4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Kiusatekijä on taustatekijä, joka voi vaikuttaa

Koko: px
Aloita esitys sivulta:

Download "4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Kiusatekijä on taustatekijä, joka voi vaikuttaa"

Transkriptio

1 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa koetuloksiin, mutta siitä sinänsä ei olla kiinnostuneita. 1

2 Tavoite on eliminoida sen vaikutus koetuloksista. Eliminointimenetelmiä: Satunnaistaminen: Jos kiusatekijä ei ole havaittavissa, pyritään sen vaikutus poistamaan satunnaistamisella (randomization). Kovarianssianalyysi: Havaittavissa oleva kiusatekijä voidaan huomioida koetuloksissa kovariaatteina (lisämuuttujina). 2

3 Satunnaistettu täysi lohkokoe: [Randomized complete block design (RCBD)] Kiusatekijä on tunnistettavissa ja kontrolloitavissa. Kiusatekijän vaikutus eliminoidaan täydellä lohkokokeella, mikä tarkoittaa, että tehdään jokaiselle koeyksikölle (jokaisessa lohkossa) kaikki käsittelyt. Tyypillisesti tällainen tilanne on, kun tiedetään, että koeyksiköiden ominaispiirteet vaikuttavat koetuloksiin. Koeyksiköt (havaintoyksiöt) eivät ole homogeenisia. 3

4 Esimerkki 4.1: (ks. Esim 2.4) Halutaan tutkia antavatko metallin kovuuden tutkimisessa käytettävät neljä pistokärkeä samoja kovuustuloksia. Kullakin kärjellä halutaan tehdä neljä mittausta, eli yhteensä 5 4 = 16 mittausta. Kysymyksessä on yhden tekijän koeasetelma (tekijänä pistokärki). Jos toteutetaan täysin satuunnaistettu yhden faktorin koe, valitaan 16 testipalaa ja arvotaan kullekin pistokärjelle neljä palaa. Ongelmana kuitenkin on, että jos metallipalat ovat kovuuksiltaan erilaisia, vaikuttaa mittaustuloksiin pistokärjen ja satunnaisvirheen lisäksi myös metallipalan mahdollisesti vaihteleva ominaiskovuus. Ominaiskovuudet muodostavat tässä potentiaalisen kiusatekijän, joka kuitenkin voidaan eliminoida satunnaistetulla täydellä lohkokoeella. Menettely: Valitaan neljä metallipalaa ja tehdään mittaus jokaisessa palassa kullakin pistokärjellä (complete block design). Kussakin koepalassa mittausjärjestys on satunnainen (randomization). 4

5 Taulukko 4.1: Satunnaistettu täysi lohkokoe kovuusmittauskokeessa. =============================================================== Mittaus- Koepala Keskikarki Yhteensa Keskiarvo hajonta Yht Karv Khaj =============================================================== 5

6 Yleisesti satunnaistetun täyden lohkokokeen asetelma on muotoa: Taulukko 4.2: Randomized Complete Block Design lohko 1 lohko 2 lohko b käsittely 1 y 11 y 12 y 1b käsittely 2 y 21 y 22. y 2b käsittely a y a1 y a2 y ab Huom. 4.1: Jokaisessa lohkossa on yksi havainto per käsittely. Huom. 4.2: Käsittelyjen järjestys jokaisen lohkon sisällä on satunnainen. Täten satunnaistaminen tapahtuu vain lohkon sisällä 6

7 Tilastollinen malli Tilastollinen malli (eräs mahdollisuus) havainnoille voidaan RCBD-asetelmassa kirjoittaa muotoon (muista, että tilastollisen mallintamisessa kysymys on siitä, että mistä havaittu vaihtelu on peräisin) (1) y ij = μ + τ i + β j + ε ij, jossa μ on yleiskeskiarvo (overall mean), τ i on käsittelyn i vaikutus (treatment effect), β j on lohkon j vaikutus (block effect) ja satunnaisvirhe ε ij N(0, σ 2 ), i = 1,..., a, j = 1,..., b. Parametrit τ i ja β j ajatellaan poikkeamina keskiarvosta μ, jolloin (2) a i=1 τ i = b j=1 β j = 0. 7

8 Mallia (1) sanotaan vaikutusten esitysmuodoksi (vaikutusten malli tai efektien malli) (effects model) Vaihtoehtoisesti voidaan kirjoittaa odotusarvoesitys (mean model) (3) y ij = μ ij + ε ij, jossa μ ij = μ + τ i + β j. Jatkossa käytetään pääsääntöisesti efektien mallin esitystä. 8

9 Hypoteesit: Kysymys: Onko käsittelyillä vaikutusta? Testattavat hypotsseit: (4) H 0 : τ 1 = = τ a = 0 H 1 : τ i = 0 jollakin i Kokonaisvaihtelua mittaava neliösumma voidaan dekomponoida vaihtelun lähteiden mukaisesti (5) a i=1 b j=1 (y ij y.. ) 2 = b a i=1 ( y i. y.. ) 2 +a b j=1 ( y.j y.. ) 2 + a i=1 b j=1 (y ij y.j y i. + y.. ) 2 eli (6) SS tot = SS treat + SS block + SS err, 9

10 jossa (7) SS tot = a b i=1 j=1 (y ij y.. ) 2 on kokonaisneliösumma, (8) SS treat = b a i=1 ( y i. y.. ) 2 on käsittelyjen osuus SS tot :sta, (9) SS block = b b j=1 ( y.j y.. ) 2 on lohkojen välisen vaihtelun osuus SS tot :sta ja (10) SS err = a b i=1 j=1 (y ij y i. y.j + y.. ) 2 on virhevaihtelun osuus kokonaisvaihtelusta. 10

11 Edellä (11) y i. = 1 b (12) y.j = 1 a ja b y ij j=1 a y ij i=1 (13) y.. = 1 ab a b i=1 j=1 y ij. 11

12 Vapausasteet: SS tot : N 1, jossa df tot = N = ab, SS treat : df treat = a 1, SS block : df block = b 1 ja SS err : df err = ab (a 1) (b 1) = (a 1)(b 1) Keskineliöt: Jakamalla neliösummat vapausasteillaan saadaan keskineliösummat, joita voidaan käyttää samalla varianssien estimaattoreina. (14) MS treat = SS treat a 1, (15) MS block = SS block b 1, (16) MS err = SS err (a 1)(b 1). 12

13 Testisuure: Hypoteesin (4) testaus perustuu testisuureeseen (17) F = MS treat MS err, joka on F -jakautunut vapausasteilla a 1 ja (a 1)(b 1), jos H 0 on tosi. 13

14 Varianssitaulu: Vaihtelun Neliö- Vapaus- Keskilähde summa asteet neliöt F MS Käsittely SS treat a 1 MS treat treat MS err Lohkot SS block b 1 MS block Virhe SS err (a 1)(b 1) MS err Yhteensä SS tot N 1 Periaatteessa testisuuretta F block = MS block /MS err voidaan käyttää myös lohkovaikutusten testaamiseen (H 0 : β 1 = = β b = 0). Kuitenkin satunnaistaminen on tehty vain lohkojen sisällä, minkä seurauksena testi ei ole täysin validi. Käytännön ratkaisuna on, että käytetään sitä deskriptiivisenä suureena; jos F block on suuri on syytä lohkominen tehdä myös vastaavissa kokeissa myöhemminkin. 14

15 Esimerkki 4.2: Metallin kovuustestiaineisto. Alla olevassa kuviossa havainnot on koepaloittain (Test coupon). Hardness Testing Experiment Type of Tip Test Coupon Tip 1 Tip 2 Tip 3 Tip 4 Kuvion perusteella on ilmeistä, että koepalat ovat eri kovuisia, joten vaikutus on syytä eliminoida ennen kärkien mittaustuloksien analyysissa. 15

16 SAS-ajojono RCBD:lle: options ls = 78; /* Data from Montgomery 5 ed, p. 127 */ data hardness; input tip coupon y datalines; ; proc anova data = hardness; class tip coupon; model y = tip coupon; run; 16

17 Tulokset: The ANOVA Procedure Class Level Information Class Levels Values tip coupon Number of observations 16 Dependent Variable: y Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE y Mean Source DF Anova SS Mean Square F Value Pr > F tip coupon <.000 Ensimmäisessä taulukossa on yhditetty testaus, jossa on käsittelyn ja lohkon vaikutus yhdessä. Alemmassa taulukossa käsittelyn ja lohkon vaikutukset ovat erikseen. Kaikki p-arvo ovat < 0.001, joten kärjet antavat erilaisia tuloksia. Samoin lohkovaikutuksella on merkitystä, joten se on syytä huomioida. 17

18 Itse asiassa, jos lohkovaikutusta ei huomioitaisi ja analyysi olisi tehty tavanomaisena yhden faktorin kokeena, olisi tulokset seuraavanlaisia: Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Total Näiden tulosten mukaan mittauskärkein antamilla tuloksilla ei olisi eroa, mikä olisi mitä ilmeisemmin virheellinen johtopäätös! 18

19 Keskiarvojen yksittäiset vertailut voidaan tehdä samalla tavalla kuin yhden faktorin kokeessa. Esimerkki 4.3: Tarkastellaan esimerkkinä LSD ja Tukey vertailuja (proc anova käsky means tip / lsd tukey;) The ANOVA Procedure t Tests (LSD) for y NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 9 Error Mean Square Critical Value of t Least Significant Difference Means with the same letter are not significantly different. t Grouping Mean N tip A B B B B B

20 Tukey s Studentized Range (HSD) Test for y NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 9 Error Mean Square Critical Value of Studentized Range Minimum Significant Difference Means with the same letter are not significantly different. Tukey Grouping Mean N tip A B B B B B Havaitaan, että eron aiheutta mittauskärki 4. 20

21 Mallin riittävyystarkastelut Residuaalit (18) ˆe ij = y ij ˆy ij = y ij (ˆμ + ˆτ i + ˆβ j ) = y ij y i. y.j + y.. jossa ˆμ = y.., ˆτ i = y i. y.. ja ˆβ j = y.j y... Näihin perustuen normaalisuus ja vakiovarianssisuus tarkastelut tehdään kuten kappaleessa 3. Huom 4.3: Havainnon y ij ennustearvo (19) ˆy ij = ˆμ + ˆτ i + ˆβ j = y.. + ( y i. y.. ) + ( y.j y.. ) = y i. + y.j y.. 21

22 Residual normal probability plot and Residuals versus predicted values Residual plots against coupon and tip No obvious non-normalities or non-linearities. 22

23 4.2 Latinalaiset neliöt Latinalaisten neliöiden koeasetelmalla voidaan eliminoida kahden kiusatekijän vaikutus koetuloksista (havainnot ovat kahden taustatekijän suhteen mahdollisesti epähomogeenisia). Perusajatus: käytetään kiusafaktoreita (nuisance factors) lohkomuuttujina (blocking variables). 23

24 Asetelma: (a) Käsittelyn (treatment) tasoja p ( 3). Molemmilla kiusafaktoreilla myös p luokkaa. (b) Muodostetaan kiusafaktoreiden luokkien mukaisesti p p taulukko. (c) Kullakin rivillä ja kullakin sarakkeella toteutetaan jokainen käsittely (treatment) täsmälleen kerran (kokeita yhteensä p 2 ja jokaisesta käsittelytasolta saadaan p havaintoa). Huom 4.4: Koeasetelmaa, jossa kullakin käsittely (treatment) tehdään täsmälleen kerran kussakin taustatekijöiden (blocking variables) määrittämässä solussa, sanotaan ortogonaaliseksi. 24

25 Etuja: (a) Yleisesti latinalaisten neliöiden koesuunnitelmilla (latinalaiset neliöt, kreikkalais-latinalaiset neliöt, hyper-kreikkalais-latinalaiset neliöt) voidaan eliminoida useamman kiusatekijän vaikutukset (b) Tarvitaan vain suhteellisen vähän koetoistoja (Latinalaisessa neliössä p 2 ). 25

26 Rajoitteita: (a) Kiusatekijöillä täytyy olla täsmälleen yhtä monta tasoa kuin käsittelyfaktorilla (p tasoa) (b) Kiusatekijöiden välillä ei saa olla yhdysvaikutusta (interaction). Myöskään kiusatekijöiden ja käsittelyfaktorin ei saa olla yhdysvaikutuksia. 26

27 Esimerkki 4.4: Tarkastellaan suihkumoottoreille tarkoitetun viiden erilaisen polttoaineseoksen palamisominaisuuksia. Kustakin raaka-aineet-erästä saadaan valmistettua erä kutakin polttoaineseosta. Seokset on mahdollista teettää viidellä eri toimittajalla. Käsittelytekijänä (treatment) on siis seos ja taustatekijöinä (kiusafaktorit) raaka-aine-erät ja toimittajat. Koeasetelma: Valmistetaan kustakin raaka-aine-erästä jokaista seostyyppiä yksi erä siten, että kukin toimittaja valmistaa yhden erän jokaista seosta, joista kunkin muodostuu eri raaka-aine-eristä. 27

28 Merkitään seoksia (käsittelyjä) aakkosilla A, B, C, D ja E, saadaan esitys, jota sanotaan latinalaiseksi neliöksi (latinalaiseten aakkosten vuoksi) Polttoaineen palamisominaisuudet ============================================================= Raaka-aine- Toimittaja (column) era (row) A = 24 B = 20 C = 19 D = 24 E = 24 2 B = 17 C = 24 D = 30 E = 27 A = 36 3 C = 18 D = 38 E = 26 A = 27 B = 21 4 D = 26 E = 31 A = 26 B = 23 C = 22 5 E = 22 A = 30 B = 20 C = 29 D = 31 ============================================================= Tärkeää on, että raaka-aineet ja toimittajat eri seoksille tulee valittua satunnaisesti. Yllä oleva neliö on yksi perusneliöistä. Permutoimalla sarakkeita ja rivejä saadaan muut neliöt. Satunnaistaminen toteutuu siten, että valitaan kaikista mahdollisita neliöistä toteutettava satunnaisesti. 28

29 Latinalaista neliötä, jossa ensimmäinen rivi ja sarake ovat aakkosjärjestyksessä sanotaan standardineliöksi (standard Latin square). Esimerkkeja standardineliosita: ================================================================= 3x3 4x4 5x5 6x A B C A B C D A B C D E A B C D E F B C A B C D A B C D E A B C D E F A C A B C D A B C D E A B C D E F A B D A B C D E A B C D E F A B C E A B C D E F A B C D F A B C D E n of std squares total n of squares number of runs ================================================================= 29

30 Tilastollinen malli: p p latinalaisen neliön malli havainnolle on muotoa (20) y ijk = μ + α i + τ j + β k + ε ijk, i = 1,..., p (rivitekijä), j = 1,..., p (käsittely [treatment]), k = 1,..., p (saraketekijä). Esimerkki 4.5: (Jatkoa) Jos i = 2, k = 3, niin j = 4(= D) ja y 143 = 30. Virhetermille pätee E[ε ijk ] = 0 ja Var[ε ijk ] = σ 2 ε. Kuten lohkokokeessa, α i, τ j ja β k ovat poikkeamia yleiskeskiarvosta ja summautuvat nolliksi. Perusoletuksena on siis, että tekijöiden (faktoreiden) välillä ei ole yhdysvaikutusta (interaction). 30

31 Havaintojen lukumäärä: N = p 2. Varianssiahjoitelma: (21) SS tot = SS row + SS column + SS treat + SS err, jossa (22) SS tot = (y ijk y) 2, (23) SS row = p (24) SS col = p (25) SS treat = p (26) i,j,k p i=1 p k=1 p j=1 ( y i.. y) 2, ( y..k y) 2, ( y.j. y) 2, SS err = SS tot SS row SS col SS treat. 31

32 Varianssitaulu: Source of Sum of Degrees of Mean variation squares freedom square F Treatments SS treat p 1 MS treat MS treat MS err Rows SS row p 1 MS row MS row MS err Columns SS col p 1 MS col MS col MS err Error SS err (p 2)(p 1) MS err Total SS tot p 2 1 Pääasiallinen kiinnostus on käsittelyn vaikutuksessa. Huom. 4.5: Varianssihajotelma noudattaa havaitun arvon y ijk dekomponointia (27) y ijk y... = ( y i. y... ) + ( y.j. y... ) + ( y..k y... ) eli +(y ijk y i.. y.j. y..k + 2 y... ) (28) tot = row + treat + col + err. 32

33 Esimerkki 4.6: Polttoaine-esimerkki. SAS:lla toteutettuna ajovirta on seuraava: data propellant; input y batch treat $ operator; label y = "burning rate"; datalines; 24 1 A B C D E B C D E A C D E A B D E A B C E A B C D 5 ; proc anova data = propellant; class batch treat operator; model y = batch treat operator; run; 33

34 Tulokset: The SAS System The ANOVA Procedure Class Level Information Class Levels Values batch treat 5 A B C D E operator Number of Observations Read 25 Number of Observations Used 25 The ANOVA Procedure Dependent Variable: y burning rate Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Tot R-Square Coeff Var Root MSE y Mean Source DF Anova SS Mean Square F Value Pr > F batch treat operator

35 Ylemmässä varianssitaulun F -testi testaa onko millään tekijällä vaikutusta. Alemman varianssitaulun F -testit testaavat kunkin yksittäisen tekijän vaikutusta. Tuloksista havaitaan, että eri seoksien keskimääräiset palamistulokset poikkeavat toisistaan tilastollisesti merkitsevästi. Lisäksi eri toimittajien seoksilla on vaikutusta palamistulokseen. Sen sijaan raaka-aine-erillä ei näytä olevan vaikutusta. 35

36 Mallin (20) parametrien estimaattorit ovat (29) ˆμ = y = y... = 1 N (30) ˆα i = y i.. y..., (31) ˆτ j = y.j. y..., y ijk i,j,k (32) ˆβ k = y..k y... (33) ˆy ijk = ˆμ + ˆα i + ˆτ j + ˆβ k. 36

37 Maliin riittävyyden tarkastelut: Jos malli on riittävä, residuaalit ovat puhtaasti satunnaisvaihtelua Residuaalit: (34) e ijk = y ijk ˆy ijk = y ijk y i.. y.j. y..k + 2 y... Graafisilla tarkasteluilla saadaan yleissilmäys tilanteesta. 37

38 Esimerkki 4.6: Normal probability plot and residual versus predicted Treatment versus residual and operator versus residual Normaaliisuus on jokseenkin ok, eikä ilmeisiä epälineaarisuuksia. 38

39 4.3 Kreikkalais-latinalaiset neliöt Kolme taustatekijää (nuisance factors). Käsitellään ne lohkomuuttujina. Asetelma: (a) Käsittelytasoja ja taustamuuttujien tasoja p ( 4). (b) Lähtökohtana p p latinalainen neliö, jonka päälle määritellään toinen latinalainen neliö. Käsittelyn tasoja merkitään kreikkalaisilla kirjaimilla (tästä nimi) ja kolmannen taustatekijän tasoja latinalaisilla kirjaimilla. Sarakevaikutukset Rivi Aα Bβ Cγ Dδ 2 Bδ Aγ Dβ Cα 3 Cβ Dα Aδ Bγ 4 Dγ Cδ Bα Aβ 39

40 Huom 4.6: Kysymyksessä jälleen ns. ortogonaalinen asetelma siinä mielessä, että kullakin taustatekijän tasolla käsittely toistetaan täsmälleen kerran. Tilastollinen malli: (35) y ijkl = μ + θ i + τ j + ω k + l + ε ijkl, i, j, k, l = 1,..., p. Rivi: θ i (lohkotekijä) Sarake: l (lohkotekijä) Latinalainen aakkonen: τ j (treatment) Kreikkalainen aakkonen: ω k (lohkotekijä) 40

41 Määrittelemällä kesiarvot indeksien yli kuten edellä, saadaan estimaattorit (36) ˆμ = y... = 1 N jossa N = p 2 i,j,k,l (37) ˆθ i = y i... y..., y ijkl, (38) ˆτ j = y.j.. y..., (39) ˆω k = y..k. y..., (40) ˆl = y...l y... ja sovitearvo (fitted value) (41) ˆy ijkl = ˆμ + ˆθ i + ˆτ j + ˆω k + ˆl = y... + ( y i... y... ) + ( y.j.. y... ) +( y..k. y... ) + ( y...l y... ) 41

42 Residuaali termi: (42) e ijkl = y ijkl ˆy ijkl Varianssitaulu: Source SS df M S F Latin SS latin p 1 MS latin MS latin MS err Greek SS greek p 1 MS greek MS greek MS err Rows SS row p 1 MS row MS row MS err Columns SS rol p 1 MS rol MS rol MS err Error SS err (p 3)(p 1) MS err Total SS tot p 2 1 jossa esimerkiksi (43) SS latin = p p j=1 ( y.j.. y... ) 2 42

43 Esimerkki 4.7: Polttoaine-esimerkki. Oletetaan, että kokeet tehdään viidellä eri testimoottorilla, joiden mahdollinen vaikutus halutaan eliminoida. Identifioidaan moottorit kreeikkalaisilla aakkosilla ja oletetaan, että koe on toteutettu seuraavasti: Raaka-aine- Toimittaja (column) era (row) Aα = 24 Bγ = 20 Cε = 19 Dβ = 24 Eδ = 24 2 Bβ = 17 Cδ = 24 Dα = 30 Eγ = 27 Aε = 36 3 Cγ = 18 Dε = 38 Eβ = 26 Aδ = 27 Bα = 21 4 Dδ = 26 Eα = 31 Aγ = 26 Bε = 23 Cβ = 22 5 Eε = 22 Aβ = 30 Bδ = 20 Cα = 29 Dγ = 31 43

44 data propellant; input y batch treat $ operator assembly $; label y = "burning rate"; datalines; 24 1 A 1 alpha 17 2 B 1 beta 18 3 C 1 gamma 26 4 D 1 delta 22 5 E 1 epsilon 20 1 B 2 gamma 24 2 C 2 delta 38 3 D 2 epsilon 31 4 E 2 alpha 30 5 A 2 beta 19 1 C 3 epsilon 30 2 D 3 alpha 26 3 E 3 beta 26 4 A 3 gamma 20 5 B 3 delta 24 1 D 4 beta 27 2 E 4 gamma 27 3 A 4 delta 23 4 B 4 epsilon 29 5 C 4 alpha 24 1 E 5 delta 36 2 A 5 epsilon 21 3 B 5 alpha 22 4 C 5 beta 31 5 D 5 gamma ; proc anova data = propellant; class batch treat assembly operator; model y = batch treat assembly operator; run; 44

45 Results: The ANOVA Procedure Dependent Variable: y burning rate Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Tot R-Square Coeff Var Root MSE y Mean Source DF Anova SS Mean Square F Value Pr > F batch treat assembly operator Testimoottorilla (assemmpply) ei näytä olevan vaikutusta (p-arvo ). 45

46 Parittaisten (ortogonaalisten) latinalaisten asetelma, joka muodostaa kreikkalais-latinalaisen neliön, voidaan yleistää edelleen. p p hyperneliö on koeasetelma, joka muodostetaan kolmesta tai useammmasta ortogonaalinen latinalaisesta neliöstä. p 1:stä ortogonaalisesta latinalaisesta neli - ostä voidaan muodostaa asetelma, jolla periaatteessa voidaan tutkia p + 1:n tekijän vaikutusta. 46

47 4.4 Balansoitu epätäydellisen lohkokoe (Balanced Incomplete Block Design, BIBD) Kaikkia käsittelyitä (treatments) ei toteuteta jokaisessa lohkossa (epätäydellinen, incomplete). Kuitenkin kaikkia käsittelykombinaatioita pidetään yhtä tärkeinä. Tällöin koe toteutetaan site, että jokainen käsittelypari esiintyy yhtä monta kertaa (balansoitu [balanced] Lähtökohta: Olkoon käsittelyn tasoja a ja jokaisessa lohkossa voidaan toteuttaa k < a koetta. 47

48 Koeasetelma: Periaatteessa koeasetelma voidaan toteuttaa siten, että valitaan (44) b = a k ) = a! k!(a k)! lohkoa ja totetutetaan kussakin yksi k alkion (käsittelyn) kombinaatio satunnaistetussa järjestyksessä. Huom. 4.7: Usein balanssi saadaan aikaiseksi pienemmällä kuin ( a k) lohkomäärällä. Kirjallisuudesta löytyy sopivia BIBD-taulukoita pienemmille lohkomäärille. 48

49 Esimerkki 4.7: Makesivalmistaja haluaa testata asiakkailla kuutta uutuustuotetta (A, B, C, D, E, F). Asiakkaita pyydetään maistamaan tuotteita ja pisteyttämään ne skaalalla Käytännön syistä kutakin koehenkilöä pyydetään maistamaan neljää tuotetta. Kokeeseen valitaan b = 15 = ( 6 4) henkilöä (lohkot) =============================================== Koehenkilo Pistemaara (tuote) [lohko, block] [kasittely, treatment]) (A) 55 (B) 69 (C) 83 (D) 2 48 (A) 87 (D) 56 (E) 22 (F) 3 65 (B) 91 (C) 67 (E) 35 (F) 4 42 (A) 48 (B) 65 (C) 43 (E) 5 36 (A) 58 (B) 69 (D) 7 (F) 6 79 (C) 85 (D) 56 (E) 25 (F) 7 54 (A) 60 (B) 90 (C) 21 (F) 8 62 (A) 92 (C) 94 (D) 63 (E) 9 39 (B) 71 (D) 47 (E) 11 (F) (A) 59 (B) 84 (D) 51 (E) (A) 74 (C) 61 (E) 25 (F) (B) 78 (C) 78 (D) 22 (F) (A) 74 (B) 59 (E) 32 (F) (A) 74 (C) 78 (D) 34 (F) (B) 83 (C) 92 (D) 68 (E) =============================================== 49

50 Satunnausistaminen on toteutettu siten, että kullekin tuotekombinaatio on jaettu satunnaisesti koehenkilöille ja maistamisjärjestys on permutoitu satunnaiseksi kunkin koehenkilön kohdalla. 50

51 Esittämällä havaintoaineisto seuraavasti nähdään selkeämmin koeasetelma. ========================================== Brand Block Subj. A B C D E F Aver Aver = grand mean ========================================== 51

52 BIBD:n tilastolinen analysointi Kästittelyjen lukumäärä: a. Lohkojen lukumäärä: b. Kussakin lohkossa k käsittelyä (k < a). Toistoja r, eli jokainen käsittely toistuu r kertaa. Havaintoja: N = ar = bk. Kukin käsittelypari esiintyy (45) λ = lohkossa. r(k 1) a 1 Jos a = b, sanotaan koeasetelmaa symmetriseksi. 52

53 Esimerkki 4.8: Makutesti. a = 6, b = 15, k = 4, r = 10, N = 6 10 = 15 4 = 60 ja λ = 10(4 1) 6 1 = 30 5 = 6. 53

54 BIBD:n tilastollinen on samaa muotoa kuin RCBD:n (Randomized Complete Block Design), [kaava (1], eli (46) y ij = μ + τ i + β j + ε ij, jossa y ij on havainto i lohkossa j. Parametri μ on yleiskeskiarvo, τ i on käsittelyn i vaikutus, β j on lohkon j vaikutus ja ε ij on virhetermi. Jälleen a i=1 τ i = 0 ja b j=1 β j = 0. Kokonaisvaihtelu voidaan dekomponoida joko (47) SS tot = SS treat(adj) + SS block + SS err, tai (48) SS tot = SS treat + SS block(adj) + SS err. 54

55 Varianssitaulu: Source SS df MS F Treatment SS treat(adj) a 1 Block SS block(adj) b 1 Error SS err N a b + 1 Total SS tot N 1 SS treat(adj) a 1 SS block(adj) b 1 F = MS treat(adj) MS err F = MS block(adj) MS err Huom. 4.8: Yllä SS tot = SS treat(adj) + SS block(adj) + SS err, koska koeasetelma ei ole enää ortogonaalinen. 55

56 SS treat(adj) ja SS block(adj) lasketaan tavalla, jossa huomioidaan, ettei kaikkia käsittelyjä ole toteutettu jokaisessa lohkossa. SAS:n proc glm ja SPSS:n General Linear Model estimoinnissa nämä saadaan Sum of Squares Type III valinnoilla. 56

57 Teknisesti tämä tapahtuu siten, että estimoidaan ensin koko malli, jossa on molemmat efektit (treatment ja block). Estimointi tapahtuu regressiotekniikalla Saadaan neliösummahajotelma (49) SS tot = SS model.full + SS err Estimoidaan seuraavaksi malli, jossa on vain block tekijä (50) SS tot = SS model.block + SS err.block SS treat(adj) saadaan erotuksena (51) SS treat(adj) = SS model.full SS model.block 57

58 Vastaavsti SS block(adj) saadaan estimoimalla ensin treat efektin malli, josta (52) SS tot = SS model.treat + SS err.treat ja (53) SS block(adj) = SS model.full SS model.treat. 58

59 Esimerkki 4.9: Makutesti SAS-toteutus, proc glm Ensiksi luodaan data: data taste; input koehenkilo pisteet tuote $ label koehenkilo = "block variable"; label tuote = "treatment variable"; datalines; 1 51 A 1 55 B 1 69 C 1 83 D 2 48 A 2 87 D 2 56 E 2 22 F 3 65 B 3 91 C 3 67 E 3 35 F 4 42 A 4 48 B 4 65 C 4 43 E 5 36 A 5 58 B 5 69 D 5 7 F 6 79 C 6 85 D 6 56 E 6 25 F 7 54 A 7 60 B 7 90 C 7 21 F 8 62 A 8 92 C 8 94 D 8 63 E 9 39 B 9 71 D 9 47 E 9 11 F A B D E A C E F B C D F A B E F A C D F B C D E ; run; Toteutetaan proc glm:llä proc glm data = taste; class koehenkilo tuote; model pisteet = koehenkilo tuote / ss3; run; quit; 59

60 Tulokset: The GLM Procedure Class Level Information Class Levels Values koehenkilo tuote 6 A B C D E F Number of Observations Read 60 Number of Observations Used 60 The GLM Procedure Dependent Variable: pisteet Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE pisteet Mean Source DF Type III SS Mean Square F Value Pr > F koehenkilo <.0001 tuote <

61 Koska p-arvot jäävät pieniksi on selvästi pääteltävissä, että tuotteiden keskimääräiset pistemäärät poikkeavat toisistaan, eli jotkut tuotteest maistuvat selvästi paremmilta kuin toiset. Yksittäisten keskiarvojen tarkasteluilla (monivertailutestit) saadaan selville parhaimmin maistuvat tuotteet. Koehenkilöiden välillä on myös eroa, joten tämän aiheuttaman vaihtelun huomiointi on perusteltua kokeessa. 61

62 Keskiarvo vertailut (Tukey): The GLM Procedure Tukey s Studentized Range (HSD) Test for pisteet NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 40 Error Mean Square Critical Value of Studentized Range Minimum Significant Difference Means with the same letter are not significantly different. Tukey Grouping Mean N tuote A D A A C B B B B E C A D F 62

63 Tuotteiden D ja C makuominaisuuksissa ei ole merkittävää eroa. Samoin tuotteet B ja E ovat makuominaisuuksiltaan samanlaisia. Heikoimmin pärjää D, joka poikkeaa tilastollisesti merkitsevästi toisista. 63

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä:

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä: 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa

Lisätiedot

4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Tavoite on eliminoida sen vaikutus koetuloksista. Eliminointimenetelmiä:

4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Tavoite on eliminoida sen vaikutus koetuloksista. Eliminointimenetelmiä: 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat Tavoite on eliminoida sen vaikutus koetuloksista. 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor):

Lisätiedot

Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla.

Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. 5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla

Lisätiedot

3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).

3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). 3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,

Lisätiedot

Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).

Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). 3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs)

Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa 5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla

Lisätiedot

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa 5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla

Lisätiedot

9.1 Hierarkiset asetelmat (Nested Designs)

9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

Lohkoasetelmat. Heliövaara 1

Lohkoasetelmat. Heliövaara 1 Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,

Lisätiedot

Lohkoasetelmat. Kuusinen/Heliövaara 1

Lohkoasetelmat. Kuusinen/Heliövaara 1 Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan

Lisätiedot

9. Muita koeasetelmia. Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9.1 Hierarkiset asetelmat (Nested Designs)

9. Muita koeasetelmia. Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

A250A0050 Ekonometrian perusteet Tentti

A250A0050 Ekonometrian perusteet Tentti A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin

Lisätiedot

Altistusaika 1 kk 2 kk 3 kk 1.35 1.53 1.38 1.35 1.63 1.51 1.60 1.40 2.18 1.77 1.66 1.98 1.73 1.76 1.60 1.72

Altistusaika 1 kk 2 kk 3 kk 1.35 1.53 1.38 1.35 1.63 1.51 1.60 1.40 2.18 1.77 1.66 1.98 1.73 1.76 1.60 1.72 Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut iheet: vainsanat: Kaksisuuntainen varianssianalsi Lohkoasetelmat Latinalaiset neliöt ritmeettinen

Lisätiedot

Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). tulee katettua (complete replicate). Havaintojen

Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). tulee katettua (complete replicate). Havaintojen 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N = 2

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). määrä per faktoritasokombinaatio (balansoidussa)kokeessa. 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1 Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Hierarkkiset koeasetelmat -faktorikokeet Vastepintamenetelmä Aritmeettinen keskiarvo, Estimaatti, Estimaattori, -testi, aktorikokeet,

Lisätiedot

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalyysi Bonferronin menetelmä, F-testi, Jäännösneliösumma, Kaksisuuntainen varianssianalyysi Kokonaiskeskiarvo,

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Osafaktorikokeet. Heliövaara 1

Osafaktorikokeet. Heliövaara 1 Osafaktorikokeet Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeentekijän resurssit. Myös estimoitavien korkean asteen yhdysvaikutustermien

Lisätiedot

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). määrä per faktoritasokombinaatio (balansoidussa)kokeessa. 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2

Lisätiedot

8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman

8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman 8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Hierarkkiset koeasetelmat. Heliövaara 1

Hierarkkiset koeasetelmat. Heliövaara 1 Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501 Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662

Lisätiedot

Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 k -faktorikokeet 2 2 -faktorikokeet 2 3 -faktorikokeet 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 2 k -faktorikokeet: Mitä opimme?

Lisätiedot

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti. 2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

SEM1, työpaja 2 (12.10.2011)

SEM1, työpaja 2 (12.10.2011) SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

2. Teoriaharjoitukset

2. Teoriaharjoitukset 2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien

Lisätiedot

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

Vastepintamenetelmä. Heliövaara 1

Vastepintamenetelmä. Heliövaara 1 Vastepintamenetelmä Kurssipalautteen antamisesta saa hyvityksenä yhden tenttipisteen. Palautelomakkeeseen tulee lähiaikoina linkki kurssin kotisivuille. Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä

Lisätiedot

Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012

Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012 Puheentutkimuksen tilastoanalyysin perusteet 8. luento Pertti Palo 20.1.2012 Käytännön asioita Viimeisen seminaarin siirto: 2.3. 10-12 -> 2.3. 14-16. Miten seminaarin luentokuulustelun voi korvata? Harjoitustöiden

Lisätiedot

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,

Lisätiedot

RISTIINTAULUKOINTI JA Χ 2 -TESTI

RISTIINTAULUKOINTI JA Χ 2 -TESTI RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN

Lisätiedot

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista?

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? 1 Hydrobiologian tutkijaseminaari 20.3.2000 Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? Jari Hänninen Turun yliopisto Saaristomeren

Lisätiedot

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Kemometriasta Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Mistä puhutaan? Määritelmiä Määritys, rinnakkaismääritys Mittaustuloksen luotettavuus Kalibrointi Mittausten

Lisätiedot

Frequencies. Frequency Table

Frequencies. Frequency Table GET FILE='C:\Documents and Settings\haukkala\My Documents\kvanti\kvanti_harjo'+ '_label.sav'. DATASET NAME DataSet WINDOW=FRONT. FREQUENCIES VARIABLES=koulv paino /ORDER= ANALYSIS. Frequencies [DataSet]

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen

Lisätiedot

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Regressiodiagnostiikka Cooken etäisyys, Funktionaalinen muoto, Diagnostinen grafiikka, Diagnostiset testit, Heteroskedastisuus,

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Aki Taanila VARIANSSIANALYYSI

Aki Taanila VARIANSSIANALYYSI Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen

Lisätiedot

Empiirinen projekti. Olli-Matti Laine Kauppatieteet

Empiirinen projekti. Olli-Matti Laine Kauppatieteet Empiirinen projekti Olli-Matti Laine Kauppatieteet 1 Contents 1. Johdanto... 3 2. Kuvaileva osa... 4 3. Analyysiosa... 17 4. Yhteenveto... 35 2 1. Johdanto Tutkin projektissa tilastollisin menetelmin kansantaloudellisia

Lisätiedot

Kertausluento. Vilkkumaa / Kuusinen 1

Kertausluento. Vilkkumaa / Kuusinen 1 Kertausluento Vilkkumaa / Kuusinen 1 Kokeellinen tutkimus Kokeellisessa tutkimuksessa on tavoitteena selvittää, miten erilaiset käsittelyt vaikuttavat tutkimuksen kohteisiin - Esim. miten lämpötila ja

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua Havaintoaineiston perusteella näyttää ilmeiseltä, että alkuperäisen laastin sidoslujuus on suurempi. Ero sattumasta johtuvaa? Palataan tuonnempana. Tension bond strength data for Portland Cement formulation

Lisätiedot

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,

Lisätiedot

Otoskoon arviointi. Tero Vahlberg

Otoskoon arviointi. Tero Vahlberg Otoskoon arviointi Tero Vahlberg Otoskoon arviointi Otoskoon arviointi (sample size calculation) ja tutkimuksen voima-analyysi (power analysis) ovat tilastollisen tutkimuksen suunnittelussa keskeisiä kysymyksiä

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Opetus talteen ja jakoon oppilaille Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Aurajoen lukio ISOverstaan jäsen syksystä 2010 lähtien ISOverstas on maksullinen verkko-oppimisen

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

Sisällysluettelo 6 VARIANSSIANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...

Sisällysluettelo 6 VARIANSSIANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...5 SISÄLLYSLUETTELO... 6 LYHYT SANASTO VASTA-ALKAJILLE... 7 1. MONIMUUTTUJAMENETELMÄT IHMISTIETEISSÄ... 9 1.1 MONIMUUTTUJA-AINEISTON ERITYISPIIRTEITÄ...

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

Vastepintamenetelmä. Vilkkumaa / Kuusinen 1

Vastepintamenetelmä. Vilkkumaa / Kuusinen 1 Vastepintamenetelmä Vilkkumaa / Kuusinen 1 Motivointi Varianssianalyysissa tutkitaan tekijöiden vaikutusta vasteeseen siten, että tekijöiden tasot on ennalta valittu. - Esim. tutkitaan kemiallisen prosessin

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

Estimointi. Otantajakauma

Estimointi. Otantajakauma Otantajakauma Otantajakauma kuvaa jonkin parametrin arvojen (esim. keskiarvon) jakauman kaikille tietyn kokoisille otoksille. jotka perusjoukosta voidaan muodostaa Histogrammissa otantajakauman parametrin

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

Teema 10: Regressio- ja varianssianalyysi

Teema 10: Regressio- ja varianssianalyysi Teema 1: Regressio- ja varianssianalyysi Regressioanalyysi lienee t-testin ohella maailman eniten käytetty tilastollinen menetelmä. Sitä sivuttiin jo alustavasti Teemassa 4. Varianssianalyysi liittyy useallakin

Lisätiedot

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat:

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat: Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Mallin valinta Painotettu PNS-menetelmä Alaspäin askellus, Askellus, Askeltava valikointi, Diagnostinen grafiikka, Diagnostiset

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot