ELEMENTTIMENETELMÄN PERUSTEET SESSIO 05: FEM-analyysista saatavat tulokset ja niiden käyttö.

Koko: px
Aloita esitys sivulta:

Download "ELEMENTTIMENETELMÄN PERUSTEET SESSIO 05: FEM-analyysista saatavat tulokset ja niiden käyttö."

Transkriptio

1 05/1 ELEMENTTIMENETELMÄN PERUSTEET SESSIO 05: FEM-analyysista saatavat tulokset ja niiden käyttö. YLEISTÄ Laskentamallin luonnin ja varsinaisen laskennan lisäksi FEM-analyysi sisältää myös tulosten tarkastelun ja arvioinnin. Koska FEM-ohjelma tuottaa hyvin suuren määrän numeerista tulostietoa, tarvitaan tulosten tarkasteluun jälkikäsittelyohjelma, joka muuntaa tulokset havainnolliseen graafiseen asuun. Eri ohjelmista saatavat graafiset esitykset ovat varsin vakiintuneita, koska niissä on joka tapauksessa esitettävä samat lujuusopillisesti kiinnostavat seikat. Seuraavassa on esimerkkejä tavallisten rakennetyyppien ratkaisemiseen käytetyistä elementtiverkoista ja samalla on esitelty tuloksia, joita tyypillinen FEM-ohjelma antaa. VIIVARAKENTEET Kuvassa 1 on esitetty tasokehän geometria, kuormitus ja tuenta. Sen eräs mahdollinen FEM-laskentaan sopiva elementtiverkko on kuvassa 2. Tasokehän elementtimenetelmäratkaisussa päästäisiin taivutusteorian mukaiseen tarkkaan tulokseen sijoittamalla solmut vain nurkkiin ja tukipisteisiin, mutta tässä tapauksessa on käytetty enemmän solmuja, jotta ohjelmasta saatavasta taipumakuvasta tulisi havainnollisempi. Tasokehän palkkielementit ovat viivaelementtejä ja palkkeja kuvaavat viivat kulkevat tavallisesti poikkileikkauksen pintakeskiön kohdalla tai ovat ainakin yhdensuuntaisia pintakeskiöviivojen kanssa. 1,0 m 6 kn 1,2 kn/m 1,5 m 2 knm 8 kn 4 kn 4,2 m 2,0 m 2,5 m 2,8 m 4,2 m 4,2 m 3,5 m Kuva 1. Tasokehä. Ristikko ja palkkirakenteilla tärkeimmät laskennasta saatavat tulokset ovat solmujen siirtymät ja elementtien rasituskuvat. Jännityksiä ei yleensä ohjelmasta saada joitakin standardipoikkileikkauksia lukuun ottamatta, vaan ne on laskettava rasituksista manuaalisesti. Kuvassa 3 on kehän solmusiirtymien avulla piirretty sille taipumakuva ja kuvassa 4 on kehän taivutusmomenttikuva. Kuvissa ei ole näkyvissä suureiden numeroarvoja niiden maksimiarvoja lukuun ottamatta, jotka annettu kuvaselitteissä yksiköissä N ja mm. Kuvassa 5

2 05/2 on vielä erikseen esitetty vasemmanpuoleisen tasaisen kuormituksen alaisen vaakapalkin taipumakuva ja sen taivutusmomenttikuva numeroarvoineen. Kuva 2. Tasokehän elementtiverkko, 68 elementtiä ja 67 solmua. SCALE 1/ EYE X-COORD =.0000 EYE Y-COORD =.0000 EYE Z-COORD = MAX. DEFLECTION = AT NODE NUMBER = 172 Kuva 3. Taipumakuva. SCALE 1/ EYE X-COORD =.0000 EYE Y-COORD =.0000 EYE Z-COORD = TYPE STRESS/FLUX Kuva 4. Taivutusmomenttikuva. DIAGRAM COMPONENT = 3 MAX GAUSS VALUE =.3768E+07 AT ELEMENT/GPT. = MIN GAUSS VALUE = E+07 AT ELEMENT/GPT. = DIAGRAM SCALE = 1/.1667

3 05/3 SCALE 1/ EY E X-COORD =.0000 EY E Y -COORD =.0000 EY E Z-COORD = MAX. DEFLECTION =.8527 AT NODE NUMBER = E E E E E E E+006 Kuva 5. Vaakapalkin taipuma- ja taivutusmomenttikuva. PINTARAKENTEET Kuvassa 6. on esitetty vaakasuunnassa aksiaalisesti kuormitettu tasapaksu levyrakenne, jossa on reikäkenttä. Pystysuuntaisessa symmetrialeikkauksessa oleva vaakasuuntainen normaalijännitys olisi 200 MPa, mikäli se olisi tasan jakaantunut. Reikäkenttä aiheuttaa kuitenkin lovivaikutuksen, jolloin reiän reunalle tulee tasan jakaantunutta jännitystä suurempi normaalijännitys. FEM-laskennalla voidaan tutkia lujuusopin levyteoriaan perustuen edellä mainittua lovivaikutusta ja rakenteen käyttäytymistä yleisemminkin. 10 mm 100 MPa 10 mm 10 mm 10 mm Kuva 6. Levyrakenne. 25 mm 30 mm

4 05/4 Kuvassa 7 on esitetty eräs mahdollinen tähän tarkoitukseen soveltuva elementtiverkko. Rakenteen kaksoissymmetriaa voisi tietysti hyödyntää mallinnuksessa, mutta sitä ei ole tehty, koska muut tutkitut kuormitustapaukset eivät olleet symmetrisiä. Kuva 7. Levyrakenteen elementtiverkko. Kuvan 7 elementtiverkossa on käytetty kvadraattisia tasojännitystilan nelisivuisia elementtejä ja siinä on 1312 elementtiä sekä 4274 solmua, joista 49 on tukisolmuja. Koska levyelementin solmuilla on kaksi vapausastetta, on tämän elementtiverkon tuntemattomien vapaiden solmusiirtymien lukumäärä 8450, joka on samalla ohjelman ratkaistavaksi tulevan yhtälöryhmän dimensio. Nelisivuisen levyelementin tarkkuuden kannalta edullisin muoto on neliö, mistä johtuen reikäkentän läheisyydessä on käytetty reiät kiertävää verkkoa, jolloin elementteihin ei synny kovin teräviä kulmia. Elementtien sivusuhde on pyritty pitämään riittävän lähellä ykköstä, suurimmillaan se on pienten jännitysgradienttien alueella levyn päissä, jossa sivusuhde on kaksi. Kuvissa 8-10 on esitetty joitakin tärkeimpiä tuloksia, joita elementtimenetelmäohjelma antaa levyrakenteista. Kuvassa 8 on rakenteen siirtymäkuva sekä vaakasuuntaisen normaalijännityksen ja von Mises vertailujännityksen (VVEH) tasa-arvokäyrästö. Kuvasta 8 nähdään, että kriittisin kohta on levyn keskikohdassa ylemmän reiän reunalla loven muotoluvun ollessa 429,6 / 200 = 2, 148. Kuvassa 9 on keskikohdan ylemmän reiän lähellä muutamassa elementissä vaikuttavia pääjännityksiä kuvaava vektorikaavio, jossa nuolen pituus ilmaisee pääjännityksen suuruuden, nuolen asento sen suunnan ja väri etumerkin. Kuvassa 10 on esitetty käyränä keskikohdan ylimmän levykannaksen vaakasuuntaisen normaalijännityksen vaihtelu yläreunasta mitatun etäisyyden funktiona. Käyrästä näkyy selvästi loven aiheuttama jännitysjakautuman huomattava poikkeaminen tasaisesta jakaumasta.

5 05/5 SCALE 1/ EYE X-COORD =.0000 EYE Y-COORD =.0000 EYE Z-COORD = MAX. DEFLECTION =.1454 AT NODE NUMBER = 4436 STRESS CONTOURS OF SX Max At Node 4220 Min At Node 5582 STRESS CONTOURS OF SE Max At Node 4380 Mi n At Node 3801 Kuva 8. Siirtymäkuva ja jännitysten tasa-arvokäyrästöjä.

6 05/6 SCALE 1/.1197 EYE X-COORD =.0000 EYE Y-COORD =.0000 EYE Z-COORD = TYPE STRESS/FLUX MAX VECTOR VALUE = AT ELEMENT/GPT. = MIN VECTOR VALUE = AT ELEMENT/GPT. = VECTOR SCALE = 1/.6667E-01 Kuva 9. Pääjännitysvektorit. Kuva 10. Jännitysvaihtelu ylimmässä levykannaksessa.

7 05/7 Tarkastellaan kolmantena esimerkkinä kuvassa 11 olevaa kuorirakenteen elementtiverkkoa. Sen tuenta ja kuormitus on esitetty kuvassa 12 rakenteen puolikkaan kuvissa solmuihin kohdistuvina nuolina. Tuentanuoli tarkoittaa vastaavan suuntaisen solmusiirtymän olevan estetty ja kuormitusnuoli esittää tavallista tai ekvivalenttista solmukuormitusta. Verkossa on käytetty kaksoiskaarevia ohuen kuoren elementtejä, jotka ovat kaikki nelisivuisia ja kahdeksansolmuisia pintaelementtejä. Elementtien lukumäärä on 896 ja solmujen 2921, joista tukisolmuja on 147. Elementin nurkkasolmuilla on pelkästään kolme translaatiovapausastetta, mutta sivusolmuilla on niiden lisäksi vielä kaksi ro- Kuva 11. Kuorirakenteen elementtiverkko. taatiovapausastetta. Elementtiverkon vapausasteiden lukumäärä on noin Pintarakenteiden FEM-analyysin tuloksena saadaan solmusiirtymät ja lisäksi voimasuureista esimerkiksi normaalivoima-, leikkausvoima-, vääntömomentti- ja taivutusmomenttitiheydet, joista ohjelma laskee jännityskomponentit kuoren keski- ja reunapinnoilla sekä näistä mm. pääjännitykset ja vertailujännityksen. Kuva 12. Tuenta ja kuormitus. Kuvassa 13 on annettu esimerkkinä graafisesta siirtymätulostuksesta koko rakenteen siirtymäkuva, jossa siirtymiä on havainnollisuuden vuoksi suuresti liioiteltu. Kuvaselitteessä on suurimmaksi siirtymäresultantiksi annettu 1,021 mm, mikä on hyvin pieni verrattuna

8 05/8 kuoren mittoihin. Kuvassa 14 esitetty malliksi graafisesta voimasuuretulostuksesta kuoren toisen reunapinnan von Mises vertailujännityksen (VVEH) tasa-arvokäyrästö, josta nähdään vallitsevat jännitystasot. Kyseinen reunapinta on laippaosissa kuvassa näkyvä yläpinta ja keskiosassa kohti katsojaa oleva sylinteripinnan ulkopuoli. SCALE 1/ EYE X-COORD = EYE Y-COORD = EYE Z-COORD = MAX. DEFLECTION = AT NODE NUMBER = 2186 TYPE TOP STRESS/FLUX Kuva 13. Siirtymäkuva. Kuorielementtiverkko on melko raskas käsitellä suuresta vapausastemäärästä johtuen, mutta toisaalta se usein ainoa vaihtoehto rakenteen realistiseen mallintamiseen. Kuorielementit ovat eräs käytetyimmistä elementtityypeistä, koska monissa rakenteissa esiintyy kaarevia ohutseinäisiä osia. Esimerkissä käytetyn kaksoiskaarevan kuorielementin lisäksi ohjelmissa on tasomaisia kuorielementtejä, joita esimerkin rakenteessa olisi voitu käyttää laippaosissa tekemättä geometrista mallinnusvirhettä. Tasomaiset kuorielementit kuluttavat selvästi vähemmän laskentaresursseja kuin kaarevat elementit, joten alustavissa laskennoissa kannattaa suosia niitä. Lopullinen laskenta voidaan sitten tarvittaessa tehdä tarkemmilla kaarevilla elementeillä, kun mallin tiedetään toimivan muilta osin. TOP STRESS CONTOURS OF SE Max At Node 806 Mi n.5454 At Node 3416 Kuva 14. Vertailujännityksen tasa-arvokäyrästö.

9 05/9 3D-RAKENTEET Mikäli tarkasteltavalla rakenteella tai sen osalla ei ole mitään eri ulottuvuuksiin liittyviä geometrisia erityispiirteitä, on elementtiverkossa käytettävä 3D-solidielementtejä näitä osia mallinnettaessa. Kuvassa 15 on esitetty esimerkkinä tämän tyyppisistä rakenteista elementtiverkko, jossa on pelkästään 3D-solidielementtejä. Laskennassa tutkittu symmetrinen tuenta- ja kuormitustilanne on nähtävissä kuvassa 16 olevasta rakenteen osakuvasta. Tässä elementtiverkossa käytetty elementtityyppi on kvadraattinen tiilikivielementti, joissa on 20 solmua ja kullakin solmulla on kolme translaatiovapausastetta. Elementtien lukumäärä on 4096 ja solmujen 21125, joista 1439 solmussa on tuettuja vapausasteita. Elementtiverkon vapausasteiden lukumäärä on noin 60000, joka on Kuva 15. Solidirakenteen elementtiverkko. melko suuri tutkittavan rakenteen verraten yksinkertaista geometriaa Kuva 16. Kuormitus ja tuenta. ajatellen. Suuri verkon vapausasteiden lukumäärä johtuu valitusta kvadraattisesta elementtityypistä, joka on varsinkin 3D-laskennassa raskaskäyttöinen. FEM-ohjelmistoissa on luonnollisesti käytettävissä myös vähemmän resursseja kuluttavia lineaarisia 3Dsolidielementtejä, joita laskennan alkuvaiheessa kannattaa suosia. On kuitenkin otettava huomioon, että lineaariset elementit antavat samalla verkon tiheydellä kvadraattisia elementtejä huomattavasti epätarkempia tuloksia ja niiden avulla kaarevien reunapintojen realistinen mallinnus vaatii melko tiheän elementtijaon.

10 05/10 Kuvissa on esitetty muutamia graafisia tulosteita, joita elementtimenetelmäohjelmisto tyypillisesti antaa 3D-solidirakenteesta. Solmusiirtymien avulla voidaan laatia kuvan 17 mukainen rakenteen siirtymäkuva, jossa kuormituksen aiheuttamat geometriset muutokset näkyvät suuresti liioiteltuina. Kuvaselitteestä ilmenee suurimman siirtymäresultantin arvoksi 0,9145 mm, mikä on kappaleen mittoihin verrattuna hyvin pieni arvo. Voimasuureina 3Dsolidirakenteen elementtimenetelmässä ovat yleisen kolmiulotteisen jännitystilan kuusi jännityskomponenttia, jotka aluksi ratkaistaan globaalikoordinaatistossa ja voidaan sitten tarvittaessa muuntaa esimerkiksi elementin lokaalikoordinaatistoon. Jännityskomponenteista saadaan edelleen laskettua muun muassa pääjännitykset, pääsuunnat ja eri hypoteesien mukaiset vertailujännitykset. Kuvassa 18 on esimerkkinä graafisesta jännitystulostuksesta kappaleen ulkopinnan von Mises (VVEH) vertailujännityksen tasa-arvokäyrästö. SCALE 1/ EYE X-COORD = EYE Y-COORD = EYE Z-COORD = RESULTS FILE ID = 0 MAX. DEFLECTION =.9145 AT NODE NUMBER = 6266 Kuva 17. Siirtymäkuva. 3D-solidirakenteilla voi ulkopinnan jännityskomponenttien lisäksi saada jännitystulosteita myös kappaleeseen tehdyistä leikkauksista kuvan 19 mukaisesti, joista nähdään havainnollisesti myös kappaleen sisäosassa vallitsevat jännitykset.

11 05/11 STR ESS CONTOURS OF SE Ma x At No de 6679 M in.7375e-03 At Node Kuva 18. Vertailujännityksen tasa-arvokäyrästö. STRESS CONTOURS OF SE Max At Slice Node 1272 Min At Slice Node 435 Kuva 19. Kappaleen leikkausten vertailujännityksen tasa-arvokäyrästöt.

1 JOHDANTO. 1.1 Yleistä

1 JOHDANTO. 1.1 Yleistä Elementtimenetelmän perusteet 1.1 1 JOHDANTO 1.1 Yleistä Lujuuslaskentatehtävässä on tavoitteena ratkaista annetuista kuormituksista aiheutuvat rakenteen siirtymätilakenttä, muodonmuutostilakenttä ja jännitystilakenttä,

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 01: Johdanto. Elementtiverkko. Solmusuureet.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 01: Johdanto. Elementtiverkko. Solmusuureet. 0/ ELEMENTTIMENETELMÄN PERUSTEET SESSIO 0: Johdanto. Elementtiverkko. Solmusuureet. JOHDANTO Lujuuslaskentatehtävässä on tavoitteena ratkaista annetuista kuormituksista aiheutuvat rakenteen siirtmätilakenttä,

Lisätiedot

8. Yhdistetyt rasitukset

8. Yhdistetyt rasitukset TAVOITTEET Analysoidaan ohutseinäisten painesäiliöiden jännitystilaa Tehdään yhteenveto edellisissä luennoissa olleille rasitustyypeille eli aksiaalikuormalle, väännölle, taivutukselle ja leikkausvoimalle.

Lisätiedot

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria,

Lisätiedot

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,

Lisätiedot

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari

LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari VÄÄNTÖRASITETUN RAKENNEOSAN EURONORMIIN PERUSTUVA KESTÄVYYSLASKENTAYHTÄLÖIDEN

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

Aksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu

Aksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu TAVOITTEET Statiikan kertausta Kappaleen sisäiset rasitukset Normaali- ja leikkausjännitys Aksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu 1

Lisätiedot

AVARUUSRISTIKOIDEN PALOTEKNINEN MITOITUS

AVARUUSRISTIKOIDEN PALOTEKNINEN MITOITUS AVARUUSRISTIKOIDEN PALOTEKNINEN MITOITUS Dipl.ins. Otso Cronvall Johdanto Sadoista sauvoista yleensä koostuvien ja useaan kertaan staattisesti määräämättömien avaruusristikoiden palotekninen mitoitus on

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34 SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillisen suunnitteluprosessin kulku

Lisätiedot

Kuva 1. Mallinnettavan kuormaajan ohjaamo.

Kuva 1. Mallinnettavan kuormaajan ohjaamo. KUORMAAJAN OHJAAMON ÄÄNIKENTÄN MALLINNUS KYTKETYLLÄ ME- NETELMÄLLÄ Ari Saarinen, Seppo Uosukainen VTT, Äänenhallintajärjestelmät PL 1000, 0044 VTT Ari.Saarinen@vtt.fi, Seppo.Uosukainen@vtt.fi 1 JOHDANTO

Lisätiedot

LUSAS tiedosto-opas. Matti Lähteenmäki 2010 http://home.tamk.fi/~mlahteen/

LUSAS tiedosto-opas. Matti Lähteenmäki 2010 http://home.tamk.fi/~mlahteen/ LUSAS tiedosto-opas 2010 http://home.tamk.fi/~mlahteen/ LUSAS tiedosto-opas 2 1. Johdanto LUSASia käytettäessä esiintyy useita erityyppisiä tiedostoja, joista osan käyttäjä luo ja nimeää itse ja osa syntyy

Lisätiedot

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-

Lisätiedot

TERADOWEL- ja ULTRADOWELkuormansiirtojärjestelmä

TERADOWEL- ja ULTRADOWELkuormansiirtojärjestelmä TERADOWEL- ja ULTRADOWELkuormansiirtojärjestelmä Vaarnalevyt lattioiden liikuntasaumoihin Versio: FI 6/2014 Tekninen käyttöohje TERADOWEL- ja ULTRADOWELkuormansiirtojärjestelmät Vaarnalevyt lattioiden

Lisätiedot

15. Suorakulmaisen kolmion geometria

15. Suorakulmaisen kolmion geometria 15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Sillan on tarkoitus kestää 30 vuotta. Silta on mitoitettu kestämään 400 kg/m² kuorma.

Sillan on tarkoitus kestää 30 vuotta. Silta on mitoitettu kestämään 400 kg/m² kuorma. 1. Lähtökohdat 1.1. Siltapaikka Suunnittelukohde sijaitsee TKK:n R osaston takana olevassa puistossa. Sillalla on tarkoitus mahdollistaa kulku IK:n Huvimajalta Otaniemen Ossinlammessa olevaan pieneen saareen.

Lisätiedot

MYNTINSYRJÄN JALKAPALLOHALLI

MYNTINSYRJÄN JALKAPALLOHALLI Sivu 1 / 9 MYNTINSYRJÄN JALKAPALLOHALLI Tämä selvitys on tilattu rakenteellisen turvallisuuden arvioimiseksi Myntinsyrjän jalkapallohallista. Hallin rakenne vastaa ko. valmistajan tekemiä halleja 90 ja

Lisätiedot

1 JOHDANTO. 1.1 Yleistä värähtelyistä. 1.2 Värähtelyyn liittyviä peruskäsitteitä

1 JOHDANTO. 1.1 Yleistä värähtelyistä. 1.2 Värähtelyyn liittyviä peruskäsitteitä Värähtelymekaniikka 1.1 1 JOHDANTO 1.1 Yleistä värähtelyistä Värähtely on yleinen luonnonilmiö, joka esiintyy myös monissa inhimillisissä toiminnoissa. Esimerkiksi kuuloaistimus perustuu tärykalvojen värähtelyyn

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

Yleinen tasorakenne, 2009 Käyttöohje

Yleinen tasorakenne, 2009 Käyttöohje Yleinen tasorakenne, 2009 Käyttöohje Vaasa, 23.01.2009 SISÄLTÖ 1. YLEISKATSAUS 1 1.1 Yleistä 1 1.2 Asentaminen ja käynnistäminen 1 1.3 Laskentamenetelmä 2 2. TYÖKALURIVI JA PÄÄVALIKKO 2 2.1 Yleistä 2 2.2

Lisätiedot

SPALKKI, 2004 Käyttöohje

SPALKKI, 2004 Käyttöohje SPALKKI, 2004 Käyttöohje Ohjelman versio 2004 SISÄLTÖ 1. YLEISKATSAUS 1 2. ASENTAMINEN JA KÄYNNISTÄMINEN 2 3. PÄÄVALIKON TOIMINNOT 2 4. TIEDOSTOT 7 4.1 Rakennetiedostot 7 4.2 Profiilitaulukot 8 5. PALKKIRAKENNE

Lisätiedot

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,

Lisätiedot

KOTELON ÄÄNENERISTYKSEN VIBROAKUSTINEN MALLINNUS ELEMENTTIMENETELMÄLLÄ

KOTELON ÄÄNENERISTYKSEN VIBROAKUSTINEN MALLINNUS ELEMENTTIMENETELMÄLLÄ KOTELON ÄÄNENERISTYKSEN VIBROAKUSTINEN MALLINNUS ELEMENTTIMENETELMÄLLÄ Janne Haverinen Jukka Linjama Jukka Tanttari TKK Akustiikan laboratorio VTT VALMISTUSTEKNIIKKA VTT AUTOMAATIO PL 3000, 02015 TKK PL

Lisätiedot

Tartuntakierteiden veto- ja leikkauskapasiteettien

Tartuntakierteiden veto- ja leikkauskapasiteettien TUTKIMUSSELOSTUS Nro RTE3261/4 8..4 Tartuntakierteiden veto- ja leikkauskapasiteettien mittausarvojen määritys Tilaaja: Salon Tukituote Oy VTT RAKENNUS- JA YHDYSKUNTATEKNIIKKA TUTKIMUSSELOSTUS NRO RTE3261/4

Lisätiedot

Teräsrakenteiden maanjäristysmitoitus

Teräsrakenteiden maanjäristysmitoitus Teräsrakenteiden maanjäristysmitoitus Teräsrakenteiden T&K-päivät Helsinki 28. 29.5.2013 Jussi Jalkanen, Jyri Tuori ja Erkki Hömmö Sisältö 1. Maanjäristyksistä 2. Seismisten kuormien suuruus ja kiihtyvyysspektri

Lisätiedot

RUDUS OY ELEMENTO - PORRASELEMENTIT

RUDUS OY ELEMENTO - PORRASELEMENTIT RUDUS OY Sivu 1/15 RUDUS OY ELEMENTO - PORRASELEMENTIT SUUNNITTELUN LÄHTÖTIEDOT 1. Suunnittelun perusteet SFS-EN 1990 Eurocode: Rakenteiden suunnitteluperusteet, 2010 NA SFS-EN 1990-YM, Suomen kansallinen

Lisätiedot

Reikien vaikutus palkin jäykkyyteen

Reikien vaikutus palkin jäykkyyteen Reikien vaikutus palkin jäykkyyteen Kon-41.4005 Kokeelliset menetelmät koesuunnitelma Sami Lahtinen, Petteri Peltonen, Perttu Hettula, Olli-Ville Laukkanen & Teemu Seppänen 2/16/2014 Sisällysluettelo 1

Lisätiedot

Stabiliteetti ja jäykistäminen

Stabiliteetti ja jäykistäminen Stabiliteetti ja jäykistäminen Lommahdusjännitykset ja -kertoimet Lommahdus normaalijännitysten vuoksi: Leikkauslommahdus: Eulerin jännitys Lommahduskerroin normaalijännitykselle, pitkä jäykistämätön levy:

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

Tampereen Tornihotelli CASE STUDY. Juha Valjus Finnmap Consulting Oy 17.11.2011

Tampereen Tornihotelli CASE STUDY. Juha Valjus Finnmap Consulting Oy 17.11.2011 Tampereen Tornihotelli CASE STUDY Juha Valjus Finnmap Consulting Oy 17.11.2011 TAMPEREEN TORNIHOTELLI 2011 2 TAMPEREEN TORNIHOTELLI 2011 Veturitalli Ravintolat ja kokoustilat Torniosa Huoneet ja Lounge

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

SILTANOSTURIKUORMIEN JAKAANTUMISEN TARKASTE- LU MASTOPILARIHALLISSA 3D-MALLIN AVULLA

SILTANOSTURIKUORMIEN JAKAANTUMISEN TARKASTE- LU MASTOPILARIHALLISSA 3D-MALLIN AVULLA OPINNÄYTETYÖ - AMMATTIKORKEAKOULUTUTKINTO TEKNIIKAN JA LIIKENTEEN ALA SILTANOSTURIKUORMIEN JAKAANTUMISEN TARKASTE- LU MASTOPILARIHALLISSA 3D-MALLIN AVULLA TEK I J Ä : Jukka Laitinen SAVONIA-AMMATTIKORKEAKOULU

Lisätiedot

NOTCHIKOLOLIITOSTEN FE-ANALYYSIT FE-ANALYSIS OF NOTCH JOINTS

NOTCHIKOLOLIITOSTEN FE-ANALYYSIT FE-ANALYSIS OF NOTCH JOINTS LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari NOTCHIKOLOLIITOSTEN FE-ANALYYSIT FE-ANALYSIS OF NOTCH JOINTS Lappeenrannassa

Lisätiedot

OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN. Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43

OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN. Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43 OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN Esa Makkonen Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43 Tiivistelmii: Artikkelissa kehitetaan laskumenetelma, jonka avulla

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa

Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa Rakenteiden Mekaniikka Vol. 42, Nro 2, 2009, s. 75 82 Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa Reijo Kouhia Tiivistelmä. Momenttimenetelmä on käyttökelpoinen ratkaisutapa

Lisätiedot

KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN

KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN Antti Kelloniemi 1, Vesa Välimäki 2 1 Tietoliikenneohjelmistojen ja multimedian laboratorio, PL 5, 15 TKK, antti.kelloniemi@tkk.fi

Lisätiedot

WQ-palkkijärjestelmä

WQ-palkkijärjestelmä WQ-palkkijärjestelmä Sisällys 1. Toimintatapa 2 2. Valmistus 2 2.1. Materiaali 2 2.2. Pintakäsittely 2 2.3. Laadunvalvonta 3 3. Palkin käyttö rakenteissa 3 4. Suunnittelu 3 4.1. Palkin rakenne 3 4.2. Palkin

Lisätiedot

Kuormitukset: Puuseinärungot ja järjestelmät:

Kuormitukset: Puuseinärungot ja järjestelmät: PIENTALON PUURUNKO JA JÄYKISTYS https://www.virtuaaliamk.fi/bin/get/eid/51ipycjcf/runko- _ja_vesikattokaavio-oppimisaihio.pdf Ks Esim opintojaksot: Rakennetekniikka, Puurakenteet Luentoaineisto: - Materiaalia

Lisätiedot

Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)

Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen

Lisätiedot

TERÄSPILAREIDEN KOTELOSUOJAUKSEN MALLINNUS FE-MENETELMÄLLÄ

TERÄSPILAREIDEN KOTELOSUOJAUKSEN MALLINNUS FE-MENETELMÄLLÄ TERÄSPILAREIDEN KOTELOSUOJAUKSEN MALLINNUS FE-MENETELMÄLLÄ Mari Niemelä os. Lignell VTT Rakennus- ja yhdyskuntatekniikka Kivimiehentie 4, PL 183, 244 VTT Tiivistelmä Esitelmässä kuvataan palolle altistettujen

Lisätiedot

Finnwood 2.3 SR1 (2.4.017) Copyright 2012 Metsäliitto Osuuskunta, Metsä Wood? 19.11.2015

Finnwood 2.3 SR1 (2.4.017) Copyright 2012 Metsäliitto Osuuskunta, Metsä Wood? 19.11.2015 Laskelmat on tehty alla olevilla lähtötiedoilla vain kyseiselle rakenneosalle. Laskelmissa esitetty rakenneosan pituus ei ole tilausmitta. Tilausmitassa on otettava huomioon esim. tuennan vaatima lisäpituus.

Lisätiedot

KANTAVUUSTAULUKOT (EN-1993-1-3 mukaan) Kantavat poimulevyt W-70/900 W-115/750 W-155/840

KANTAVUUSTAULUKOT (EN-1993-1-3 mukaan) Kantavat poimulevyt W-70/900 W-115/750 W-155/840 KANTAVUUSTAUUKOT (EN-1993-1-3 mukaan) Kantavat poimulevyt W-70/900 W-115/750 W-155/840 W-1 / Kantavilla poimulevyillä VTT:n laadunvalvontasopimus Poimulevyjä käytetään vesikattona tai kantavana rakenteena

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

TURVEPERÄVAUNUN VÄSYMISKESTÄVYYDEN PARANTAMINEN IMPROVING THE FATIGUE STRENGTH OF A PEAT TRAILER

TURVEPERÄVAUNUN VÄSYMISKESTÄVYYDEN PARANTAMINEN IMPROVING THE FATIGUE STRENGTH OF A PEAT TRAILER LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari TURVEPERÄVAUNUN VÄSYMISKESTÄVYYDEN PARANTAMINEN IMPROVING THE FATIGUE STRENGTH

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

BEC 2012. Ohje tietomallipohjaisille elementtipiirustuksille

BEC 2012. Ohje tietomallipohjaisille elementtipiirustuksille BEC 2012 Ohje tietomallipohjaisille elementtipiirustuksille Betoniteollisuus ry Kesäkuu 2012 BEC2012 2 (6) 1 Yleistä BEC 2012 hankkeessa on tehty tietomallipohjaiset mallipiirustukset. Mallipiirustukset

Lisätiedot

Ilma- ja savukanavien lujuuslaskentatyökalun kehittäminen Development of strength analysis tool to automatic design program of air and smoke gas ducts

Ilma- ja savukanavien lujuuslaskentatyökalun kehittäminen Development of strength analysis tool to automatic design program of air and smoke gas ducts Teknillinen tiedekunta Konetekniikan osasto BK10A0400 Kandidaatintyö Ilma- ja savukanavien lujuuslaskentatyökalun kehittäminen Development of strength analysis tool to automatic design program of air and

Lisätiedot

Kandidaatintyö Teräsrungon mallinnus Modelling of a steel frame

Kandidaatintyö Teräsrungon mallinnus Modelling of a steel frame Lappeenrannan teknillinen yliopisto Teknillinen tiedekunta/konetekniikan osasto Konstruktiotekniikan laitos/rakenne ja lujuustekniikka Kandidaatintyö Teräsrungon mallinnus Modelling of a steel frame Työn

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

Ruuvien mallintaminen 3D:ssä

Ruuvien mallintaminen 3D:ssä Ruuvien mallintaminen 3D:ssä METALLIRAKENTAMISEN TUTKIMUSKESKUS/TTY TUTKIMUSRYHMÄ: Hilkka Ronni, Keijo Fränti ja Henri Perttola, Ryhmän vetäjänä prof. Markku Heinisuo Metallirakentamisen tutkimuskeskus

Lisätiedot

HalliPES 1.0 OSA 2: PÄÄKANNATTIMET

HalliPES 1.0 OSA 2: PÄÄKANNATTIMET 1.0 JOHDANTO Tässä osassa esitetään hallirakennusten pääkannattimia. Pääkannatin asennetaan tavallisesti mastopilarien varaan. isäksi käsitellään kolminivelkehiä, koska ne ovat myös eräänlaisia pääkannattimia,

Lisätiedot

Tuulen nopeuden mittaaminen

Tuulen nopeuden mittaaminen KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

Sähkökentät ja niiden laskeminen I

Sähkökentät ja niiden laskeminen I ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Lisätiedot

Taiter Oy. Taiter-pistokkaan ja Taiter-triangeliansaan käyttöohje

Taiter Oy. Taiter-pistokkaan ja Taiter-triangeliansaan käyttöohje Taiter-pistoansaan ja Taiter-tringaliansaan käyttöohje 17.3.2011 1 Taiter Oy Taiter-pistokkaan ja Taiter-triangeliansaan käyttöohje 17.3.2011 Liite 1 Betoniyhdistyksen käyttöseloste BY 5 B-EC2: nro 22

Lisätiedot

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö. MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,

Lisätiedot

1.3 Pilareiden epäkeskisyyksien ja alkukiertymien huomioon ottaminen

1.3 Pilareiden epäkeskisyyksien ja alkukiertymien huomioon ottaminen 1. MASTOPILARIN MITOITUSMENETELMÄ 1.1 Käyttökohteet Mitoitusmenetelmä soveltuu ensisijaisesti yksilaivaisen, yksikerroksisen mastojäykistetyn teräsbetonikehän tarkkaan analysointiin. Menetelmän soveltamisessa

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Julkisivukorjaus voi vaikuttaa myös rakennusakustiikkaan. TkK Jaakko Koskinen

Julkisivukorjaus voi vaikuttaa myös rakennusakustiikkaan. TkK Jaakko Koskinen Julkisivukorjaus voi vaikuttaa myös rakennusakustiikkaan TkK Jaakko Koskinen Taustalla Tampereen teknillisessä yliopistossa vuosina 2010-2011 tehty diplomityö tutkimuksen tavoitteena oli selvittää raskaan

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

KIMMO KORPELA KANSIMEKANISMIN TUOTEKEHITYS

KIMMO KORPELA KANSIMEKANISMIN TUOTEKEHITYS KIMMO KORPELA KANSIMEKANISMIN TUOTEKEHITYS Diplomityö Tarkastajat: professori Arto Lehtovaara ja yliopistonlehtori Sami Pajunen Tarkastajat ja aihe hyväksytty automaatio-, kone- ja materiaalitekniikan

Lisätiedot

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

Palkin taivutus. 1 Johdanto. missä S on. määritetään taivuttamalla. man avulla.

Palkin taivutus. 1 Johdanto. missä S on. määritetään taivuttamalla. man avulla. PALKIN TAIVUTUS 1 Johdanto Jos homogeenista tasapaksua palkkia venytetäänn palkin suuntaisella voimalla F, on jännitys σ mielivaltaisellaa etäisyydellää tukipisteestä, 1 missä S on palkin poikkileikkauksen

Lisätiedot

RKL-, R2KL- ja R3KLkiinnityslevyt

RKL-, R2KL- ja R3KLkiinnityslevyt RKL-, R2KL- ja R3KLkiinnityslevyt Eurokoodien mukainen suunnittelu RKL-, R2KL- ja R3KLkiinnityslevyt 1 TOIMINTATAPA... 2 2 MITAT JA MATERIAALIT... 3 2.1 RKL- ja R2KL-kiinnityslevyjen mitat... 3 2.2 R3KL-kiinnityslevyjen

Lisätiedot

SIPOREX-HARKKOSEINÄÄN TUKEUTUVIEN TERÄSPALKKIEN SUUNNITTELUOHJE 21.10.2006

SIPOREX-HARKKOSEINÄÄN TUKEUTUVIEN TERÄSPALKKIEN SUUNNITTELUOHJE 21.10.2006 SIPOREX-HARKKOSEINÄÄN TUKEUTUVIEN TERÄSPALKKIEN SUUNNITTELUOHJE 21.10.2006 Tämä päivitetty ohje perustuu aiempiin versioihin: 18.3.1988 AKN 13.5.1999 AKN/ks SISÄLLYS: 1. Yleistä... 2 2. Mitoitusperusteet...

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Festivo 6K ja 8K. Asennusohjeet Huvimajoille. Tarvittavat työvälineet asennuksessa. Perustus. Pohja

Festivo 6K ja 8K. Asennusohjeet Huvimajoille. Tarvittavat työvälineet asennuksessa. Perustus. Pohja Asennusohjeet Huvimajoille Festivo 6K ja 8K Tarvittavat työvälineet asennuksessa. Vatupassi, vasara, mattopuukko, mittanauha, ruuviväännin, (esim. akkuporakone), ristiruuvipäät numerot 1,2 ja 3, poranterä

Lisätiedot

Teräsköysiraksit WWW.ERLATEK.FI

Teräsköysiraksit WWW.ERLATEK.FI Teräsköysiraksit 128 WWW.ERLATEK.FI Teräsköysiraksit ja -päätteet Tyträyhtiömme VM-Vaijeri Oy valmistaa teräsköysirakseja SFS-EN13414-1 mukaisesti, käyttäen teräsköysiin suunniteltua standardia SFS-EN13411-3

Lisätiedot

Vastaanottaja Helsingin kaupunki. Asiakirjatyyppi Selvitys. Päivämäärä 30.10.2014 VUOSAAREN SILTA KANTAVUUSSELVITYS

Vastaanottaja Helsingin kaupunki. Asiakirjatyyppi Selvitys. Päivämäärä 30.10.2014 VUOSAAREN SILTA KANTAVUUSSELVITYS Vastaanottaja Helsingin kaupunki Asiakirjatyyppi Selvitys Päivämäärä 30.10.2014 VUOSAAREN SILTA KANTAVUUSSELVITYS VUOSAAREN SILTA KANTAVUUSSELVITYS Päivämäärä 30/10/2014 Laatija Tarkastaja Kuvaus Heini

Lisätiedot

KANDIDAATINTYÖ: Puun leikkauslujuuteen vaikuttavat tekijät sekä niiden soveltaminen RP 80 terän lujuustekniseen analysointiin.

KANDIDAATINTYÖ: Puun leikkauslujuuteen vaikuttavat tekijät sekä niiden soveltaminen RP 80 terän lujuustekniseen analysointiin. Lappeenrannan Teknillinen Yliopisto Teknillinen tiedekunta LUT- Metalli BK10A0400 Kandidaatintyö KANDIDAATINTYÖ: Puun leikkauslujuuteen vaikuttavat tekijät sekä niiden soveltaminen RP 80 terän lujuustekniseen

Lisätiedot

RIL263 KAIVANTO-OHJE TUETUN KAIVANNON MITOITUS PETRI TYYNELÄ/RAMBOLL FINLAND OY

RIL263 KAIVANTO-OHJE TUETUN KAIVANNON MITOITUS PETRI TYYNELÄ/RAMBOLL FINLAND OY RIL263 KAIVANTO-OHJE TUETUN KAIVANNON MITOITUS PETRI TYYNELÄ/RAMBOLL FINLAND OY YLEISTÄ Kaivanto mitoitetaan siten, että maapohja ja tukirakenne kestävät niille kaikissa eri työvaiheissa tulevat kuormitukset

Lisätiedot

Tarkastellaan seuraavaksi esimerkkien avulla yhtälöryhmän ratkaisemista käyttäen Gaussin eliminointimenetelmää.

Tarkastellaan seuraavaksi esimerkkien avulla yhtälöryhmän ratkaisemista käyttäen Gaussin eliminointimenetelmää. Yhtälörhmä Lineaarisen htälörhmän alkeisoperaatiot ovat ) kahden htälön järjestksen vaihto ) htälön kertominen puolittain nollasta eroavalla luvulla ja ) luvulla puolittain kerrotun htälön lisääminen johonkin

Lisätiedot

Maanpinnan kallistumien Satakunnassa

Maanpinnan kallistumien Satakunnassa Ennen maan pinnan asettumista lepotilaansa, eri paikkakunnat kohoavat erilaisilla nopeuksilla. Maan kohoaminen ilmeisesti sitä nopeampaa, mitä syvemmällä maan kamara ollut. Pohjanlahden nopea nousu verrattuna

Lisätiedot

4. Kylväjä-työkalu Kylväjällä monistetaan enintään viittä erilaista objektia annettuun ruudukkoon säädetyllä hajonnalla.

4. Kylväjä-työkalu Kylväjällä monistetaan enintään viittä erilaista objektia annettuun ruudukkoon säädetyllä hajonnalla. 1. Yleistä ArchiUtils on kokoelma ArchiCADin rutiinitöitä helpottavia apulaisia. 2. Asennus Win Käynnistä asennusohjelma ja valitse ArchiCAD-versiot, joihin laajennus asennetaan. 3. Asennus Mac Sulje ArchiCAD

Lisätiedot

Vakiopaaluperustusten laskenta. DI Antti Laitakari

Vakiopaaluperustusten laskenta. DI Antti Laitakari Vakiopaaluperustusten laskenta DI Antti Laitakari Yleistä Uusi tekeillä oleva paaluanturaohje päivittää vuodelta 1988 peräisin olevan BY:n vanhan ohjeen by 30-2 (Betonirakenteiden yksityiskohtien ja raudoituksen

Lisätiedot

LATTIA- JA KATTOPALKIT

LATTIA- JA KATTOPALKIT LATTIA- JA KATTOPALKIT LATTIA- JA KATTOPALKIT Kerto -palkit soveltuvat kantaviksi palkeiksi niin puurunkoisiin kuin kiviainesrunkoisiin rakennuksiin. Kerto-palkkeja käytetään mm. alapohja-, välipohja-,

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

ASENNUSOHJE HT-SIILOT 7 m 3 JA 8 M 3

ASENNUSOHJE HT-SIILOT 7 m 3 JA 8 M 3 ASENNUSOHJE HT-SIILOT 7 m 3 JA 8 M 3 Siilon kokoonpano aloitetaan asettamalla siilon ylimmän vaippaosan levyt kehäksi lattialle (Kuva 1) Kuva 1, Vaippaosan levyt Yleensä siihen kuuluu kolme perussivua

Lisätiedot

2016/06/24 13:47 1/11 Yleiskuvaus

2016/06/24 13:47 1/11 Yleiskuvaus 2016/06/24 13:47 1/11 Yleiskuvaus Yleiskuvaus Tällä toiminnolla määritetään väylän päällysrakenteet. Tätä toimintoa voidaan käyttää myös rehabilitaatiossa rehabilitaatio. Käyttäjä voi myös helposti määrittää

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Rak 43-3136 BETONIRAKENTEIDEN HARJOITUSTYÖ II syksy 2015 3 op.

Rak 43-3136 BETONIRAKENTEIDEN HARJOITUSTYÖ II syksy 2015 3 op. Rak 43-3136 Betonirakenteiden harjoitustyö II syksy 2014 1 Aalto Yliopisto/ Insinööritieteiden korkeakoulu/rakennustekniikan laitos Rak 43-3136 BETONIRAKENTEIDEN HARJOITUSTYÖ II syksy 2015 3 op. JÄNNITETTY

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot

Mitoitusesimerkkejä Eurocode 2:n mukaisesti

Mitoitusesimerkkejä Eurocode 2:n mukaisesti Maanvaraisen lattian mitoitus by45/bly7 2014 Mitoitusesimerkkejä Eurocode 2:n mukaisesti BETONI LATTIA 2014 by 45 BETONILATTIAT 2002, korvaa julkaisut by 8 (1975), by 12 (1981), by 31 (1989), by 45 (1997

Lisätiedot

SEMTUN JVA+ MUURAUS- KANNAKKEET

SEMTUN JVA+ MUURAUS- KANNAKKEET SEMTUN JVA+ MUURAUS- KANNAKKEET KÄYTTÖ- JA SUUNNITTELUOHJE 19.5.2016 - 1 - SISÄLLYSLUETTELO 1 YLEISTÄ... - 2-1.1 Yleiskuvaus... - 2-1.2 Toimintatapa... - 3-1 MITAT JA MATERIAALIT... - 4-2.1 Kannaketyypit...

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:

Lisätiedot

Rautatiesiltojen kuormat

Rautatiesiltojen kuormat Siltaeurokoodien koulutus Betonirakenteet ja geosuunnittelu Rautatiesiltojen kuormat Ilkka Sinisalo, Oy VR-Rata Ab 2.12.2009, Ilkka Sinisalo, Siltaeurokoodien koulutus, sivu 1 Raideliikennekuormat Pystysuorat

Lisätiedot

Teräsputkipaalujen kalliokärkien suunnittelu, lisäohjeita FEMlaskentaa

Teräsputkipaalujen kalliokärkien suunnittelu, lisäohjeita FEMlaskentaa 1 (1) Teräsputkipaalujen kalliokärkien suunnittelijoilla Teräsputkipaalujen kalliokärkien suunnittelu, lisäohjeita FEMlaskentaa varten. Teräsputkipaalujen kalliokärkien suunnittelu on tehtävä Liikenneviraston

Lisätiedot

ESIMERKKI 2: Kehän mastopilari

ESIMERKKI 2: Kehän mastopilari ESIMERKKI : Kehän mastopilari Perustietoja: - Hallin 1 pääpilarit MP101 ovat liimapuurakenteisia mastopilareita. - Mastopilarit ovat tuettuja heikomman suunnan nurjahusta vastaan ulkoseinäelementeillä.

Lisätiedot

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS 1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot