4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Kiusatekijä on taustatekijä, joka voi vaikuttaa

Koko: px
Aloita esitys sivulta:

Download "4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Kiusatekijä on taustatekijä, joka voi vaikuttaa"

Transkriptio

1 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa koetuloksiin, mutta siitä sinänsä ei olla kiinnostuneita. 1

2 Tavoite on eliminoida sen vaikutus koetuloksista. Eliminointimenetelmiä: Satunnaistaminen: Jos kiusatekijä ei ole havaittavissa, pyritään sen vaikutus poistamaan satunnaistamisella (randomization). Kovarianssianalyysi: Havaittavissa oleva kiusatekijä voidaan huomioida koetuloksissa kovariaatteina (lisämuuttujina). 2

3 Satunnaistettu täysi lohkokoe: [Randomized complete block design (RCBD)] Kiusatekijä on tunnistettavissa ja kontrolloitavissa. Kiusatekijän vaikutus eliminoidaan täydellä lohkokokeella, mikä tarkoittaa, että tehdään jokaiselle koeyksikölle (jokaisessa lohkossa) kaikki käsittelyt. Tyypillisesti tällainen tilanne on, kun tiedetään, että koeyksiköiden ominaispiirteet vaikuttavat koetuloksiin. Koeyksiköt (havaintoyksiöt) eivät ole homogeenisia. 3

4 Esimerkki 4.1: (ks. Esim 2.4) Halutaan tutkia antavatko metallin kovuuden tutkimisessa käytettävät neljä pistokärkeä samoja kovuustuloksia. Kullakin kärjellä halutaan tehdä neljä mittausta, eli yhteensä 5 4 = 16 mittausta. Kysymyksessä on yhden tekijän koeasetelma (tekijänä pistokärki). Jos toteutetaan täysin satuunnaistettu yhden faktorin koe, valitaan 16 testipalaa ja arvotaan kullekin pistokärjelle neljä palaa. Ongelmana kuitenkin on, että jos metallipalat ovat kovuuksiltaan erilaisia, vaikuttaa mittaustuloksiin pistokärjen ja satunnaisvirheen lisäksi myös metallipalan mahdollisesti vaihteleva ominaiskovuus. Ominaiskovuudet muodostavat tässä potentiaalisen kiusatekijän, joka kuitenkin voidaan eliminoida satunnaistetulla täydellä lohkokoeella. Menettely: Valitaan neljä metallipalaa ja tehdään mittaus jokaisessa palassa kullakin pistokärjellä (complete block design). Kussakin koepalassa mittausjärjestys on satunnainen (randomization). 4

5 Taulukko 4.1: Satunnaistettu täysi lohkokoe kovuusmittauskokeessa. =============================================================== Mittaus- Koepala Keskikarki Yhteensa Keskiarvo hajonta Yht Karv Khaj =============================================================== 5

6 Yleisesti satunnaistetun täyden lohkokokeen asetelma on muotoa: Taulukko 4.2: Randomized Complete Block Design lohko 1 lohko 2 lohko b käsittely 1 y 11 y 12 y 1b käsittely 2 y 21 y 22. y 2b käsittely a y a1 y a2 y ab Huom. 4.1: Jokaisessa lohkossa on yksi havainto per käsittely. Huom. 4.2: Käsittelyjen järjestys jokaisen lohkon sisällä on satunnainen. Täten satunnaistaminen tapahtuu vain lohkon sisällä 6

7 Tilastollinen malli Tilastollinen malli (eräs mahdollisuus) havainnoille voidaan RCBD-asetelmassa kirjoittaa muotoon (muista, että tilastollisen mallintamisessa kysymys on siitä, että mistä havaittu vaihtelu on peräisin) (1) y ij = μ + τ i + β j + ε ij, jossa μ on yleiskeskiarvo (overall mean), τ i on käsittelyn i vaikutus (treatment effect), β j on lohkon j vaikutus (block effect) ja satunnaisvirhe ε ij N(0, σ 2 ), i = 1,..., a, j = 1,..., b. Parametrit τ i ja β j ajatellaan poikkeamina keskiarvosta μ, jolloin (2) a i=1 τ i = b j=1 β j = 0. 7

8 Mallia (1) sanotaan vaikutusten esitysmuodoksi (vaikutusten malli tai efektien malli) (effects model) Vaihtoehtoisesti voidaan kirjoittaa odotusarvoesitys (mean model) (3) y ij = μ ij + ε ij, jossa μ ij = μ + τ i + β j. Jatkossa käytetään pääsääntöisesti efektien mallin esitystä. 8

9 Hypoteesit: Kysymys: Onko käsittelyillä vaikutusta? Testattavat hypotsseit: (4) H 0 : τ 1 = = τ a = 0 H 1 : τ i = 0 jollakin i Kokonaisvaihtelua mittaava neliösumma voidaan dekomponoida vaihtelun lähteiden mukaisesti (5) a i=1 b j=1 (y ij y.. ) 2 = b a i=1 ( y i. y.. ) 2 +a b j=1 ( y.j y.. ) 2 + a i=1 b j=1 (y ij y.j y i. + y.. ) 2 eli (6) SS tot = SS treat + SS block + SS err, 9

10 jossa (7) SS tot = a b i=1 j=1 (y ij y.. ) 2 on kokonaisneliösumma, (8) SS treat = b a i=1 ( y i. y.. ) 2 on käsittelyjen osuus SS tot :sta, (9) SS block = b b j=1 ( y.j y.. ) 2 on lohkojen välisen vaihtelun osuus SS tot :sta ja (10) SS err = a b i=1 j=1 (y ij y i. y.j + y.. ) 2 on virhevaihtelun osuus kokonaisvaihtelusta. 10

11 Edellä (11) y i. = 1 b (12) y.j = 1 a ja b y ij j=1 a y ij i=1 (13) y.. = 1 ab a b i=1 j=1 y ij. 11

12 Vapausasteet: SS tot : N 1, jossa df tot = N = ab, SS treat : df treat = a 1, SS block : df block = b 1 ja SS err : df err = ab (a 1) (b 1) = (a 1)(b 1) Keskineliöt: Jakamalla neliösummat vapausasteillaan saadaan keskineliösummat, joita voidaan käyttää samalla varianssien estimaattoreina. (14) MS treat = SS treat a 1, (15) MS block = SS block b 1, (16) MS err = SS err (a 1)(b 1). 12

13 Testisuure: Hypoteesin (4) testaus perustuu testisuureeseen (17) F = MS treat MS err, joka on F -jakautunut vapausasteilla a 1 ja (a 1)(b 1), jos H 0 on tosi. 13

14 Varianssitaulu: Vaihtelun Neliö- Vapaus- Keskilähde summa asteet neliöt F MS Käsittely SS treat a 1 MS treat treat MS err Lohkot SS block b 1 MS block Virhe SS err (a 1)(b 1) MS err Yhteensä SS tot N 1 Periaatteessa testisuuretta F block = MS block /MS err voidaan käyttää myös lohkovaikutusten testaamiseen (H 0 : β 1 = = β b = 0). Kuitenkin satunnaistaminen on tehty vain lohkojen sisällä, minkä seurauksena testi ei ole täysin validi. Käytännön ratkaisuna on, että käytetään sitä deskriptiivisenä suureena; jos F block on suuri on syytä lohkominen tehdä myös vastaavissa kokeissa myöhemminkin. 14

15 Esimerkki 4.2: Metallin kovuustestiaineisto. Alla olevassa kuviossa havainnot on koepaloittain (Test coupon). Hardness Testing Experiment Type of Tip Test Coupon Tip 1 Tip 2 Tip 3 Tip 4 Kuvion perusteella on ilmeistä, että koepalat ovat eri kovuisia, joten vaikutus on syytä eliminoida ennen kärkien mittaustuloksien analyysissa. 15

16 SAS-ajojono RCBD:lle: options ls = 78; /* Data from Montgomery 5 ed, p. 127 */ data hardness; input tip coupon y datalines; ; proc anova data = hardness; class tip coupon; model y = tip coupon; run; 16

17 Tulokset: The ANOVA Procedure Class Level Information Class Levels Values tip coupon Number of observations 16 Dependent Variable: y Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE y Mean Source DF Anova SS Mean Square F Value Pr > F tip coupon <.000 Ensimmäisessä taulukossa on yhditetty testaus, jossa on käsittelyn ja lohkon vaikutus yhdessä. Alemmassa taulukossa käsittelyn ja lohkon vaikutukset ovat erikseen. Kaikki p-arvo ovat < 0.001, joten kärjet antavat erilaisia tuloksia. Samoin lohkovaikutuksella on merkitystä, joten se on syytä huomioida. 17

18 Itse asiassa, jos lohkovaikutusta ei huomioitaisi ja analyysi olisi tehty tavanomaisena yhden faktorin kokeena, olisi tulokset seuraavanlaisia: Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Total Näiden tulosten mukaan mittauskärkein antamilla tuloksilla ei olisi eroa, mikä olisi mitä ilmeisemmin virheellinen johtopäätös! 18

19 Keskiarvojen yksittäiset vertailut voidaan tehdä samalla tavalla kuin yhden faktorin kokeessa. Esimerkki 4.3: Tarkastellaan esimerkkinä LSD ja Tukey vertailuja (proc anova käsky means tip / lsd tukey;) The ANOVA Procedure t Tests (LSD) for y NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 9 Error Mean Square Critical Value of t Least Significant Difference Means with the same letter are not significantly different. t Grouping Mean N tip A B B B B B

20 Tukey s Studentized Range (HSD) Test for y NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 9 Error Mean Square Critical Value of Studentized Range Minimum Significant Difference Means with the same letter are not significantly different. Tukey Grouping Mean N tip A B B B B B Havaitaan, että eron aiheutta mittauskärki 4. 20

21 Mallin riittävyystarkastelut Residuaalit (18) ˆe ij = y ij ˆy ij = y ij (ˆμ + ˆτ i + ˆβ j ) = y ij y i. y.j + y.. jossa ˆμ = y.., ˆτ i = y i. y.. ja ˆβ j = y.j y... Näihin perustuen normaalisuus ja vakiovarianssisuus tarkastelut tehdään kuten kappaleessa 3. Huom 4.3: Havainnon y ij ennustearvo (19) ˆy ij = ˆμ + ˆτ i + ˆβ j = y.. + ( y i. y.. ) + ( y.j y.. ) = y i. + y.j y.. 21

22 Residual normal probability plot and Residuals versus predicted values Residual plots against coupon and tip No obvious non-normalities or non-linearities. 22

23 4.2 Latinalaiset neliöt Latinalaisten neliöiden koeasetelmalla voidaan eliminoida kahden kiusatekijän vaikutus koetuloksista (havainnot ovat kahden taustatekijän suhteen mahdollisesti epähomogeenisia). Perusajatus: käytetään kiusafaktoreita (nuisance factors) lohkomuuttujina (blocking variables). 23

24 Asetelma: (a) Käsittelyn (treatment) tasoja p ( 3). Molemmilla kiusafaktoreilla myös p luokkaa. (b) Muodostetaan kiusafaktoreiden luokkien mukaisesti p p taulukko. (c) Kullakin rivillä ja kullakin sarakkeella toteutetaan jokainen käsittely (treatment) täsmälleen kerran (kokeita yhteensä p 2 ja jokaisesta käsittelytasolta saadaan p havaintoa). Huom 4.4: Koeasetelmaa, jossa kullakin käsittely (treatment) tehdään täsmälleen kerran kussakin taustatekijöiden (blocking variables) määrittämässä solussa, sanotaan ortogonaaliseksi. 24

25 Etuja: (a) Yleisesti latinalaisten neliöiden koesuunnitelmilla (latinalaiset neliöt, kreikkalais-latinalaiset neliöt, hyper-kreikkalais-latinalaiset neliöt) voidaan eliminoida useamman kiusatekijän vaikutukset (b) Tarvitaan vain suhteellisen vähän koetoistoja (Latinalaisessa neliössä p 2 ). 25

26 Rajoitteita: (a) Kiusatekijöillä täytyy olla täsmälleen yhtä monta tasoa kuin käsittelyfaktorilla (p tasoa) (b) Kiusatekijöiden välillä ei saa olla yhdysvaikutusta (interaction). Myöskään kiusatekijöiden ja käsittelyfaktorin ei saa olla yhdysvaikutuksia. 26

27 Esimerkki 4.4: Tarkastellaan suihkumoottoreille tarkoitetun viiden erilaisen polttoaineseoksen palamisominaisuuksia. Kustakin raaka-aineet-erästä saadaan valmistettua erä kutakin polttoaineseosta. Seokset on mahdollista teettää viidellä eri toimittajalla. Käsittelytekijänä (treatment) on siis seos ja taustatekijöinä (kiusafaktorit) raaka-aine-erät ja toimittajat. Koeasetelma: Valmistetaan kustakin raaka-aine-erästä jokaista seostyyppiä yksi erä siten, että kukin toimittaja valmistaa yhden erän jokaista seosta, joista kunkin muodostuu eri raaka-aine-eristä. 27

28 Merkitään seoksia (käsittelyjä) aakkosilla A, B, C, D ja E, saadaan esitys, jota sanotaan latinalaiseksi neliöksi (latinalaiseten aakkosten vuoksi) Polttoaineen palamisominaisuudet ============================================================= Raaka-aine- Toimittaja (column) era (row) A = 24 B = 20 C = 19 D = 24 E = 24 2 B = 17 C = 24 D = 30 E = 27 A = 36 3 C = 18 D = 38 E = 26 A = 27 B = 21 4 D = 26 E = 31 A = 26 B = 23 C = 22 5 E = 22 A = 30 B = 20 C = 29 D = 31 ============================================================= Tärkeää on, että raaka-aineet ja toimittajat eri seoksille tulee valittua satunnaisesti. Yllä oleva neliö on yksi perusneliöistä. Permutoimalla sarakkeita ja rivejä saadaan muut neliöt. Satunnaistaminen toteutuu siten, että valitaan kaikista mahdollisita neliöistä toteutettava satunnaisesti. 28

29 Latinalaista neliötä, jossa ensimmäinen rivi ja sarake ovat aakkosjärjestyksessä sanotaan standardineliöksi (standard Latin square). Esimerkkeja standardineliosita: ================================================================= 3x3 4x4 5x5 6x A B C A B C D A B C D E A B C D E F B C A B C D A B C D E A B C D E F A C A B C D A B C D E A B C D E F A B D A B C D E A B C D E F A B C E A B C D E F A B C D F A B C D E n of std squares total n of squares number of runs ================================================================= 29

30 Tilastollinen malli: p p latinalaisen neliön malli havainnolle on muotoa (20) y ijk = μ + α i + τ j + β k + ε ijk, i = 1,..., p (rivitekijä), j = 1,..., p (käsittely [treatment]), k = 1,..., p (saraketekijä). Esimerkki 4.5: (Jatkoa) Jos i = 2, k = 3, niin j = 4(= D) ja y 143 = 30. Virhetermille pätee E[ε ijk ] = 0 ja Var[ε ijk ] = σ 2 ε. Kuten lohkokokeessa, α i, τ j ja β k ovat poikkeamia yleiskeskiarvosta ja summautuvat nolliksi. Perusoletuksena on siis, että tekijöiden (faktoreiden) välillä ei ole yhdysvaikutusta (interaction). 30

31 Havaintojen lukumäärä: N = p 2. Varianssiahjoitelma: (21) SS tot = SS row + SS column + SS treat + SS err, jossa (22) SS tot = (y ijk y) 2, (23) SS row = p (24) SS col = p (25) SS treat = p (26) i,j,k p i=1 p k=1 p j=1 ( y i.. y) 2, ( y..k y) 2, ( y.j. y) 2, SS err = SS tot SS row SS col SS treat. 31

32 Varianssitaulu: Source of Sum of Degrees of Mean variation squares freedom square F Treatments SS treat p 1 MS treat MS treat MS err Rows SS row p 1 MS row MS row MS err Columns SS col p 1 MS col MS col MS err Error SS err (p 2)(p 1) MS err Total SS tot p 2 1 Pääasiallinen kiinnostus on käsittelyn vaikutuksessa. Huom. 4.5: Varianssihajotelma noudattaa havaitun arvon y ijk dekomponointia (27) y ijk y... = ( y i. y... ) + ( y.j. y... ) + ( y..k y... ) eli +(y ijk y i.. y.j. y..k + 2 y... ) (28) tot = row + treat + col + err. 32

33 Esimerkki 4.6: Polttoaine-esimerkki. SAS:lla toteutettuna ajovirta on seuraava: data propellant; input y batch treat $ operator; label y = "burning rate"; datalines; 24 1 A B C D E B C D E A C D E A B D E A B C E A B C D 5 ; proc anova data = propellant; class batch treat operator; model y = batch treat operator; run; 33

34 Tulokset: The SAS System The ANOVA Procedure Class Level Information Class Levels Values batch treat 5 A B C D E operator Number of Observations Read 25 Number of Observations Used 25 The ANOVA Procedure Dependent Variable: y burning rate Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Tot R-Square Coeff Var Root MSE y Mean Source DF Anova SS Mean Square F Value Pr > F batch treat operator

35 Ylemmässä varianssitaulun F -testi testaa onko millään tekijällä vaikutusta. Alemman varianssitaulun F -testit testaavat kunkin yksittäisen tekijän vaikutusta. Tuloksista havaitaan, että eri seoksien keskimääräiset palamistulokset poikkeavat toisistaan tilastollisesti merkitsevästi. Lisäksi eri toimittajien seoksilla on vaikutusta palamistulokseen. Sen sijaan raaka-aine-erillä ei näytä olevan vaikutusta. 35

36 Mallin (20) parametrien estimaattorit ovat (29) ˆμ = y = y... = 1 N (30) ˆα i = y i.. y..., (31) ˆτ j = y.j. y..., y ijk i,j,k (32) ˆβ k = y..k y... (33) ˆy ijk = ˆμ + ˆα i + ˆτ j + ˆβ k. 36

37 Maliin riittävyyden tarkastelut: Jos malli on riittävä, residuaalit ovat puhtaasti satunnaisvaihtelua Residuaalit: (34) e ijk = y ijk ˆy ijk = y ijk y i.. y.j. y..k + 2 y... Graafisilla tarkasteluilla saadaan yleissilmäys tilanteesta. 37

38 Esimerkki 4.6: Normal probability plot and residual versus predicted Treatment versus residual and operator versus residual Normaaliisuus on jokseenkin ok, eikä ilmeisiä epälineaarisuuksia. 38

39 4.3 Kreikkalais-latinalaiset neliöt Kolme taustatekijää (nuisance factors). Käsitellään ne lohkomuuttujina. Asetelma: (a) Käsittelytasoja ja taustamuuttujien tasoja p ( 4). (b) Lähtökohtana p p latinalainen neliö, jonka päälle määritellään toinen latinalainen neliö. Käsittelyn tasoja merkitään kreikkalaisilla kirjaimilla (tästä nimi) ja kolmannen taustatekijän tasoja latinalaisilla kirjaimilla. Sarakevaikutukset Rivi Aα Bβ Cγ Dδ 2 Bδ Aγ Dβ Cα 3 Cβ Dα Aδ Bγ 4 Dγ Cδ Bα Aβ 39

40 Huom 4.6: Kysymyksessä jälleen ns. ortogonaalinen asetelma siinä mielessä, että kullakin taustatekijän tasolla käsittely toistetaan täsmälleen kerran. Tilastollinen malli: (35) y ijkl = μ + θ i + τ j + ω k + l + ε ijkl, i, j, k, l = 1,..., p. Rivi: θ i (lohkotekijä) Sarake: l (lohkotekijä) Latinalainen aakkonen: τ j (treatment) Kreikkalainen aakkonen: ω k (lohkotekijä) 40

41 Määrittelemällä kesiarvot indeksien yli kuten edellä, saadaan estimaattorit (36) ˆμ = y... = 1 N jossa N = p 2 i,j,k,l (37) ˆθ i = y i... y..., y ijkl, (38) ˆτ j = y.j.. y..., (39) ˆω k = y..k. y..., (40) ˆl = y...l y... ja sovitearvo (fitted value) (41) ˆy ijkl = ˆμ + ˆθ i + ˆτ j + ˆω k + ˆl = y... + ( y i... y... ) + ( y.j.. y... ) +( y..k. y... ) + ( y...l y... ) 41

42 Residuaali termi: (42) e ijkl = y ijkl ˆy ijkl Varianssitaulu: Source SS df M S F Latin SS latin p 1 MS latin MS latin MS err Greek SS greek p 1 MS greek MS greek MS err Rows SS row p 1 MS row MS row MS err Columns SS rol p 1 MS rol MS rol MS err Error SS err (p 3)(p 1) MS err Total SS tot p 2 1 jossa esimerkiksi (43) SS latin = p p j=1 ( y.j.. y... ) 2 42

43 Esimerkki 4.7: Polttoaine-esimerkki. Oletetaan, että kokeet tehdään viidellä eri testimoottorilla, joiden mahdollinen vaikutus halutaan eliminoida. Identifioidaan moottorit kreeikkalaisilla aakkosilla ja oletetaan, että koe on toteutettu seuraavasti: Raaka-aine- Toimittaja (column) era (row) Aα = 24 Bγ = 20 Cε = 19 Dβ = 24 Eδ = 24 2 Bβ = 17 Cδ = 24 Dα = 30 Eγ = 27 Aε = 36 3 Cγ = 18 Dε = 38 Eβ = 26 Aδ = 27 Bα = 21 4 Dδ = 26 Eα = 31 Aγ = 26 Bε = 23 Cβ = 22 5 Eε = 22 Aβ = 30 Bδ = 20 Cα = 29 Dγ = 31 43

44 data propellant; input y batch treat $ operator assembly $; label y = "burning rate"; datalines; 24 1 A 1 alpha 17 2 B 1 beta 18 3 C 1 gamma 26 4 D 1 delta 22 5 E 1 epsilon 20 1 B 2 gamma 24 2 C 2 delta 38 3 D 2 epsilon 31 4 E 2 alpha 30 5 A 2 beta 19 1 C 3 epsilon 30 2 D 3 alpha 26 3 E 3 beta 26 4 A 3 gamma 20 5 B 3 delta 24 1 D 4 beta 27 2 E 4 gamma 27 3 A 4 delta 23 4 B 4 epsilon 29 5 C 4 alpha 24 1 E 5 delta 36 2 A 5 epsilon 21 3 B 5 alpha 22 4 C 5 beta 31 5 D 5 gamma ; proc anova data = propellant; class batch treat assembly operator; model y = batch treat assembly operator; run; 44

45 Results: The ANOVA Procedure Dependent Variable: y burning rate Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Tot R-Square Coeff Var Root MSE y Mean Source DF Anova SS Mean Square F Value Pr > F batch treat assembly operator Testimoottorilla (assemmpply) ei näytä olevan vaikutusta (p-arvo ). 45

46 Parittaisten (ortogonaalisten) latinalaisten asetelma, joka muodostaa kreikkalais-latinalaisen neliön, voidaan yleistää edelleen. p p hyperneliö on koeasetelma, joka muodostetaan kolmesta tai useammmasta ortogonaalinen latinalaisesta neliöstä. p 1:stä ortogonaalisesta latinalaisesta neli - ostä voidaan muodostaa asetelma, jolla periaatteessa voidaan tutkia p + 1:n tekijän vaikutusta. 46

47 4.4 Balansoitu epätäydellisen lohkokoe (Balanced Incomplete Block Design, BIBD) Kaikkia käsittelyitä (treatments) ei toteuteta jokaisessa lohkossa (epätäydellinen, incomplete). Kuitenkin kaikkia käsittelykombinaatioita pidetään yhtä tärkeinä. Tällöin koe toteutetaan site, että jokainen käsittelypari esiintyy yhtä monta kertaa (balansoitu [balanced] Lähtökohta: Olkoon käsittelyn tasoja a ja jokaisessa lohkossa voidaan toteuttaa k < a koetta. 47

48 Koeasetelma: Periaatteessa koeasetelma voidaan toteuttaa siten, että valitaan (44) b = a k ) = a! k!(a k)! lohkoa ja totetutetaan kussakin yksi k alkion (käsittelyn) kombinaatio satunnaistetussa järjestyksessä. Huom. 4.7: Usein balanssi saadaan aikaiseksi pienemmällä kuin ( a k) lohkomäärällä. Kirjallisuudesta löytyy sopivia BIBD-taulukoita pienemmille lohkomäärille. 48

49 Esimerkki 4.7: Makesivalmistaja haluaa testata asiakkailla kuutta uutuustuotetta (A, B, C, D, E, F). Asiakkaita pyydetään maistamaan tuotteita ja pisteyttämään ne skaalalla Käytännön syistä kutakin koehenkilöä pyydetään maistamaan neljää tuotetta. Kokeeseen valitaan b = 15 = ( 6 4) henkilöä (lohkot) =============================================== Koehenkilo Pistemaara (tuote) [lohko, block] [kasittely, treatment]) (A) 55 (B) 69 (C) 83 (D) 2 48 (A) 87 (D) 56 (E) 22 (F) 3 65 (B) 91 (C) 67 (E) 35 (F) 4 42 (A) 48 (B) 65 (C) 43 (E) 5 36 (A) 58 (B) 69 (D) 7 (F) 6 79 (C) 85 (D) 56 (E) 25 (F) 7 54 (A) 60 (B) 90 (C) 21 (F) 8 62 (A) 92 (C) 94 (D) 63 (E) 9 39 (B) 71 (D) 47 (E) 11 (F) (A) 59 (B) 84 (D) 51 (E) (A) 74 (C) 61 (E) 25 (F) (B) 78 (C) 78 (D) 22 (F) (A) 74 (B) 59 (E) 32 (F) (A) 74 (C) 78 (D) 34 (F) (B) 83 (C) 92 (D) 68 (E) =============================================== 49

50 Satunnausistaminen on toteutettu siten, että kullekin tuotekombinaatio on jaettu satunnaisesti koehenkilöille ja maistamisjärjestys on permutoitu satunnaiseksi kunkin koehenkilön kohdalla. 50

51 Esittämällä havaintoaineisto seuraavasti nähdään selkeämmin koeasetelma. ========================================== Brand Block Subj. A B C D E F Aver Aver = grand mean ========================================== 51

52 BIBD:n tilastolinen analysointi Kästittelyjen lukumäärä: a. Lohkojen lukumäärä: b. Kussakin lohkossa k käsittelyä (k < a). Toistoja r, eli jokainen käsittely toistuu r kertaa. Havaintoja: N = ar = bk. Kukin käsittelypari esiintyy (45) λ = lohkossa. r(k 1) a 1 Jos a = b, sanotaan koeasetelmaa symmetriseksi. 52

53 Esimerkki 4.8: Makutesti. a = 6, b = 15, k = 4, r = 10, N = 6 10 = 15 4 = 60 ja λ = 10(4 1) 6 1 = 30 5 = 6. 53

54 BIBD:n tilastollinen on samaa muotoa kuin RCBD:n (Randomized Complete Block Design), [kaava (1], eli (46) y ij = μ + τ i + β j + ε ij, jossa y ij on havainto i lohkossa j. Parametri μ on yleiskeskiarvo, τ i on käsittelyn i vaikutus, β j on lohkon j vaikutus ja ε ij on virhetermi. Jälleen a i=1 τ i = 0 ja b j=1 β j = 0. Kokonaisvaihtelu voidaan dekomponoida joko (47) SS tot = SS treat(adj) + SS block + SS err, tai (48) SS tot = SS treat + SS block(adj) + SS err. 54

55 Varianssitaulu: Source SS df MS F Treatment SS treat(adj) a 1 Block SS block(adj) b 1 Error SS err N a b + 1 Total SS tot N 1 SS treat(adj) a 1 SS block(adj) b 1 F = MS treat(adj) MS err F = MS block(adj) MS err Huom. 4.8: Yllä SS tot = SS treat(adj) + SS block(adj) + SS err, koska koeasetelma ei ole enää ortogonaalinen. 55

56 SS treat(adj) ja SS block(adj) lasketaan tavalla, jossa huomioidaan, ettei kaikkia käsittelyjä ole toteutettu jokaisessa lohkossa. SAS:n proc glm ja SPSS:n General Linear Model estimoinnissa nämä saadaan Sum of Squares Type III valinnoilla. 56

57 Teknisesti tämä tapahtuu siten, että estimoidaan ensin koko malli, jossa on molemmat efektit (treatment ja block). Estimointi tapahtuu regressiotekniikalla Saadaan neliösummahajotelma (49) SS tot = SS model.full + SS err Estimoidaan seuraavaksi malli, jossa on vain block tekijä (50) SS tot = SS model.block + SS err.block SS treat(adj) saadaan erotuksena (51) SS treat(adj) = SS model.full SS model.block 57

58 Vastaavsti SS block(adj) saadaan estimoimalla ensin treat efektin malli, josta (52) SS tot = SS model.treat + SS err.treat ja (53) SS block(adj) = SS model.full SS model.treat. 58

59 Esimerkki 4.9: Makutesti SAS-toteutus, proc glm Ensiksi luodaan data: data taste; input koehenkilo pisteet tuote $ label koehenkilo = "block variable"; label tuote = "treatment variable"; datalines; 1 51 A 1 55 B 1 69 C 1 83 D 2 48 A 2 87 D 2 56 E 2 22 F 3 65 B 3 91 C 3 67 E 3 35 F 4 42 A 4 48 B 4 65 C 4 43 E 5 36 A 5 58 B 5 69 D 5 7 F 6 79 C 6 85 D 6 56 E 6 25 F 7 54 A 7 60 B 7 90 C 7 21 F 8 62 A 8 92 C 8 94 D 8 63 E 9 39 B 9 71 D 9 47 E 9 11 F A B D E A C E F B C D F A B E F A C D F B C D E ; run; Toteutetaan proc glm:llä proc glm data = taste; class koehenkilo tuote; model pisteet = koehenkilo tuote / ss3; run; quit; 59

60 Tulokset: The GLM Procedure Class Level Information Class Levels Values koehenkilo tuote 6 A B C D E F Number of Observations Read 60 Number of Observations Used 60 The GLM Procedure Dependent Variable: pisteet Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE pisteet Mean Source DF Type III SS Mean Square F Value Pr > F koehenkilo <.0001 tuote <

61 Koska p-arvot jäävät pieniksi on selvästi pääteltävissä, että tuotteiden keskimääräiset pistemäärät poikkeavat toisistaan, eli jotkut tuotteest maistuvat selvästi paremmilta kuin toiset. Yksittäisten keskiarvojen tarkasteluilla (monivertailutestit) saadaan selville parhaimmin maistuvat tuotteet. Koehenkilöiden välillä on myös eroa, joten tämän aiheuttaman vaihtelun huomiointi on perusteltua kokeessa. 61

62 Keskiarvo vertailut (Tukey): The GLM Procedure Tukey s Studentized Range (HSD) Test for pisteet NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 40 Error Mean Square Critical Value of Studentized Range Minimum Significant Difference Means with the same letter are not significantly different. Tukey Grouping Mean N tuote A D A A C B B B B E C A D F 62

63 Tuotteiden D ja C makuominaisuuksissa ei ole merkittävää eroa. Samoin tuotteet B ja E ovat makuominaisuuksiltaan samanlaisia. Heikoimmin pärjää D, joka poikkeaa tilastollisesti merkitsevästi toisista. 63

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä:

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä: 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs)

Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

Altistusaika 1 kk 2 kk 3 kk 1.35 1.53 1.38 1.35 1.63 1.51 1.60 1.40 2.18 1.77 1.66 1.98 1.73 1.76 1.60 1.72

Altistusaika 1 kk 2 kk 3 kk 1.35 1.53 1.38 1.35 1.63 1.51 1.60 1.40 2.18 1.77 1.66 1.98 1.73 1.76 1.60 1.72 Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut iheet: vainsanat: Kaksisuuntainen varianssianalsi Lohkoasetelmat Latinalaiset neliöt ritmeettinen

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalyysi Bonferronin menetelmä, F-testi, Jäännösneliösumma, Kaksisuuntainen varianssianalyysi Kokonaiskeskiarvo,

Lisätiedot

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1 Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Hierarkkiset koeasetelmat -faktorikokeet Vastepintamenetelmä Aritmeettinen keskiarvo, Estimaatti, Estimaattori, -testi, aktorikokeet,

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman

8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman 8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Hierarkkiset koeasetelmat. Heliövaara 1

Hierarkkiset koeasetelmat. Heliövaara 1 Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän

Lisätiedot

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

SEM1, työpaja 2 (12.10.2011)

SEM1, työpaja 2 (12.10.2011) SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):

Lisätiedot

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien

Lisätiedot

Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012

Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012 Puheentutkimuksen tilastoanalyysin perusteet 8. luento Pertti Palo 20.1.2012 Käytännön asioita Viimeisen seminaarin siirto: 2.3. 10-12 -> 2.3. 14-16. Miten seminaarin luentokuulustelun voi korvata? Harjoitustöiden

Lisätiedot

RISTIINTAULUKOINTI JA Χ 2 -TESTI

RISTIINTAULUKOINTI JA Χ 2 -TESTI RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Kemometriasta Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Mistä puhutaan? Määritelmiä Määritys, rinnakkaismääritys Mittaustuloksen luotettavuus Kalibrointi Mittausten

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua Havaintoaineiston perusteella näyttää ilmeiseltä, että alkuperäisen laastin sidoslujuus on suurempi. Ero sattumasta johtuvaa? Palataan tuonnempana. Tension bond strength data for Portland Cement formulation

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen

Lisätiedot

Empiirinen projekti. Olli-Matti Laine Kauppatieteet

Empiirinen projekti. Olli-Matti Laine Kauppatieteet Empiirinen projekti Olli-Matti Laine Kauppatieteet 1 Contents 1. Johdanto... 3 2. Kuvaileva osa... 4 3. Analyysiosa... 17 4. Yhteenveto... 35 2 1. Johdanto Tutkin projektissa tilastollisin menetelmin kansantaloudellisia

Lisätiedot

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,

Lisätiedot

Aki Taanila VARIANSSIANALYYSI

Aki Taanila VARIANSSIANALYYSI Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Opetus talteen ja jakoon oppilaille Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Aurajoen lukio ISOverstaan jäsen syksystä 2010 lähtien ISOverstas on maksullinen verkko-oppimisen

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen. Pekka Leskinen ja Tuomo Kainulainen Metla

Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen. Pekka Leskinen ja Tuomo Kainulainen Metla \esitelm\hki0506.ppt 18.5.2006 Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen Pekka Leskinen ja Tuomo Kainulainen Metla FORS-iltapäiväseminaari 24.5.2006: Operaatiotutkimus

Lisätiedot

TUTKIMUSOPAS. SPSS-opas

TUTKIMUSOPAS. SPSS-opas TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien

Lisätiedot

SELVITTÄJÄN KOMPETENSSISTA

SELVITTÄJÄN KOMPETENSSISTA OTM, KTM, Mikko Hakola, Vaasan yliopisto, Laskentatoimen ja rahoituksen laitos Helsinki 20.11.200, Helsingin kauppakorkeakoulu Projekti: Yrityksen maksukyky ja strateginen johtaminen SELVITTÄJÄN KOMPETENSSISTA

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Vertailutestien tulosten tulkinta Mikä on hyvä tulos?

Vertailutestien tulosten tulkinta Mikä on hyvä tulos? Vertailutestien tulosten tulkinta Mikä on hyvä tulos? Pertti Virtala PANK-menetelmäpäivä 29.1.2015 Sisältö Mittaustarkkuuden käsitteitä Mittaustarkkuuden analysointi Stabiilius Kohdistuvuus Toistettavuus

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

2 2 -faktorikokeen määritelmä

2 2 -faktorikokeen määritelmä TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tai useamman tekijän vaikutusta

Lisätiedot

Health 2000/2011 Surveys. Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013. Esa Virtala. etunimi.sukunimi@thl.

Health 2000/2011 Surveys. Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013. Esa Virtala. etunimi.sukunimi@thl. Health 2000/2011 Surveys Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013 Esa Virtala etunimi.sukunimi@thl.fi Terveyden ja hyvinvoinnin laitos (THL) PL 30 00271 Helsinki Puhelin:

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli:

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli: 2. Yhden selittäajäan lineaarinen regressiomalli Regressio-termi peräaisin Galtonilta. IsÄan ja pojan pituus: PitkÄa isäa lyhyempi poika, lyhyt isäa pidempi poika. Son height (cm) 21 2 19 18 17 16 15 15

Lisätiedot

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos

Lisätiedot

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä: Matriisi ja vektori laskennan ohjelmisto edellyttää

Lisätiedot

MS-C2{04 Tilastollisen analyysin perusteet

MS-C2{04 Tilastollisen analyysin perusteet MS-C2{04 Tilastollisen analyysin perusteet Tentti 7.4.20 4A/irtanen Kirjoita selvästi jokaiseen koepaperiin alla mainitussa järjestyksessä: OHlprrn (i) (ii) MS-C204 TAP 7.4.204 opiskelijanumero + kirjain

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

Terra Preta kasvatuskoe Pilkon pellolla 2012-2013

Terra Preta kasvatuskoe Pilkon pellolla 2012-2013 Terra Preta kasvatuskoe Pilkon pellolla 2012-2013 Karelia ammattikorkeakoulu Biotalouden keskus Simo Paukkunen Lokakuu 2013 Sisällys 1 Johdanto... 1 2 Aineisto ja menetelmät... 1 3 Tulokset... 6 3.1 Oraiden

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla 4 Aineiston kuvaaminen numeerisesti 1 4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla Tarkastellaan lasten syntymäpainon frekvenssijakauman (kuva 1, oikea sarake) muodostamista Excel- ja SPSS-ohjelmalla.

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta

Lisätiedot

TILASTOLLINEN KOKEIDEN SUUNNITTELU JA OTANTA. Keijo Ruohonen

TILASTOLLINEN KOKEIDEN SUUNNITTELU JA OTANTA. Keijo Ruohonen TILASTOLLINEN KOKEIDEN SUUNNITTELU JA OTANTA Keijo Ruohonen 2000 Sisältö I REGRESSIO Regressiomalli 2 2 Mallin estimointi ja käyttö 7 3 Varianssianalyysi (ANOVA) 2 4 Mallin epäsopivuuden testaus toistokokein

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

Lectio praecursoria. Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin. Markus Ojala. 12.

Lectio praecursoria. Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin. Markus Ojala. 12. Lectio praecursoria Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin Markus Ojala 12. marraskuuta 2011 Käsitteet Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden

Lisätiedot

Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa

Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa Martti Vainio, Juhani Järvikivi & Stefan Werner Helsinki/Turku/Joensuu Fonetiikan päivät 2004, Oulu 27.-28.8.2004

Lisätiedot

Tutkimusasetelmat. - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla

Tutkimusasetelmat. - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla Tutkimusasetelmat - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla Jotta kokonaisuus ei unohdu Tulisi osata Tutkimusasetelmat Otoskoko,

Lisätiedot

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,

Lisätiedot

ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6

ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 Sisällysluettelo ALKUSANAT 4 ALKUSANAT E-KIRJA VERSIOON 5 SISÄLLYSLUETTELO 6 1 PERUSASIOITA JA AINEISTON SYÖTTÖ 8 11 PERUSNÄKYMÄ 8 12 AINEISTON SYÖTTÖ VERSIOSSA 9 8 Muuttujan määrittely versiossa 9 11

Lisätiedot

Rakenteisen ohjelmoinnin harjoitustyö

Rakenteisen ohjelmoinnin harjoitustyö Tehtävä 2005/33 Puppugeneraattorissa lauseet on jaettu neljään osaan ja niistä taulukoidaan kymmenen lauseen aloitusta (esim. On huomattava, että, Kuitenkin, Tämän vuoksi), kymmenen tekijäosaa (esim. opintojen

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

Kasvatuskokeet mädätysjäännös- ja kompostiseoksilla

Kasvatuskokeet mädätysjäännös- ja kompostiseoksilla Kasvatuskokeet mädätysjäännös- ja kompostiseoksilla Selvitys Lepaa 17.12.2014 Teo Kanniainen Bioliike-projektia (v. 2013-2014) rahoitetaan Etelä-Suomen EAKR-ohjelmasta. SISÄLLYS 1 KASVATUSKOE JA TAVOITTEET...

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin

Lisätiedot

Lauri Tarkkonen: Erottelu analyysi

Lauri Tarkkonen: Erottelu analyysi Lauri Tarkkonen: Erottelu analyysi Erotteluanalyysin ongelma on kaksijakoinen:. Mikä havaittujen muuttujien (x i ) lineaarinen yhdistely erottaa mahdollisimman hyvin toisistaan tunnetut ryhmät? Siis selitettävä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

KAHDEN RYHMÄN VERTAILU

KAHDEN RYHMÄN VERTAILU 10.3.2015 KAHDEN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Luennon sisältö Luokitellut muuttujat Ristiintaulukko, prosentit Khiin neliötesti

Lisätiedot

Perhevapaiden palkkavaikutukset

Perhevapaiden palkkavaikutukset Perhevapaiden palkkavaikutukset Perhe ja ura tasa-arvon haasteena seminaari, Helsinki 20.11.2007 Jenni Kellokumpu Esityksen runko 1. Tutkimuksen tavoite 2. Teoria 3. Aineisto, tutkimusasetelma ja otos

Lisätiedot

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta Luento 5 Riippuvuudet vikapuissa Esimerkkejä S:sta hti Salo Teknillinen korkeakoulu L 1100, 0015 TKK 1 Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä

Lisätiedot

Aikasarja-analyysiä taloudellisilla aineistoilla

Aikasarja-analyysiä taloudellisilla aineistoilla Aikasarja-analyysiä taloudellisilla aineistoilla Leena Kalliovirta, Luonnonvarakeskus Leena.kalliovirta@luke.fi Kurssi Tilastotiede tutuksi HY matematiikan ja tilastotieteen laitos 1 Leena Kalliovirta

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen

Lisätiedot

Aki Taanila AIKASARJAENNUSTAMINEN

Aki Taanila AIKASARJAENNUSTAMINEN Aki Taanila AIKASARJAENNUSTAMINEN 26.4.2011 SISÄLLYS JOHDANTO... 1 1 AIKASARJA ILMAN SYSTEMAATTISTA VAIHTELUA... 2 1.1 Liukuvan keskiarvon menetelmä... 2 1.2 Eksponentiaalinen tasoitus... 3 2 AIKASARJASSA

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

5 Osa 5: Ohjelmointikielen perusteita

5 Osa 5: Ohjelmointikielen perusteita 5 Osa 5: Ohjelmointikielen perusteita 5.1 Omat funktiot R on lausekekieli: Kaikki komennot kuten funktiokutsut ja sijoitusoperaatiot ovat lausekkeita. Lausekkeet palauttavat jonkin arvon. Lausekkeita voidaan

Lisätiedot

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Metsälamminkankaan tuulivoimapuiston osayleiskaava VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations

Lisätiedot

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4 TILTP1 Tilastotieteen johdantokurssin harjoitustyö Tampereen yliopisto 5.11.2007 Perttu Kaijansinkko (84813) perttu.kaijansinkko@uta.fi Pääaine matematiikka/tilastotiede Tarkastaja Tarja Siren 1 Johdanto...2

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Laskuharjoitus 9, tehtävä 6

Laskuharjoitus 9, tehtävä 6 Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen

Lisätiedot

Toimilohkojen turvallisuus tulevaisuudessa

Toimilohkojen turvallisuus tulevaisuudessa Toimilohkojen turvallisuus tulevaisuudessa Turvallisuusseminaari ASAF 30.10-1.11.2006 Mika Strömman Teknillinen korkeakoulu 1 Sisältö Luotettavuuden lisääminen hyvillä tavoilla Toimilohkokirjastot Turvatoimilohkot

Lisätiedot

SAS-ohjelmiston perusteet 2010

SAS-ohjelmiston perusteet 2010 SAS-ohjelmiston perusteet 2010 Luentorunko/päiväkirja Ari Virtanen 11.1.10 päivitetään luentojen edetessä Ilmoitusasioita Opintojakso suoritustapana on aktiivinen osallistuminen harjoituksiin ja harjoitustehtävien

Lisätiedot

Tarkasteluja lähtötason merkityksestä opintomenestykseen. MAMK:n tekniikassa

Tarkasteluja lähtötason merkityksestä opintomenestykseen. MAMK:n tekniikassa 1 Tarkasteluja lähtötason merkityksestä opintomenestykseen MAMK:n tekniikassa 2 1. Tutkimuksen perusteita Tekniikan alalle otetaan opiskelijoita kolmesta eri lähteestä : -ammattitutkinnon suorittaneet

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

Neljän alkion kunta, solitaire-peli ja

Neljän alkion kunta, solitaire-peli ja Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat

Lisätiedot

Hypoteesin testaus Alkeet

Hypoteesin testaus Alkeet Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä

Lisätiedot

SIMULINK S-funktiot. SIMULINK S-funktiot

SIMULINK S-funktiot. SIMULINK S-funktiot S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet Talousmatematiikan perusteet, L3 Prosentti, t Toisen Prosentti 1 Jos b on p% luvusta a, eli niin b = p 100 a a = perusarvo (Mihin verrataan?) (Minkä sadasosista on kysymys.) p = prosenttiluku (Miten monta

Lisätiedot

Muuttujien määrittely

Muuttujien määrittely Tarja Heikkilä Muuttujien määrittely Määrittele muuttujat SPSS-ohjelmaan lomakkeen kysymyksistä. Harjoitusta varten lomakkeeseen on muokattu kysymyksiä kahdesta opiskelijoiden tekemästä Joupiskan rinneravintolaa

Lisätiedot