systeemianalyysin laboratorio (2009) 3/23

4 Frequency Frequency Mat Tilastollisen analyysin perusteet Histogram Variables = KHI Low, High, Step = 0, 10, 1 Histogram Muuttujan KHI jakauma on vino oikealle. KHI Histo gram Variables = IKHI Low, High, Step = 10, 20, 1 Histogram IKHI Muuttujan IKHI jakauma on vino vasemmalle. TKK Systeemianalyysin laboratorio (2009) 4/23

5 Frequency Frequency Mat Tilastollisen analyysin perusteet Histogram Variables = TAS Low, High, Step = 0, 1, 0.1 Histogram TAS Muuttujan TAS jakauma on melko tasainen. Histogram Variables = EXP Low, High, Step = 0, 22, 2 Histogram Muuttujan EXP jakauma on vino oikealle. EXP TKK Systeemianalyysin laboratorio (2009) 5/23

6 Tunnusluvut Statistics > Summary Statistics > Descriptive Statistics Descriptive Variables = NORMA, KHI, IKHI, TAS, EXP DESCRIPTIVE STATISTICS VARIABLE N MEAN MEDIAN SKEW KURTOSIS NORMA E KHI IKHI TAS EXP Muuttuja NORMA: Aritmeettinen keskiarvo (= MEAN) Mediaani (= Median) 0 Jakauma on symmetrinen pisteen 0 suhteen Vinous (= SKEW) 0 Huipukkuus (= KURTOSIS) 0 Tunnusluvut ovat sopusoinnussa generointiprosessin kanssa: NORMA ~ N(0,1) Muuttuja KHI: Aritmeettinen keskiarvo (= MEAN) = 2.7 > 2.3 = Mediaani (= MEDIAN) Jakauma on vino oikealle Vinous (= SKEW) > 0 Huipukkuus (= KURTOSIS) > 0 Tunnusluvut ovat sopusoinnussa generointiprosessin kanssa: KHI ~ 2 (3) Muuttuja IKHI: Aritmeettinen keskiarvo (= MEAN) = 17.3 < 17.7 = Mediaani (= MEDIAN) Jakauma on vino vasemmalle Vinous (= SKEW) < 0 Huipukkuus (= KURTOSIS) > 0 Tunnusluvut ovat sopusoinnussa generointiprosessin kanssa: IKHI = 20 KHI TKK Systeemianalyysin laboratorio (2009) 6/23

7 Muuttuja TAS: Aritmeettinen keskiarvo (= MEAN) Mediaani (= MEDIAN) 0.5 Jakauma on symmetrinen pisteen 0.5 suhteen Vinous (= SKEW) 0 Huipukkuus (= KURTOSIS) < 0 Tunnusluvut ovat sopusoinnussa generointiprosessin kanssa: TAS ~ Uniform(0,1) Muuttuja EXP: Aritmeettinen keskiarvo (= MEAN) = 4.6 > 3.9 = Mediaani (= MEDIAN) Jakauma on vino oikealle Vinous (= SKEW) > 0 Huipukkuus (= KURTOSIS) > 0 Tunnusluvut ovat sopusoinnussa generointiprosessin kanssa: EXP ~ Exp(5) Muuttujan IKHI vinous on muuttujan KHI vinouden vastaluku. Miksi? Muuttujien KHI ja IKHI huipukkuudet ovat yhtä suuria. Miksi? Bowmanin ja Shentonin testit Bowmanin ja Shentonin testisuure n n Skew Kurt 2 a (2) jos nollahypoteesi H 0 normaalisuudesta pätee. STATISTIX ei sisällä Bowmanin ja Shentonin testiä, mutta se voidaan helposti tehdä määräämällä ensin tutkittavan muuttujan vinous ja huipukkuus STATISTIX-ohjelmalla ja laskemalla testisuureen arvo esim. jollakin taulukkolaskinohjelmalla tai laskimella. Bowmanin ja Shentonin testien tulokset: VARIABLE N SKEW KURT B-S p-arvo NORMA KHI IKHI TAS EXP TKK Systeemianalyysin laboratorio (2009) 7/23

8 Ordered Data Mat Tilastollisen analyysin perusteet B-S-testisuureen arvot muuttujille KHI ja IKHI ovat yhtä suuria. Miksi? Bowmanin ja Shentonin testin mukaan nollahypoteeseja muuttujien NORMA ja TAS normaalisuudesta ei voida hylätä 5 %:n merkitsevyystasolla, kun taas nollahypoteesit muuttujien KHI, IKHI ja EXP normaalisuudesta voidaan hylätä. Yo. taulukon p-arvot on saatu seuraavalla tavalla: Statistics > Probability Functions Function = Chi-square (x,df) X = B-S testisuureen arvo DF = 2 Rankit plot -kuviot Statistics > Randomness/Normality Tests > Normal Probability Plot Plot Variable = NORMA / KHI / IKHI / TAS / EXP Plot Variable = NORMA 2.1 Wilk-Shapiro / Rankit Plot of NORMA Rankits Approximate Wilk-Shapiro cases Muuttujan NORMA jakauma näyttää melko normaaliselta (kuten pitääkin). TKK Systeemianalyysin laboratorio (2009) 8/23

9 Ordered Data Ordered Data Mat Tilastollisen analyysin perusteet Plot Variable = KHI Wilk-Shapiro / Rankit Plot of KHI Rankits Approximate Wilk-Shapiro cases Muuttujan KHI jakauma on vino oikealle. Plot Variable = IKHI 20 Wilk-Shapiro / Rankit Plot of IKHI Rankits Approximate Wilk-Shapiro cases Muuttujan IKHI jakauma on vino vasemmalle. TKK Systeemianalyysin laboratorio (2009) 9/23

10 Ordered Data Ordered Data Mat Tilastollisen analyysin perusteet Plot Variable = TAS Wilk-Shapiro / Rankit Plot of TAS Rankits Approximate Wilk-Shapiro cases Muuttujan TAS jakauma on ohuthäntäisempi kuin muuttujan NORMA jakauma. Plot Variable = EXP 24 Wilk-Shapiro / Rankit Plot of EXP Rankits Approximate Wilk-Shapiro cases Muuttujan EXP jakauma on vino oikealle. TKK Systeemianalyysin laboratorio (2009) 10/23

11 Wilkin ja Shapiron testit Wilkin ja Shapiron testien tulokset: VARIABLE N W-S Päätös NORMA H 0 jää voimaan KHI H 0 hylätään IKHI H 0 hylätään TAS H 0 jää voimaan EXP H 0 hylätään Olkoon havaintojen lukumäärä 50. Tällöin kriittiset rajat 1 %:n ja 5 %:n merkitsevyystasoille ovat seuraavat: Merkitsevyystaso 1% 5% Kriittinen raja Jos Wilkin ja Shapiron testisuureen arvo alittaa kriittisen rajan, on nollahypoteesi hylättävä. Wilkin ja Shapiron testin mukaan nollahypoteeseja muuttujien NORMA ja TAS normaalisuudesta ei voida hylätä 1 %:n merkitsevyystasolla, kun taas nollahypoteesit muuttujien KHI, IKHI ja EXP normaalisuudesta voidaan hylätä. Yo. taulukon p-arvojen määrääminen: ks. edellä. W-S-testisuureen arvot muuttujille KHI ja IKHI ovat yhtä suuria. Miksi? 2. Ulkopuoliset havainnot ja Rankit Plot (a) (b) (c) Generoi STATISTIX-ohjelman satunnaislukuja tuottavalla aliohjelmalla tiedostoon RANDOM2 seuraava muuttuja (50 havaintoa): NORM: N(0,1) Muodosta tiedostoon RANDOM2 muuttujasta NORM muuttujat VARA ja VARB seuraavalla tavalla: VARA: anna muuttujan NORM havainnon nro 50 arvoksi 5 VARB: anna muuttujan NORM havainnon nro 50 arvoksi +5 Tutki muuttujien VARA ja VARB jakaumia: Piirrä histogrammit Määrää aritmeettiset keskiarvot, mediaanit, vinoudet, huipukkuudet Piirrä Rankit Plot -kuviot ja testaa normaalisuutta Wilkin ja Shapiron testillä (taulukot: STATISTIX-ohjelman HELP) TKK Systeemianalyysin laboratorio (2009) 11/23

12 Ratkaisu: (a) Satunnaislukujen generointi Generoidaan tiedostoon RANDOM2 satunnaislukuja jakaumasta N(0,1) muuttujaksi NORM: Data > Transformations Transformation Expression NORM = NRandom (0,1) (b) Transformaatiot Kopioidaan tiedostoon RANDOM2 muuttuja NORM muuttujiksi VARA ja VARB: Data > Transformations Transformation Expression VARA / VARB = NORM Muutetaan havaintoarvo nro 50 muuttujassa VARA luvuksi 5. Muutetaan havaintoarvo nro 50 muuttujassa VARB luvuksi +5. (c) Jakauman tutkiminen: Histogrammit Statistics > Summary Statistics > Histogram Histogram Variables = NORM / VARA / VARB Low, High, Step = valitaan muuttujan arvojen mukaan sopivasti TKK Systeemianalyysin laboratorio (2009) 12/23

13 Frequency Frequency Mat Tilastollisen analyysin perusteet Histogram Variables = NORM Low, High, Step = -5.2, +5.2, 0.4 Histogram NORM Muuttuja NORM voisi olla normaalinen (ks. Wilkin ja Shapiron testiä alla). Histogram Variables = VARA Low, High, Step = -5.2, +5.2, 0.4 Histogram VARA Ulkopuolinen havainto 5 näkyy selvästi. TKK Systeemianalyysin laboratorio (2009) 13/23

14 Frequency Mat Tilastollisen analyysin perusteet Histogram Variables = VARB Low, High, Step = -5.2, +5.2, 0.4 Histogram VARB Ulkopuolinen havainto +5 näkyy selvästi. Tunnusluvut Statistics > Summary Statistics > Desriptive Statistics Descriptive Variables = VARA, VARB DESCRIPTIVE STATISTICS VARIABLE N MEAN MEDIAN SKEW KURTOSIS NORM VARA VARB Tarkastellaan miten ulkopuolinen havainto vaikuttaa tunnuslukuihin: Aritmeettiset keskiarvot (= MEAN): Ulkopuolinen havainto vetää aritmeettista keskiarvoa puoleensa. Mediaanit (= MEDIAN): Ulkopuolinen havainto ei vaikuta olennaisesti mediaanin arvoon. Tässä näkyy se, että mediaani on tunnuslukuna robustimpi kuin aritmeettinen keskiarvo. TKK Systeemianalyysin laboratorio (2009) 14/23

15 Ordered Data Mat Tilastollisen analyysin perusteet Vinoudet (= SKEW): Ulkopuolinen havainto muuttaa muuttujan NORM melko symmetrisen jakauman vinoksi: VARA on vino vasemmalle. VARB on vino oikealle. Huipukkuudet (= KURTOSIS): Ulkopuolinen havainto saa tässä tapauksessa huipukkuuden arvon kasvamaan. Rankit Plot -kuviot Statistics > Randomness/Normality Tests > Normal Probability Plot Plot Variable = NORM / VARA / VARB Plot Variable = NORM 3 Wilk-Shapiro / Rankit Plot of NORM Rankits Approximate Wilk-Shapiro cases Muuttujan NORM jakauma näyttää melko normaaliselta (kuten pitääkin). TKK Systeemianalyysin laboratorio (2009) 15/23

16 Ordered Data Ordered Data Mat Tilastollisen analyysin perusteet Plot Variable = VARA Wilk-Shapiro / Rankit Plot of VARA Rankits Approximate Wilk-Shapiro cases Muuttujan VARA jakauma näyttää melko normaaliselta, kun ulkopuolista havaintoa ei oteta huomioon. Plot Variable = VARB 5 Wilk-Shapiro / Rankit Plot of VARB Rankits Approximate Wilk-Shapiro cases Muuttujan VARB jakauma näyttää melko normaaliselta, kun ulkopuolista havaintoa ei oteta huomioon. TKK Systeemianalyysin laboratorio (2009) 16/23

17 Wilkin ja Shapiron testit Wilkin ja Shapiron testien tulokset: VARIABLE N W-S Päätös NORM H 0 jää voimaan VARA H 0 hylätään VARB H 0 hylätään Olkoon havaintojen lukumäärä 50. Tällöin kriittiset rajat 1 %:n ja 5 %:n merkitsevyystasoille ovat seuraavat: Merkitsevyystaso 1% 5% Kriittinen raja Jos Wilkin ja Shapiron testisuureen arvo alittaa kriittisen rajan, on nollahypoteesi hylättävä. Wilkin ja Shapiron testin mukaan nollahypoteesia muuttujan NORM normaalisuudesta ei voida hylätä 1 %:n merkitsevyystasolla, kun taas nollahypoteesit muuttujien VARA ja VARB normaalisuudesta voidaan hylätä. Yo. taulukon p-arvojen määrääminen: ks. Tehtävä 1. Huomaa, miten ulkopuolinen havainto on pienentänyt Wilkin ja Shapiron testisuureen arvoa yhteensopivuustesti Oletetaan, että henkilö ilmoittaa heittäneensä noppaa 120 kertaa ja saaneensa seuraavan silmälukujen frekvenssien jakauman: Silmäluku Frekvenssi Testaa 2 -yhteensopivuustestillä oletusta, että noppa on virheetön: (a) (b) Laske 2 -testisuureen arvo käyttäen STATISTIX-ohjelman transformaatioita. Laske 2 -testisuureen arvo käyttäen STATISTIX-ohjelman Association Tests -valikon Multinomial Test -vaihtoehtoa ja testaa nollahypoteesia, että noppa on ollut virheetön 5 %:n merkitsevyystasoa käyttäen. TKK Systeemianalyysin laboratorio (2009) 17/23

18 Ratkaisu: (a) 2 -testisuureen arvon laskeminen transformaatioilla Muodostetaan tiedosto NOPPA1: Muuttuja O = havaitut frekvenssit Muuttuja E = odotetut frekvenssit Määrätään odotetut frekvenssit E käyttäen nollahypoteesina oletusta: H 0 : Pr(Silmäluku i) = p i = 1/6, i = 1, 2, 3, 4, 5, 6 jolloin E i = np i = n/6 = 120/6 = 20, i = 1, 2, 3, 4, 5, 6 Tiedosto NOPPA1: O E testisuure: ( O E ) m 2 2 k k 2 a k1 Ek ( f ) jossa vapausasteiden lukumäärä f = m 1 p ja m = luokkien lukumäärä p = odotettujen frekvenssien määräämiseksi estimoitujen parametrien lukumäärä Muodostetaan muuttuja KHI: KHI = (O E) 2 /E Data > Transformations Transformation Expression Variable = (O E)^2/E TKK Systeemianalyysin laboratorio (2009) 18/23

19 Tiedosto NOPPA1 transformaation jälkeen: O E KHI testisuureen arvo saadaan laskemalla yhteen sarakkeen KHI luvut, jolloin tulokseksi saadaan 2 = 13.1 (b) 2 -yhteensopivuustesti Statistics > Association Tests > Multinomial Test Hypothesized Proportions Variable = E Observed Frequencies Variable = O MULTINOMIAL TEST HYPOTHESIZED PROPORTIONS VARIABLE: E OBSERVED FREQUENCIES VARIABLE: O HYPOTHESIZED OBSERVED EXPECTED CHI-SQUARE CATEGORY PROPORTION FREQUENCY FREQUENCY CONTRIBUTION OVERALL CHI-SQUARE P-VALUE DEGREES OF FREEDOM 5 2 -testisuureen arvo = ja sitä vastaava p-arvo = , kun vapausasteita on 5. Siten nollahypoteesi nopan virheettömyydestä voidaan hylätä 5 %:n merkitsevyystasolla. Huomaa, että testisuureen arvoksi saatiin sama kuin (a)-kohdassa kuten pitikin. TKK Systeemianalyysin laboratorio (2009) 19/23

20 4. 2 -homogeenisuustesti Vaaleja edeltäneessä kyselyssä tarkasteltiin neljän puolueen A, B, C ja D kannatusta kolmella alueella. Kysely toteutettiin poimimalla toisistaan riippumattomat yksinkertaiset satunnaisotokset ko. alueiden äänestäjien joukosta. Tulokset on annettu alla olevassa taulukossa. Testaa 2 -homogeenisuustestillä nollahypoteesia, että kannatuksen jakaumat ovat eri alueilla samat. Puolue Alue A B C D Otoskoko (a) (b) Ratkaisu: Käytä aineistoa taulukkomuodossa. Käytä aineistoa kategorisessa muodossa. Olkoon nollahypoteesina H 0 : Puoluekannatus jakautuu eri aleilla samalla tavalla. Havaitut frekvenssit: O ij = havaittu frekvenssi ryhmässä (otoksessa) i ja luokassa j, i = 1, 2,, r, j = 1, 2,, c Odotetut frekvenssit: jossa E n i C ij j nc i n c j1 r i1 Huomaa, että O j ij O ij n i = otoskoko ryhmässä i C j = luokkafrekvenssi yhdistetyssä otoksessa TKK Systeemianalyysin laboratorio (2009) 20/23

21 Nollahypoteesin H 0 pätiessä testisuure ( O E ) r c 2 2 ij ij 2 a i1 j1 Eij ( f ) jossa f = (r 1)(c 1) (a) Aineisto taulukkomuodossa A B C D homogeenisuustesti Statistics > Association Tests > Chi-Square Test Model Specification = Table Table Variables = A, B, C, D CHI-SQUARE TEST FOR HETEROGENEITY OR INDEPENDENCE VARIABLE CASE A B C D OBSERVED EXPECTED CELL CHI-SQ OBSERVED EXPECTED CELL CHI-SQ OBSERVED EXPECTED CELL CHI-SQ OVERALL CHI-SQUARE 9.48 P-VALUE DEGREES OF FREEDOM 6 CASES INCLUDED 12 MISSING CASES 0 TKK Systeemianalyysin laboratorio (2009) 21/23

22 2 -testisuureen arvo = 9.48 ja sitä vastaava p-arvo = , kun vapausasteita on 6. Siten nollahypoteesi siitä, että puoluekannatuksen jakauma on eri alueilla sama, jää voimaan. (b) Aineisto kategorisessa muodossa COUNT ROW COLUMN homogeenisuustesti Statistics > Association Tests > Chi-Square Test Model Specification = Categorical Count Variable = Count Row Variable = Row Column Variable = Column TKK Systeemianalyysin laboratorio (2009) 22/23

23 CHI-SQUARE TEST FOR HETEROGENEITY OR INDEPENDENCE FOR COUNT = ROW COLUMN COLUMN ROW OBSERVED EXPECTED CELL CHI-SQ OBSERVED EXPECTED CELL CHI-SQ OBSERVED EXPECTED CELL CHI-SQ OVERALL CHI-SQUARE 9.48 P-VALUE DEGREES OF FREEDOM 6 CASES INCLUDED 12 MISSING CASES 0 2 -testisuureen arvo = 9.48 ja sitä vastaava p-arvo = , kun vapausasteita on 6. Siten nollahypoteesi siitä, että puoluekannatuksen jakauma on eri alueilla sama, jää voimaan. Kommentti: Huomaa, että (a)- ja (b)-kohdissa on saatu täsmälleen sama tulos (kuten pitääkin); vain otsikkotiedot ovat tulostuksissa erilaiset. TKK Systeemianalyysin laboratorio (2009) 23/23

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Diskreetit muuttujat,

Lisätiedot

χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A

χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Estimointi, Havaittu frekvenssi, Heterogeenisuus,

Lisätiedot

Tilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen

Tilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen Tilastollisen analyysin perusteet Luento 5: Sisältö Tilastotieteessä tehdään usein oletuksia havaintojen jakaumasta. Useat tilastolliset menetelmät toimivat tehottomasti tai jopa virheellisesti, jos jakaumaoletukset

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista.

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista. Mat-2.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit järjestysasteikollisille muuttujille Testit laatueroasteikollisille muuttujille Hypoteesi, Mannin ja Whitneyn testi (Wilcoxonin

Lisätiedot

Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen

Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen TKK (c) Ilkka Mellin (2007) 1 Yhteensopivuuden, homogeenisuuden ja riippumattomuuden

Lisätiedot

Johdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen TKK (c) Ilkka Mellin (2004) 1 Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen Jakaumaoletuksien

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5 TKK (c) Ilkka Mellin (4) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (4) : Mitä opimme? 1/5 Tilastollisessa tutkimuksessa tutkimuksen kohteena olevasta perusjoukosta esitetään tavallisesti väitteitä

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

TUTKIMUSOPAS. SPSS-opas

TUTKIMUSOPAS. SPSS-opas TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin

Lisätiedot

RISTIINTAULUKOINTI JA Χ 2 -TESTI

RISTIINTAULUKOINTI JA Χ 2 -TESTI RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN

Lisätiedot

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2005) 1 Jakaumien tunnusluvut Odotusarvo Varianssi Markovin ja Tshebyshevin epäyhtälöt Momentit Vinous ja huipukkuus Kvantiilit

Lisätiedot

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45. Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Tilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi

Tilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi Tilastollinen testaaminen tai Tilastollinen päättely Geneettinen analyysi Tilastollisen testaamisen tarkoitus Tilastollisten testien avulla voidaan tutkia otantapopulaatiota (perusjoukkoa) koskevien väittämien

Lisätiedot

HAVAITUT JA ODOTETUT FREKVENSSIT

HAVAITUT JA ODOTETUT FREKVENSSIT HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Tilastollisten aineistojen kuvaaminen

Tilastollisten aineistojen kuvaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2007) 1 Tilastollisten aineistojen kuvaaminen >> Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

2. Aineiston kuvailua

2. Aineiston kuvailua 2. Aineiston kuvailua Avaa (File/Open/Data ) aineistoikkunaan tiedosto tilp150.sav. Aineisto on koottu Tilastomenetelmien peruskurssilla olleilta. Tiedot osallistumisesta demoihin, tenttipisteet, tenttien

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2005) 1 Tilastollisten aineistojen kuvaaminen Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten muuttujien tunnusluvut

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

Tilastolliset menetelmät: Tilastolliset testit

Tilastolliset menetelmät: Tilastolliset testit Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.

Lisätiedot

Estimointi. Otantajakauma

Estimointi. Otantajakauma Otantajakauma Otantajakauma kuvaa jonkin parametrin arvojen (esim. keskiarvon) jakauman kaikille tietyn kokoisille otoksille. jotka perusjoukosta voidaan muodostaa Histogrammissa otantajakauman parametrin

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Lohkoasetelmat. Kuusinen/Heliövaara 1

Lohkoasetelmat. Kuusinen/Heliövaara 1 Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Hypoteesin testaus Alkeet

Hypoteesin testaus Alkeet Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

SPSS-perusteet. Sisältö

SPSS-perusteet. Sisältö SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn

Lisätiedot

Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9

Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9 Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9 1.1 PARAMETRITTOMIEN MENETELMIEN LYHYT HISTORIA 11 1.2 PARAMETRITTOMAT MENETELMÄT IHMISTIETEISSÄ

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Lohkoasetelmat. Heliövaara 1

Lohkoasetelmat. Heliövaara 1 Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,

Lisätiedot

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Tulkitse tulokset. Onko muuttujien välillä riippuvuutta? Jos riippuvuutta on, niin millaista se on?

Tulkitse tulokset. Onko muuttujien välillä riippuvuutta? Jos riippuvuutta on, niin millaista se on? Tilastollinen tietojenkäsittely / SPSS Harjoitus 4 Tarkastellaan ensin aineistoa KUNNAT. Koska kyseessä on kokonaistutkimus, riittää, että tutkit tunnuslukujen arvoja ja teet niiden perusteella päätelmiä.

Lisätiedot

Leikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro

Leikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro Lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4, 3, 3, 8, 3, 9, 11, 19,

Lisätiedot

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 3

031021P Tilastomatematiikka (5 op) viikko 3 031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastollisen merkitsevyyden testaus Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

Aki Taanila TILASTOLLINEN PÄÄTTELY

Aki Taanila TILASTOLLINEN PÄÄTTELY Aki Taanila TILASTOLLINEN PÄÄTTELY 17.6.2010 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 7 2.1 Normaalijakautuneisuuden testaaminen... 7 2.2 Keskiarvon luottamusväli...

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1 Estimointi - tehdään päätelmiä perusjoukon ominaisuuksista (keskiarvo, riskisuhde jne.) otoksen perusteella - mitä suurempi otos, sitä tarkemmat estimaatit Otokseen perustuen määritellään otantajakaumalta

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tilastollisen analyysin perusteet, kevät 2007 3. luento: Pari sanaa vielä hypoteesien formuloinneista Kai Virtanen Hypoteesien muodoista Luennolla nro. 2 muotoiltiin nollahypoteesi - H 0 : θ

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu ilastollinen päättely 5.. Johdanto Estimointi, Joukkoestimointi, Kriittinen alue, uottamusjoukko, uottamustaso, uottamusväli, Otos, Parametri, Peittotodennäköisyys, Piste-estimointi, Väliestimaatti, Väliestimaattori,

Lisätiedot

II Tilastollisen aineiston ja analyysin edellytysten tarkistaminen

II Tilastollisen aineiston ja analyysin edellytysten tarkistaminen II Tilastollisen aineiston ja analyysin edellytysten tarkistaminen - Tietojen syöttö - Karma&Komulainen aineisto (tutustuminen) - Muuttujien jakauman tarkistus - Puuttuva tieto ja sen käsittely - Muunnokset,

Lisätiedot

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 3) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 3) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos BIOSTATISTIIKKAA ESIMERKKIEN AVULLA Kurssimoniste (luku 3) Janne Pitkäniemi Helsingin Yliopisto Kansanterveystieteen laitos Helsinki, 005 Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy 005

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot