Erkki Laitinen, Oulun yliopisto, matemaattisten tieteiden laitos. Mallien tyyppejä

Koko: px
Aloita esitys sivulta:

Download "Erkki Laitinen, Oulun yliopisto, matemaattisten tieteiden laitos. Mallien tyyppejä"

Transkriptio

1 Erkki Laitinen, Oulun yliopisto, matemaattisten tieteiden laitos Mallien tyyppejä

2 Mallin suunnittelusta Reaalimaailman systeemi Matemaattinen systeemi Tarkkailu Malli, laskenta, päätelmät populaation kehittyminen riistanhoito: metsästys, kalastus heikosti kytkettyjä systeemejä tuloksissa satunnaisuutta eri skenaariot urheilu virtauslaskenta lämmönsiirto kemalliset reaktiot fysikaaliset riippuvuudet tunnetaan mahdollista tehdä tarkkoja malleja

3 Mallintamisen tärkeä osa on päättää, mitkä asiat mallissa ovat tärkeitä ja mitkä eivät. Fysikaaliset systeemit: viskositeetti, tiheys, kokoon puristettavuus,... Ekologiset systeemit: saasteet, liikenne, metsästys... lämmönjohtavuus paineet lisääntyminen kuolemat Systeemi Mallintajan näkemys systeemistä vaikuttaa malliin Esim: usean palvelijan jonot: kuinka ihmiset käyttäytyvät jonossa K1 K2

4 Ei ole olemassa oikeata mallia tai väärää mallia. On vain hyviä malleja ja huonoja malleja. Testi Tarvitseeko mallia parantaa? Reaali probleema Ilmiön ennuste tai selite oletukset yksinkertaistukset näkemykset Tulosten tulkinta Matemaattinen malli Mallin ratkaisu Analyyttiset ja numeeriset menetelmät Mallintaminen on iteratiivinen prosessi.

5 Mallin rakentamisen askeleet: hahmota ongelma tee oletukset määrittele ja luokittele muuttujat määrittele muuttujien ja osamallien väliset yhteydet ratkaise malli totea mallin oikeellisuus testaa reaali datalla antaako malli järkevän tuloksen toteuta malli (TK:lla) ylläpidä

6 Ei, yksinkertaista Ei, yksinkertaista Tutki systeemiä Tunnnista käyttäytyminen, tee oletukset Osaatko muodostaa mallin? Kyllä Osaatko ratkaista mallin? Kyllä Tarkista mallin oikeellisuus poistu Sovella tuloksia systeemiin Tukitse tulokset Kyllä Ovatko tulokset hyviä? Ei, tarkenna

7 Ongelmat ovat huonosti asetettu, määrittele ne paremmin: Mitkä ovat probleeman kannalta tärkeitä muuttujia? Mitkä ovat riippuvia ja mitkä riippumattomia muuttujia? 1. Populaation kasvaminen. 2. Miten tehtailijan tulisi päättää tehtaan vuosituotannosta ja tuotteen hinnasta.

8 Esim. Auton polttonesteen kulutus. Skenaario: Tiellä on 55 mph rajoitus. Jokainen 5mph lisäys nopeuteen yli 50 mph nopeuksissa lisää polttoaineen kulutusta siten, että gallonalla (gal) päästään 1 maili (mil) vähemmän. ( Boost Fuel Economy ). Ongelman määrittely: Mikä on ajoneuvon nopeuden ja polttonesteen kulutuksen välinen suhde. Oletukset: Autoon vaikuttaa kahdenlaiset voimat 1) eteenpäin vievät (+) ja 2) jarruttavat ( ). Eteenpäin vievät voimat riippuvat: polttonesteestä, koneen tehosuhteesta, vaihteiston välityksestä, ilman lämpötilasta, ajoneuvon nopeudesta,.. Jarruttavat voimat riippuvat: Kitkavoima, mikä riippuu auton painosta, renkaista, tien pinnasta. Ilman vastus, mikä riippuu nopeudesta, auton muodosta, tuulesta, ilman tiheydestä... Muut vaikuttavat tekijät: kuljettajan tottumukset, maasto,... Kulutus=f ( vetovoima, hidastavat voimat, tottumukset, jne.)

9 SvOutPlaceObject Yksinkertaistus: Hae tietylle kuljettajalle ja hänen ajoneuvolleen, tietyissä olosuhteissa (tieolot, ilmanala), maantienopeudella (lähellä optimaalista polttonesteen kulutusta) selitys, kuinka kulutus vaihtelee nopeuden kasvaessa. Tietty kuljettaja > kiinitetään auton tyyppi, tavat Tietty nopeusluokka > vakio moottorin tehosuhde, vaihteiston välitys Menetetyt mailit / gallona 3 ~Vakionopeus (kiihtyvyys nolla) => voimien summa on nolla (Newtonin II laki) 2 1 SvOutPlaceObject K Gallona polttoainetta sisältää energian K (vakio) C r polttoaine / aikayksikkö Nopeus 50 mph Cr K auton teho Teho = voima x nopeus, ts. F p Cr K v Cr v (K vakio)

10 Hidastavat voimat: oletetaan että kitkavoimat ovat peniä verrattuna ilmanvastuksen aiheuttamaan voimaan. Järkevä malli jarrruttaville voimille on: F Sv v r 2 2, missä S (vakio) on liikettä vastaan kohtisuora pinta ala. Cr v tai C v v = 2 3 r Yo. Yhtälö antaa laadullista tietoa kuinka polttonesteen kulutus (gal/h) kasvaa nopeuden kasvaessa. Parempi mittari kulutukselle on matka / (käytetty polttoaine) Sijoittamalla matka=vt ja käytetty määrä= C t saadaan kulutus = v C r v 2 r

11 Tehtävä. Milloin pitäisi vaihtaa auto? Mitkä tekijät vaikuttavat päätökseen? Mitkä muuttujat voidaan unohtaa? Määrittele tieto, mitä tarvitsisit määrätäksesi valitsemiesi muuttujien väliset relaatiot.

12 Yksinkertaisia kasvumalleja: Diskreetti kasvumalli (differenssiyhtälö): Tietyin väliajoin osa eläimistä ( ) synnyttää jälkeläisiä. Populaatio ajanhetkellä k+1 on: N N α N k SvOutPlaceObject k k k + 1 = +, = 0,1, 2,... Tietyin väliajoin osa eläimistä ( ) kuolee. Yhtälö populaatiolle ajanhetkellä k+1 on: SvOutPlaceObject N + = (1 + α ) N β N = (1 + α β ) N = γ N, k = 0,1, 2,... k 1 k k k Ajan suhteen askeltamalla saadaan: k N N N Ratkaisu: N N, 1 0 N N k = γ = γ N = γ = γ N = γ M = γ N = γ N k k 1 0

13 Jatkuva kasvumalli (differentiaaliyhtälö): Kun populaatio on iso voidaan lisääntymisten ja kuolemien ajatella tapahtuvan jatkuvasti. Populaation koko millä tahansa ajanhetkellä P( t + t) : P( t + t) = P( t) + r t P( t) r on uusien yksilöiden nettolisäys/aikayksikkö Jakamalla saadaan: t:llä P( t + t) P( t) = r P( t) t P( t) = rp( t), t > 0 t P = r dt P ln P = rt + vakio (integroimalla) Kun t > 0, saadaan: (1. Kl, DY) P( t) aika P(t)=A e rt

14 Harjoitus: Pankki tarjoaa lainaa 1% kuukausittaisella korolla. Jos talletat määrän P(0) niin kuinka paljon sinulla on kuukauden jälkeen. Kirjoita differenssiyhtälö talletuksen määrälle, P(k+1), k+1:n kk jälkeen. Jos aloitat 1000 e säästöllä ja korko lisätään kuukausittain (viim. Päivän säästölle), niin paljonko sinulla on vuoden jälkeen? Sopisiko jatkuva malli tilanteeseen paremmin?

15 Autojen vuokraus (differenssiyhtälöryhmä): Yhtiö harrastaa autojen vuokrausta Helsingissä ja Oulussa. Autot palautuvat paikkakunnille seuraavan kaavion mukaisesti: 30% 60% Helsinki Oulu 70% 40% Ongelma: Yhtiö on kiinnostunut tietämään kuinka paljon heidän on kuljetettava asiakkaiden palauttamia autoja Oulu Helsinki välillä, jotta autoja olisi saatavilla molemissa päissä. O(n) = autojen lukumäärä Oulussa päivän n lopussa H(n) = autojen lukumäärä Helsingissä päivän n lopussa Historiatiedosta saadaan seuraava yhtälöryhmä: H(n+1) = 0.6 H(n) O(n) O(n+1) = 0.4 H(n) O(n)

16 Tasapainotilanteessa pätee: O=O(n+1)=O(n) ja H=H(n+1)=H(n) H = 0.6 H O O = 0.4 H O H=3/4 O yhtiöllä on 7000 autoa. Systeemi säilyy stabiilina jos autoja on aluksi 3000 Helsingissä ja 4000 Oulussa. Mitä tapahtuu jos autoja on aluksi eri määrä kaupungeissa? Helsinki Oulu

17 Päätelmiä: viikossa saavutetaan stabiili tila vaikka jommalla kummalla paikkakunalla ei olisi yhtään autoa, tasapainotila on stabiili yhtälö ei ole herkkä alkuarvoille Harj. Onko yhtälö herkkä kertoimilleen. Kokeile iteroida varioimalla kertoimia.

18 Havaintoihin pohjautuvat mallit ,00 2,00 4,00 6,00 8, ,00 2,00 4,00 6,00 8, interpolointi optimointi 0 0,00 2,00 4,00 6,00 8,00

19 tarkastele dataa Lopeta Ei trendi? Kyllä poista harha etsi sopiva malli, esim. polynomi sovita! onnistuiko? Ei Kyllä Lopeta Kyllä uusi malli? Ei

20 interpolointimenetelmät matala asteinen käytös? Ei Kuutiospline (lineaarinen) spline Kyllä Ei sovita matala asteinen interpolointipolynomi Onko tulos hyvä? Kyllä Lopeta Kyllä Onko tulos hyvä? Lopeta Ei Lopeta

21 Mallintaminen & Simulointi Matemaattinen mallintaminen: Muodostetaan reaalisysteemin abstraktio analysointi, ennustaminen, optimointi tasapainoilu realismin ja yksinkertaisuuden välillä Numeeriset ja analyyttiset menetelmät Simulointi: Numeerinen tekniikka kokeiden tekemiseksi tietokoneella, mikä sisältää matemaattisia ja loogisia malleja. Talouden ja teollisuuden ajasta riippuvat systeemit, usein reaaliaikaiset.

22 Milloin simulointi on tarpeen: Systeemi on liian monimutkainen kuvattavaksi matemaattisella yhtälöllä. Talouden järjestelmät, yritystoiminta, teollisuuslaitokset, jonosysteemit Vaikka matemaattinen malli voitaisiin muodostaa, saattaa nopeampi ja helpompi tapa olla simulointi. Esim. Monimutkaiset jonosysteemit simulointia voidaan käyttää opetustarkoituksiin. Esim. Taloustiede, lääketiede,.. Simulointimallin suunnitteleminen saattaa tuottaa arvokkaampaa tietoa kuin itse simulointi systeemin eri vaihtoehdoista. Simulointi mahdollistaa testaamisen. Simuloinnin avulla saadaan systeemin parametreista tietoa. Mitkä ovat tärkeitä ja mitkä eivät. Uusia skenaarioita (näkökantoja) voidaan testata simuloimalla Simuloimalla voidaan testata dynaamisia, stokastisia prosesseja.

23 Mallintamistekniikkana, simulaatiomallintaminen ei ole ideaalinen, sillä on muutamia varjopuolia: Simuloinnista saadaan pikemminkin tilastollisia arvioita, kuin tarkkoja arvioita mallin parametreille. Simuloinnin tulos sisältää aina epävarmuutta. Simulointi on yleensä laskennallisesti hyvin aikaavievää (koneaika, tutkijan aika) Simulointi antaa hyödyllistä informaatiota systeemistä ainoastaan jos tutkittavan systeemin malli on validi. Simulointimallin tyyppejä: Staattinen / Dynaaminen. Staattinen malli ei muutu ajan suhteen kun taas Dynaaminen muuttuu. Deterministinen / Stokastinen. Jos simulointi ei sisällä satunnaismuuttujia niin kyseessä on deterministinen malli. Mallia toistamalla saadaan aina sama tulos. Stokastinen malli sisältää ainakin yhden satunnaismuuttujan. Mallin antama tuloskin on satunnaismuuttuja. Jatkuva / Diskreetti. Jatkuva ja Diskreetti malli on määritelty samoin kuin jatkuva ja diskreetti systeemi.

24 Simuloinnissa ajastusmekanismi näyttelee tärkeää osaa! Diskreetissä tapahtumapohjaisessa simuloinnissa tilamuuttujat muuttavat arvojaan diskreetteinä ajanhetkinä. Muutosta tilamuuttujassa kutsutaan tapahtumaksi (event) ja se on tapahtumapohjaisen simuloinnin perusta. prosessi Toiminto 1 Toiminto 2 Tap. 1 saapuminen Tap. 2 palvelu alkaa työ 1. Tap. 3 palvelu alkaa työ 2. Tap. 4 palvelu päätyy työ 1. Tap. 5 palvelu päätyy työ 2. AIKA

25 Solukkopohjaisen radioverkon Simulointimalli Oletukset: Verkko koostuu N :stä tukiasemasta BS(i) (i=1,..,n), joilla kullakin on K radiotaajuutta. Puhelujen saapumistiheys noudattaa Poisson jakaumaa keskiarvolla m Puhelujen pituudet noudattavat eksponenttijakaumaa keskimääräisen pituuden ollessa n. Puhelut liikkuvat tiellä vakionopeudella ja ne ovat jakautuneet tielle tasaisesti. Kukin tukiasema palvelee ympäristössä olevaa maantieteellistä aluetta (peittoalue). Puhelut välittyvät peittoalueella ko. tukiaseman kautta, mikäli se ei ole täysin kuormitettu. Liikkuvat puhelimet vaihtavat peittoalueen rajalle tullessaan tukiasemalta toiselle (handover). Tukiaseman vaihto perustuu ennustettuihin tai mitattuihin kentän voimakkuuksiin ja lähetyksen laatuun.

26 Simulointimallissa kentänvoimakkuuden eli tehon, laskeminen perustuu kaavaan: P = P 10α log d + B( h, h, F ) r t 10 b m P r + C( a) + 20 log R + 20 log L P t lähetetty teho α [2,4] d ajoneuvon ja tukiaseman välinen etäisyys B funktio, riippuu tukiasem an korkeudesta, h, ajoneuvon antennin kork eudesta, h m, taajuudesta F. C funktio, riippuu maastost a R Rayleigh jakautunut sm. L Lognormaalisti jakautunut sm. 0

27 Puhelujen laatuun vaikuttavat taas verkon kuormitus ja vmpäristötekijät. Tukiaseman vaihto perustuu tukiasemille määritellyille kentänvoimakkuuden ja laadun raja arvoihin. Määrittämällä ko. raja arvot hyvin voidaan verkon suorituskyky optimoida. Solupohjaisen radioverkon simulaatio on toteutettu SLAM II kielellä (Simulation Language for Alternative Modelling). Simulointi on toteutettu prosessiorientoituneena mallina, jossa systeemi rakennetaan SLAM 11 verkostosvmboleista. Verkossa on kymmenen tukiasemaa BS(1) BS(10), joissa kapasiteettina on kunkin tukiaseman käytössä olevien taajuuksien määrä. Malliin saapuva olio on tukiaseman (BS) ja ajoneuvoaseman (MS) välinen puhelu. Tukiaseman vaihdot riippuvat yhteyden laadusta ja kentän voimakkuudesta. Seuraavat parametrit liikkuvat olion (puhelun) mukana svsteemin läpi: (1) SERVTIME: puhelun kesto sekunteina (2) POWER: vastaanotettu teho (3) QUAL: vastaanotettu laatu Mallilla on syöttötietoina raja arvot, joiden perusteella tukiasemaa yritetään vaihtaa. Ne ovat teholle X(1) ja laadulle X(2). Simuloinnin tarkoituksena on selvittää, miten eri X(1) :n ja X(2) :n arvot vaikuttavat verkon toimintaan (tukiaseman vaihdot, katkenneet puhelut, käyttöaste).

28 Lyhyt kuvaus käytetystä SLAM II verkosta on seuraava: Puhelut luodaan CREATE solmussa ja niiden attribuuttien alustus suoritetaan ASSIGN solinussa. Sitten ne reititetään SEL nimiseen AWAIT solmuun, jossa suoritetaan tukiaseman valinta ALLOC aliohjelman avulla. Tukiasemanvalinta algoritmi on seuraava: (i) Jos yhdelläkään tukiasemalla ei ole vapaata kapasiteettia (eli vapaata kanavaa), kun puhelu tulee systeemiin, ohjataan puhelu BALK nimiseen COLLECT solmuun, joka kerää tilastoa puheluista, joita ei ole saatu yhdistettyä (ii) Jos puhelun nykyiset tehon tai laadun ; arvot alittavat sallitut raja argot eikä muilta tehokkaammilta tukiasemilta löydy vapaata kapasiteettia, ohjataan puhelu LOST nimiseen COLLECT solrnuun, joka tilastoi katkenneet puhelut (iii) Muussa tapauksessa varataan kanava parhaalta mahdolliselta tukiasemaita ja ohjataan puhelu MS nimiseen GOON solmuun Seuraavaksi kasvatetaan aikaa kahdella sekunnilla ja siirretään puhelu ASSIGN solmuun, jossa lasketaan uudet arvot parametreille QUAL, POWER ja SERVTIME Uusilla arvoilla suoritetaan seuraava tukiaseman vaihtoa mallittava algoritmi: (i) Jos palveluaika (SERVTIME) on positiivinen ja teho (POWER) sekä la laatu (QUAL) ovat sallituissa rajoissa, ohjataan puhelu takaisin solmuun MS (ii) Jos SERVTIME on positiivinen ja POWER tai QUAL alittaa sallilun rajan, suoritetaan tukiaseman vaihto. Puhelu ohjataan EVENT solmuun, joka vapauttaa käytössä olleen tukiaseman. Ohjataan sitten puhelu COLLECT solmuun, joka kerää tietoa tukiaseman vaihdoista Sitten jatketaan SEL nimiseen AWAIT solmuun, jossa valitaan uusi tukiaserna. (iii) Muussa tapauksessa SERVTIME<0. Tällöin puhelu ohjataan EVENT solmuun, joka vapauttaa tukiaseman kapasiteettia. Sitten puhelu jatkaa COlLECT solmuun, jossa kerätään tilastotietoa normaalisti päättyneistä puheluista.

29

Matemaattisesta mallintamisesta

Matemaattisesta mallintamisesta Matemaattisesta mallintamisesta (Fysikaalinen mallintaminen) 1. Matemaattisen mallin konstruointi dynaamiselle reaalimaailman järjestelmälle pääpaino fysikaalisella mallintamisella samat periaatteet pätevät

Lisätiedot

Simulointi. Johdanto

Simulointi. Johdanto Simulointi Johdanto Simulointi Simulointi ~ jäljittely Pyrkii kuvaamaan tutkittavan ilmiön tai systeemin oleellisia piirteitä mallin avulla. Systeemin rajaus ja tarkasteltavat piirteet määriteltävä ennen

Lisätiedot

3. Laske osittaisintegroinnin avulla seuraavat integraalit

3. Laske osittaisintegroinnin avulla seuraavat integraalit Harjoitus 1 / syksy 2001 1. Laske seuraavat derivaatat 2 a) D ( 5x + 5) x, b) D (-e 2x ), c) D (-ln x) ja d) D (sin 2x + cos x). 2. Laske seuraavat integraalit 2 x 5x 5 dx, a) ( + ) x b) ( e 2 ) dx, c)

Lisätiedot

Logistiikkajärjestelmien mallintaminen - käytännön sovelluksia

Logistiikkajärjestelmien mallintaminen - käytännön sovelluksia FORS-seminaari 2005 - Infrastruktuuri ja logistiikka Logistiikkajärjestelmien mallintaminen - käytännön sovelluksia Ville Hyvönen EP-Logistics Oy Taustaa Ville Hyvönen DI (TKK, teollisuustalous, tuotannon

Lisätiedot

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t),

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t), Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.4129 Systeemien Identifiointi 1. harjoituksen ratkaisut 1. Tarkastellaan maita X ja Y. Olkoon näiden varustelutaso

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi J. Virtamo 38.3143 Jonoteoria / Littlen tulos 1 Littlen tulos Littlen lause Littlen tuloksena tai Littlen lauseena tunnettu tulos on hyvin yksinkertainen relaatio järjestelmään tulevan asiakasvirran, keskimäärin

Lisätiedot

Tilayhtälötekniikasta

Tilayhtälötekniikasta Tilayhtälötekniikasta Tilayhtälöesityksessä it ä useamman kertaluvun differentiaaliyhtälö esitetään ensimmäisen kertaluvun differentiaaliyhtälöryhmänä. Jokainen ensimmäisen kertaluvun differentiaaliyhtälö

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 1 Ti 6.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 1 Ti 6.9.2011 p. 1/28 p. 1/28 Numeriikan termejä Simulointi: Reaalimaailman ilmiöiden jäljitteleminen (yleensä)

Lisätiedot

SIMULINK 5.0 Harjoitus. Matti Lähteenmäki 2004 www.tpu.fi/~mlahteen/

SIMULINK 5.0 Harjoitus. Matti Lähteenmäki 2004 www.tpu.fi/~mlahteen/ SIMULINK 5.0 Harjoitus 2004 www.tpu.fi/~mlahteen/ SIMULINK 5.0 Harjoitus 2 Harjoitustehtävä. Tarkastellaan kuvan mukaisen yhden vapausasteen jousi-massa-vaimennin systeemin vaakasuuntaista pakkovärähtelyä,

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Simulointi. Tapahtumapohjainen

Simulointi. Tapahtumapohjainen Simulointi Tapahtumapohjainen Diskreettiaikainen simulointi 1 Tarkastellaan systeemejä, joissa on äärellisen monta komponenttia. Jokaisella komponentilla äärellisen monta tilaa. Komponentit vaikuttavat

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312

MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312 SATE.2010 Dynaaminen kenttäteoria MIKROAALTOUUNI Sivumäärä: 12 Jätetty tarkastettavaksi:

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Ilmastonmuutos ja ilmastomallit

Ilmastonmuutos ja ilmastomallit Ilmastonmuutos ja ilmastomallit Jouni Räisänen, Helsingin yliopiston Fysikaalisten tieteiden laitos FORS-iltapäiväseminaari 2.6.2005 Esityksen sisältö Peruskäsitteitä: luonnollinen kasvihuoneilmiö kasvihuoneilmiön

Lisätiedot

Reiluus. Maxmin-reiluus. Tärkeä näkökohta best effort -tyyppisissä palveluissa. Reiluuden maxmin-määritelmä

Reiluus. Maxmin-reiluus. Tärkeä näkökohta best effort -tyyppisissä palveluissa. Reiluuden maxmin-määritelmä J. Virtamo 38.3141 Teleliikenneteoria / Reiluus 1 Reiluus Maxmin-reiluus Tärkeä näkökohta best effort -tyyppisissä palveluissa kenellekään ei anneta kvantitatiivisia QoS-takuita kaikkien pitää saada palvelua

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

Liikenneteoriaa (vasta-alkajille)

Liikenneteoriaa (vasta-alkajille) Liikenneteoriaa (vasta-alkajille) samuli.aalto@hut.fi liikteor.ppt S-38.8 - Teletekniikan perusteet - Syksy 000 Sisältö Liikenneteorian tehtävä Verkot ja välitysperiaatteet Puhelinliikenteen mallinnus

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

Yleistä. Esimerkki. Yhden palvelimen jono. palvelin. saapuvat asiakkaat. poistuvat asiakkaat. odotushuone, jonotuspaikat

Yleistä. Esimerkki. Yhden palvelimen jono. palvelin. saapuvat asiakkaat. poistuvat asiakkaat. odotushuone, jonotuspaikat J. Virtamo 38.3143 Jonoteoria / Jonojärjestelmät 1 JONOJÄRJESTELMÄT Yleistä Jonojärjestelmät muodostavat keskeisen mallinnuksen välineen mm. tietoliikenne- ja tietokonejärjestelmien suorituskyvyn analysoinnissa.

Lisätiedot

LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13

LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13 LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13 2 LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 Yhtiössä otettiin käyttöön lämmön talteenottojärjestelmä (LTO) vuoden 2013 aikana. LTO-järjestelmää

Lisätiedot

Vaaran ja riskin arviointi. Toimintojen allokointi ja SIL määritys. IEC 61508 osa 1 kohta 7.4 ja 7.6. Tapio Nordbo Enprima Oy 9/2004

Vaaran ja riskin arviointi. Toimintojen allokointi ja SIL määritys. IEC 61508 osa 1 kohta 7.4 ja 7.6. Tapio Nordbo Enprima Oy 9/2004 Vaaran ja riskin arviointi Toimintojen allokointi ja SIL määritys IEC 61508 osa 1 kohta 7.4 ja 7.6 Tapio Nordbo Enprima Oy 9/2004 Riskiarvion tavoite Vahinkotapahtumat tunnistetaan Onnettomuuteen johtava

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

TIE448 Kääntäjätekniikka, syksy 2009. Antti-Juhani Kaijanaho. 7. joulukuuta 2009

TIE448 Kääntäjätekniikka, syksy 2009. Antti-Juhani Kaijanaho. 7. joulukuuta 2009 TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 7. joulukuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe F maanantai 14.12. klo 12 rekisteriallokaatio Arvostelukappale

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

RAHA- JA PANKKITEORIA. 1. Hyödykeraha. 2. Raha-aggregaatin M2 muutokset

RAHA- JA PANKKITEORIA. 1. Hyödykeraha. 2. Raha-aggregaatin M2 muutokset RAHA- JA PANKKITEORIA 31C00900 1. Hyödykeraha Miten seuraavat asiat sopisivat hyödykerahaksi? Tarkastele asiaa rahan kolmen perusominaisuuden valossa! (1 piste/hyödyke) Vaihtovirta (230 V) Hyvä arvon mitta,

Lisätiedot

Mat-2.129 Systeemien identifiointi

Mat-2.129 Systeemien identifiointi Luennot: TkT, erik. op. to 16-18 U261 Harjoitukset tekn.yo Ville Koskinen pe 10-12 joko mikroluokka U352 tai U261 Kurssikirja Ljung & Glad: Modeling of Dynamic Systems, Prentice-Hall, 1994 TAI Ibid.: Modelbygge

Lisätiedot

2G-verkoissa verkkosuunnittelu perustuu pääosin kattavuuden määrittelyyn 3G-verkoissa on kattavuuden lisäksi myös kapasiteetin ja häiriöiden

2G-verkoissa verkkosuunnittelu perustuu pääosin kattavuuden määrittelyyn 3G-verkoissa on kattavuuden lisäksi myös kapasiteetin ja häiriöiden 2G-verkoissa verkkosuunnittelu perustuu pääosin kattavuuden määrittelyyn 3G-verkoissa on kattavuuden lisäksi myös kapasiteetin ja häiriöiden tarkemmalla huomioimisella tärkeä osa UMTS:n suunnittelussa

Lisätiedot

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 5.-7.11.2008. 1 Tällä viikolla Sisältösuunnitelma: Ennustamisstrategioista Koneoppimismenetelmiä: k-nn (luokittelu

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

Tutkimusmenetelmät-kurssi, s-2004

Tutkimusmenetelmät-kurssi, s-2004 Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede

Lisätiedot

Energiatehokkuussopimus - Energiapalvelujen toimenpideohjelman toteuttaminen

Energiatehokkuussopimus - Energiapalvelujen toimenpideohjelman toteuttaminen Energiatehokkuussopimus - Energiapalvelujen toimenpideohjelman toteuttaminen Kaukolämmön jakelun energiatehokkuuden parantaminen verkkosimuloinnilla 14.12.2011 Jari Väänänen Kaukolämmön jakelun energiatehokkuuden

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Metsikkötason optimointi metsäsuunnittelussa, esimerkkinä SMA

Metsikkötason optimointi metsäsuunnittelussa, esimerkkinä SMA Metsikkötason optimointi metsäsuunnittelussa, esimerkkinä SMA SIMO-seminaari 2.11.2007 Lauri Valsta Metsäekonomian laitos Sisältö Metsikkötason suunnittelun käyttökohteet Katsaus menetelmiin SMA:n rakenne

Lisätiedot

Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi. Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1

Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi. Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1 Marko Vauhkonen Kuopion yliopisto Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1 Sisältö Mallintamisesta mallien käyttötarkoituksia

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP101/K1 KINEMATIIKAN KUVAAJAT FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

Liikennejärjestelmämallit ja niiden käyttö poliittisessa päätöksenteossa ja suunnittelussa. Ville Koskinen, 1.12.2005

Liikennejärjestelmämallit ja niiden käyttö poliittisessa päätöksenteossa ja suunnittelussa. Ville Koskinen, 1.12.2005 Liikennejärjestelmämallit ja niiden käyttö poliittisessa päätöksenteossa ja suunnittelussa Ville Koskinen, 1.12.2005 Mallinnustasojen työnjako pieni suuri Mallin yksityiskohtaisuus Verkon koko suuri pieni

Lisätiedot

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla

Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Erkki Heikkola Numerola Oy, Jyväskylä Laskennallisten tieteiden päivä 29.9.2010, Itä-Suomen yliopisto, Kuopio Putkistojen äänenvaimentimien suunnittelu

Lisätiedot

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten,

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, että se pystyy suorittamaan kaikki mahdolliset algoritmit?

Lisätiedot

Logistinen regressio, separoivat hypertasot

Logistinen regressio, separoivat hypertasot Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia, 3 op 9 luentoa, 3 laskuharjoitukset ja vierailu mittausasemalle Tentti Oppikirjana Rinne & Haapanala:

Lisätiedot

Carlink langaton autojen välinen tietoverkko

Carlink langaton autojen välinen tietoverkko Carlink langaton autojen välinen tietoverkko Älykkään liikenteen päivä 30.10.2007 Timo Sukuvaara Lapin ilmatieteellinen tutkimuskeskus Ilmatieteen laitos Taustaa Hankkeessa kehitetään autojen välinen tietoverkkopalvelualusta,

Lisätiedot

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002. Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!

Lisätiedot

Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008

Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Janne Lehtonen, m84554 GENERAATTORI 3-ULOTTEISENA Dynaaminen kenttäteoria SATE2010 Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

Demo 5, maanantaina 5.10.2009 RATKAISUT

Demo 5, maanantaina 5.10.2009 RATKAISUT Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jouko Esko n85748 Juho Jaakkola n86633 Dynaaminen Kenttäteoria GENERAATTORI Sivumäärä: 10 Jätetty tarkastettavaksi: 06.03.2008 Työn tarkastaja Maarit

Lisätiedot

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i. MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä 7 Osa 7: Pidempiä esimerkkejä R:n käytöstä R:n pääasiallinen käyttö monelle on tilastollisten menetelmien suorittaminen. Käydään nyt läpi joitain esimerkkitilanteita, alkaen aineiston luvusta ja päättyen

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Harjoitus 1 -- Ratkaisut

Harjoitus 1 -- Ratkaisut Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin

Lisätiedot

Algoritmit C++ Kauko Kolehmainen

Algoritmit C++ Kauko Kolehmainen Algoritmit C++ Kauko Kolehmainen Algoritmit - C++ Kirjoittanut Taitto Kansi Kustantaja Kauko Kolehmainen Kauko Kolehmainen Frank Chaumont Oy Edita Ab IT Press PL 760 00043 EDITA Sähköpostiosoite Internet

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

JHS 180 Paikkatiedon sisältöpalvelut Liite 4 INSPIRE-palvelujen laadun testaus

JHS 180 Paikkatiedon sisältöpalvelut Liite 4 INSPIRE-palvelujen laadun testaus JHS 180 Paikkatiedon sisältöpalvelut Liite 4 INSPIRE-palvelujen laadun testaus Versio: 28.2.2013 Julkaistu: 28.2.2013 Voimassaoloaika: toistaiseksi Sisällys 1 Yleiset vaatimukset... 2 2 Latauspalvelun

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

Ukkoverkot Oy. 100% Internettiä - 0% Puhetta 19.8.2015. CC-BY-SA Ukkoverkot Oy, 2015.

Ukkoverkot Oy. 100% Internettiä - 0% Puhetta 19.8.2015. CC-BY-SA Ukkoverkot Oy, 2015. Ukkoverkot Oy 100% Internettiä - 0% Puhetta 19.8.2015 Saarijärvi Ukkonet 4G LTE Band 38, 2.6GHz Tukiasemapaikat ja peittoennusteet 2 Selvityksen kohteet 3 Keskustaajaman ulkopuolella, asukasluvun perusteella

Lisätiedot