Prosessin reaalisaatioiden tuottaminen
|
|
- Juuso Manninen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Tulosten keruu ja analyysi Varianssinreduktiotekniikoista 20/09/ Prosessin reaalisaatioiden tuottaminen Oletetaan, että olemme mallintaneet tarkasteltavan järjestelmän stokastisena prosessina Seuraavana tehtävänä on prosessin realisaatioiden tuottaminen (eli järjestelmän simulointi suppeassa mielessä). Se koostuu kahdesta osasta: kaikille prosessin kulkuun vaikuttaville satunnaismuuttujille on arvottava arvot (yleensä reaaliluku) satunnaisesti ko. sm:n jakaumasta (sm:ien väliset riippuvuudet tietysti huomioiden) näin saaduilla arvoilla konstruoidaan prosessin reaalisaatio ts. sen kehittyminen ajassa Simuloinnissa nämä kaksi osaa eivät suinkaan tapahdu peräkkäin eri vaiheissa, vaan limittäin: välillä on siis arvottava jollekin satunnaismuuttujalle arvo, jota sitten käytetään (yhdessä aiemmin arvottujen sm:ien kanssa) prosessin reaalisaation konstruointiin jollakin lyhyehköllä aikavälillä simuloinnin nykyhetkestä eteenpäin Satunnaismuuttujien arvojen arvonta perustuu ns. (pseudo)satunnaislukujen generointiin Prosessin reaalisaation konstruointi tehdään yleensä tapahtumapohjaisesti (discrete event simulation) 20/09/2004 2
2 Tapahtumapohjainen simulointi (1) Mitkä ovat järjestelmän tilan ja havaintojen kannalta kiinnostavat suureet? Mitkä ovat olennaiset tapahtumat? Mitkä ovat tapahtumien laukaisijat ja niiden ajoitukset? 20/09/ Tapahtumapohjainen simulointi (2) Idea: simulointi etenee tapahtumasta tapahtumaan jos jollakin aikavälillä ei tapahdu mitään, voimme hypätä ko. aikavälin yli Tapahtuma vastaa (yleensä) aina systeemin tilan muuttumista esim. yksinkertaisessa liikenneteoreettisessa mallissa mahdollisia tapahtumia ovat ainakin asiakkaiden saapumiset ja poistumiset systeemistä prosessin reaalisaation generoinnin lopetus on kuitenkin oma tapahtumansa samoin tietojen keruu voi aiheuttaa joitakin ylimääräisiä tapahtumia Tapahtuma karakterisoidaan kahdella parametrilla tapahtumahetki (so. milloin tapahtuma käsitellään) ja tapahtuman tyyppi (so. miten tapahtuma käsitellään) Tapahtumat organisoidaan yleensä tapahtumahetken mukaan järjestetyksi tapahtumalistaksi (event list), jonka kärjessä on seuraavaksi sattuva tapahtuma (siis pienin tapahtumahetki) Listaa käydään läpi tapahtuma tapahtumalta (generoiden samalla uusia tapahtumia listan loppupäähän). Kun tapahtuma on käsitelty, se poistetaan listalta. Simulointikello kertoo, mikä on käsiteltävänä olevan tapahtuman hetki Se siis etenee hyppäyksittäin 20/09/2004 4
3 Tapahtumapohjainen simulointi (3) 1. Initialisointi aseta simulointikello nollaksi aseta systeemin tila valittuun alkuarvoonsa generoi kunkin tapahtumatyypin seuraava tapahtuma (mikäli mahdollista) ja liitä näin saadut tapahtumat tapahtumalistaan 2. Simulointikellon siirto aseta simulointiajaksi (tapahtumalistan kärjessä olevan) seuraavan tapahtuman tapahtumahetki 3. Tapahtuman käsittely käsittele tapahtuma (mahdollisesti generoiden samalla uusia tapahtumia ja liittäen ne tapahtumalistaan tapahtumahetkensä mukaiseen järjestykseen) sekä päivitä systeemin tila poista käsitelty tapahtuma tapahtumalistalta 4. Lopetusehto jos lopetusehto on voimassa, lopeta prosessin reaalisaation generointi; muutoin palaa kohtaan 2 20/09/ Esimerkki: M/M/1- FIFO jonon simulointi Kiinnostavia suureita: odottavien (jonottavien) asiakkaiden lukumäärä asiakkaan odotusaika järjestelmässä olevien asiakkaiden lukumäärä asiakkaan järjestelmässä viettämä aika 20/09/2004 6
4 Esimerkki: M/M/1- FIFO jonon simulointi Simuloidaan M/M/1-jonon jononpituuden kehitystä ajassa hetkestä 0 hetkeen T olettaen, että systeemi on tyhjä hetkellä 0. Systeemin tilaa hetkellä t kuvaa siis jononpituus X t. Tapahtumia ovat asiakk. saapumiset ja poistumiset sekä simuloinnin lopetus Initialisointi: asetetaan X 0 = 0 arvotaan ensimmäisen asiakkaan saapumishetki Exp(λ)-jakaumasta Tapahtuman käsittely uuden asiakkaan saapuessa (hetkellä t) systeemin tilaa eli jononpituutta kasvatetaan yhdellä: X t = X t + 1 jos systeemi oli tyhjä asiakkaan saapuessa, generoidaan ko. asiakkaan poistumishetki t + S, missä S on ko. asiakkaan palveluaika (arvottu Exp(µ)-jakaumasta) generoidaan seuraavan asiakkaan saapumishetki t + I, missä I on saapumisten väliaika (arvottu Exp(λ)-jakaumasta) Tapahtuman käsittely asiakkaan poistuessa (hetkellä t) systeemin tilaa eli jononpituutta vähennetään yhdellä: X t = X t -1 jos systeemiin jäi asiakkaita, generoidaan seuraavaksi palveltavan asiakkaan poistumishetki t + S, missä S on ko. asiakk. palveluaika (arvottu Exp(µ)-jakaumasta) Lopetusehto: t > T 20/09/ Jononpituuden kehitys M/M/1-FIFO jonossa tapahtumien generointi aika asiakkaiden saapumis- ja poistumishetket jononpituus aika 0 T 20/09/2004 8
5 1. Tapahtumien skeduloija (tapahtumalistan ylläpitäjä) ylläpitää linkitettyä listaa tulevista tapahtumista skeduloija voi muokata tapahtumalistaa, esim. skeduloi tapahtuman e tapahtumaan hetkellä t kumoaa aikaisemmin skeduloidun tapahtuman e (poistaa listasta) pidättää tapahtumaa e aikaintervallin t pidättää tapahtumaa e toistaiseksi (kunnes toinen tapahtuma skeduloi sen) skeduloi toistaiseksi pidätetyn tapahtuman on simulointiohjelman ydin, ohjelman useimmin suoritettu komponentti suoritetaan aina ennen tapahtumaa skeduloijaa voidaan kutsua useita kertoja tapahtumankäsittelyn yhteydessä skeduloimaan uusia tapahtumia 20/09/ Simulointikello ja ajansiirtomekanismi jokaisessa simulaattorissa on globaali muuttuja, joka edustaa aikaa simuloidussa järjestelmässä ajan siirtämiseseen voidaan käyttää kahta eri tapaa a) siirto vakioinkrementein aika jaetaan pieniin askeliin siirrytään eteenpäin askel kerrallaan käsitellään kerrallaan kaikki tapahtumat, jotka ovat sattuneet askeleen sisällä b) tapahtumapohjainen siirto aika siiretään osoittamaan lähinnä seuraavaan tapahtumaan menettely b) on yleisempi ja dynaamisempi vältetään ongelmat, jotka aiheutuvat useiden tapahtumien osumisesta samaan aikaväliin toisaalta ei tarvitse kelata tyhjää kuten joudutaan tekemään menetelmässä a) jos aikaväli on valittu hyvin lyhyeksi samanaikaisten tapahtumien välttämiseksi 20/09/
6 3. Järjestelmän tilamuuttujat globaalit muuttujat, jotka kuvaavat järjestelmän tilaa esim. asiakkaiden lukumäärä jonossa eri kuin lokaali muuttuja, esim. asiakkaan vaatima palvelun kesto, joka voidaan tallettaa asiakkaan yhteyteen 4. Tapahtumankäsittelijät kunkin tapahtuman käsittely suoritetaan omalla rutiinillaan rutiinit päivittävät tilamuuttujien arvoja ja skeduloivat uusia tapahtumia (kutsuvat tapahtumalistan ylläpitäjää) esim. asiakkaan saapumisen käsittelijä tai poistumisen käsittelijä 5. Syöttörutiinit simuloinnissa tarvittavien lähtöarvojen syöttörutiinit kysellään käyttäjältä parametrien arvot tai vaihteluvälit ja askeleet kartoitettaessa jonkin parametrin vaikutusta 20/09/ Raportin generaattori kerää simuloinnin kuluessa tilastoa halutuista muuttujista käsittelee tulokset tilastollisesti tulostaa halutussa muodossa 7. Initialisointirutiinit asettaa tilamuuttujien alkuarvot ja satunnaislukustreamien alkuarvot oma rutiini, jolla järjestelmä alustetaan annettuihin parametrien arvoihin oma rutiini, jolla ohjelma alustetaan samoilla parametrien arvoilla tehtävien toistojen alussa (laskurien nollaukset jne) 8. Trace-rutiini tulostavat välimuuttujien arvoja simuloinnin varrelta helpottaa ohjelman debuggausta on/off-kytkin: voidaan kytkeä pois päältä tuotantoajoja tehtäessä 20/09/
7 9. Dynaaminen muistinhallinta simuloinnin kuluessa systeemi elää uusia olioita tulee ja poistuu simulointikielissä ja nykyisissä yleiskielissä ohjelmoijan ei tarvitse tähän juurikaan puuttua 10. Pääohjelma sitoo ohjelman eri osat toisiinsa kutsuu syöttörutiineja ja intialisointirutiineja aloittaa simulointisilmukan lopulta kutsuu raportingeneraattoria 20/09/
Teoria. Prosessin realisaatioiden tuottaminen
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Tapahtumapohjaisen simuloinnin periaatteet Esimerkki: M/M/1 jonon simulointi Simulointiohjelman geneeriset komponentit
Simulointi. Tapahtumapohjainen
Simulointi Tapahtumapohjainen Diskreettiaikainen simulointi 1 Tarkastellaan systeemejä, joissa on äärellisen monta komponenttia. Jokaisella komponentilla äärellisen monta tilaa. Komponentit vaikuttavat
Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Johdanto ja pseudosatunnaislukujen generointi Eri menetelmiä satunnaismuuttujien
Simulointi. Johdanto
Simulointi Johdanto Simulointi Simulointi ~ jäljittely Pyrkii kuvaamaan tutkittavan ilmiön tai systeemin oleellisia piirteitä mallin avulla. Systeemin rajaus ja tarkasteltavat piirteet määriteltävä ennen
Batch means -menetelmä
S-38.148 Tietoverkkojen simulointi / Tulosten keruu ja analyysi 1(9) Batch means -menetelmä Batch means -menetelmää käytetään hyvin yleisesti Simulointi suoritetaan tässä yhtenä pitkänä ajona olkoon simuloinnin
S Tietoverkkojen simulointi / Varianssinreduktiotekniikat 1(32) Teoria
S-38.148 Tietoverkkojen simulointi / Varianssinreduktiotekniikat 1(32) Teoria Johdanto simulointiin Simuloinnin kulku prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta
Järjestelmässä olevien asiakkaiden lukumäärä N(t) ei muodosta enää Markov-prosessia.
J. Virtamo 38.143 Jonoteoria / M/G/1/-jono 1 M/G/1-jono M (memoryless): Poisson-saapumisprosessi, intensiteetti λ G (general): yleinen palveluaikajakautuma, keskiarvo S =1/µ 1 : yksi palvelin, kuorma ρ
S Tietoverkkojen simulointi / Varianssinreduktiotekniikat 1(37) Teoria
S-38.3148 Tietoverkkojen simulointi / Varianssinreduktiotekniikat 1(37) Teoria Johdanto simulointiin Simuloinnin kulku prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta
Algoritmit 1. Luento 4 Ke Timo Männikkö
Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,
Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja
581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen
S Tietoverkkojen simulointi
S-38.3148 Tietoverkkojen simulointi S-06 S-38.3148 Tietoverkkojen simulointi 11.9.2006 1 Teoria Johdanto simulointiin Simulointi menetelmänä Erilaiset simulointimallit Mallinnus, toteutus ja validointi
Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Tulosten keruu ja analyysi Varianssinreduktiotekniikoista 24/09/2002
ABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio Sisältö Peruskäsitteitä Poisson-prosessi Luento05.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2005 2 Stokastiset prosessit () Stokastiset prosessit
Jonojen matematiikkaa
Lectio praecursoria Jonojen matematiikkaa Samuli Aalto luento.ppt 1 Sisältö Johdanto Joukkopalveltu jono (batch service queue) Nestevarastomalli (fluid flow storage model) 2 Reaalimaailman ilmiö... ÿþýüûr.u.p.t.
J. Virtamo Jonoteoria / M/G/1/-jono 1
J. Virtamo 38.3143 Jonoteoria / M/G/1/-jono 1 M/G/1-jono M (memoryless): Poisson-saapumisprosessi, intensiteetti λ G (general): yleinen palveluaikajakautuma, keskiarvo S = 1/µ 1 : yksi palvelin, kuorma
5. Stokastiset prosessit (1)
luento05.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2006 Sisältö Peruskäsitteitä Poisson-prosessi 2 Stokastiset prosessit () Tarkastellaan jotakin (liikenneteorian kannalta tai sitten muuten) kiinnostavaa
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
Odotusjärjestelmät. Aluksi esitellään allaolevan kuvan mukaisen yhden palvelimen jonoon liittyvät perussuureet.
J. Virtamo 38.3143 Jonoteoria / M/M/ /-jonot 1 Odotusjärjestelmät Siirrytään tarkastelemaan odotusjärjestelmiä. Nämä ovat aitoja jonojärjestelmiä siinä mielessä, että niissä on odotuspaikkoja ja asiakkat
Liikenneongelmien aikaskaalahierarkia
J. Virtamo 38.3141 Teleliikenneteoria / HOL-esto 1 Liikenneongelmien aikaskaalahierarkia AIKASKAALAHIERARKIA Kiinnostavat aikaskaalat kattavat laajan alueen, yli 13 dekadia! Eri aikaskaaloissa esiintyvät
Yleistä. Esimerkki. Yhden palvelimen jono. palvelin. saapuvat asiakkaat. poistuvat asiakkaat. odotushuone, jonotuspaikat
J. Virtamo 38.3143 Jonoteoria / Jonojärjestelmät 1 JONOJÄRJESTELMÄT Yleistä Jonojärjestelmät muodostavat keskeisen mallinnuksen välineen mm. tietoliikenne- ja tietokonejärjestelmien suorituskyvyn analysoinnissa.
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.
J. Virtamo Jonoteoria / Prioriteettijonot 1
J. Virtamo 38.3143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot Tarkastellaan M/G/1-jonojärjestelmää, jossa asiakkaat on jaettu K:hon prioriteettiluokkaan, k = 1,..., K: - luokalla 1 on korkein prioriteetti
815338A Ohjelmointikielten periaatteet Harjoitus 3 vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 3 vastaukset Harjoituksen aiheena ovat imperatiivisten kielten muuttujiin liittyvät kysymykset. Tehtävä 1. Määritä muuttujien max_num, lista,
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
Demonstraatiot Luento 7 D7/1 D7/2 D7/3
TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-8.45 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 7 7.2.2008 D7/ Tarkastellaan piirikytkentäisen järjestelmän n-kanavaista
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Jypelin käyttöohjeet» Miten saan peliin pistelaskurin?
Jypelin käyttöohjeet» Miten saan peliin pistelaskurin? Pistelaskurin saamiseksi tarvitaan kaksi osaa: Laskuri, joka laskee pisteitä Olio, joka näyttää pisteet ruudulla Laskuri voi olla esimerkiksi tyyppiä
käännetty prosessi. Tarkastellaan pelkistymätöntä stationaarista stokastista prosessia X t.
J. Virtamo 38.3143 Jonoteoria / Ajan kääntö 1 AJAN KÄÄNTÖ JA KÄÄNTYVÄT PROSESSIT Käännetty prosessi Tarkastellaan pelkistymätöntä stationaarista stokastista prosessia X t. Tähän prosessiin voidaan liittää
Simuloinnin taktisia kysymyksiä
Simuloinnin taktisia kysymyksiä Simuloinnilla on aina tavoite. Simuloitaessa on käytössä ohjelma, joka tilastollisesti riittävän yhtenevä alkuperäisen systeemin kanssa. Miten simulointi järjestetään niin,
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print
TIMBERLOG OHJEET 1 (12) TimberLOG - Käyttöohje Versio 2.2
1 (12) TimberLOG - Käyttöohje Versio 2.2 TimberVision 01.12.2017 2 (12) 1. Yleistä TimberLOG-sahaussimulaattori simuloi joko yhden tukin tai tukkiläpimittaluokan sahausta. Simulointi voidaan suorittaa
Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä
Todennäköisyys 1 Klassinen todennäköisyys: p = Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä Esimerkkejä: Nopan heitto, kolikon heitto Satunnaismuuttuja Tilastollisesti vaihtelevaa
Jaetun muistin muuntaminen viestin välitykseksi. 15. lokakuuta 2007
Jaetun muistin muuntaminen viestin välitykseksi Otto Räsänen 15. lokakuuta 2007 1 Motivaatio 2 Valtuuden välitys Peruskäsitteitä 3 Kolme algoritmia Valtuuden välitys käyttäen laskuria ilman ylärajaa Valtuuden
Harjoitus 8: Monte Carlo -simulointi (Matlab)
SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheet Satunnaismuuttujien ja todennäköisyysjakaumien kertaus Tilastollinen estimointi
Ohjelmassa on käytettävä funktiota laskeparkkimaksu laskemaan kunkin asiakkaan maksu. Funktio floor pyöristää luvun lähimmäksi kokonaisluvuksi.
Tehtävä 24. Kallioparkki veloittaa 2 euroa kolmelta ensimmäiseltä pysäköintitunnilta. Yli kolmen tunnin pysäköinnistä veloitetaan lisäksi 0.5 euroa jokaiselta yli menevältä tunnilta. Kuitenkin maksimiveloitus
Harjoitus 8: Monte-Carlo simulointi (Matlab)
Harjoitus 8: Monte-Carlo simulointi (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheet Satunnaismuuttujien ja todennäköisyysjakaumien
Esimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet
TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto
Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan
Solidity älysopimus ohjelmointi. Sopimus suuntautunut ohjelmointi
Solidity älysopimus ohjelmointi Sopimus suuntautunut ohjelmointi Merkle puu Kertausta eiliseltä Solidity on korkean tason älysopimus ohjelmointikieli Muistuttaa olio-ohjelmointia Javalla Sopimuskoodi on
Generointi yksinkertaisista diskreeteistä jakaumista
S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita
Kopulafunktiot. Joonas Ollila 12. lokakuuta 2011
Kopulafunktiot Joonas Ollila 12. lokakuuta 2011 Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään. Kopula-sanan alkuperä Kopula tarkoittaa
Estynyt puheluyritys menetetään ei johda uusintayritykseen alkaa uusi miettimisaika: aika seuraavaan yritykseen Exp(γ) pitoaika X Exp(µ)
J Virtamo 383143 Jonoteoria / Engsetin järjestelmä 1 Äärellinen lähdepopulaatio: M/M/s/s/n-järjestelmä Tarkastellaan estojärjestelmää (ei odotuspaikkoja) tapauksessa, jossa saapumiset tulevat äärellisestä
Numeropelissä 3x3-ruudukko sisältää luvut 1, 2,, 9. Tehtäväsi on järjestää ruudukko näin:
A Numeropeli Numeropelissä 3x3-ruudukko sisältää luvut 1, 2,, 9. Tehtäväsi on järjestää ruudukko näin: 1 2 3 4 5 6 7 8 9 Voit jokaisella siirrolla vaihtaa keskenään kaksi vierekkäistä lukua vaaka- tai
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
Tarkennamme geneeristä painamiskorotusalgoritmia
Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi
Harjoitus 8: Monte-Carlo simulointi (Matlab)
Harjoitus 8: Monte-Carlo simulointi (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheet Satunnaismuuttujien ja todennäköisyysjakaumien
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon
JYVÄSKYLÄN SEUDUN. 1. Sisältö * * Tähdellä merkityt kohdat ovat pakollisia. Sivun oikeassa yläkulmasta löytyy Lisää oma tapahtumasi.
JYVÄSKYLÄN SEUDUN Sivun oikeassa yläkulmasta löytyy Lisää oma tapahtumasi. Lomakkeella voit lisätä tapahtuman tapahtumiin, harrasteisiin tai molempiin. 1. Sisältö * * Tähdellä merkityt kohdat ovat pakollisia.
Simuloinnin taktisia kysymyksiä
Simuloinnin taktisia kysymyksiä Timo Tiihonen Tietotekniikan laitos 2010 Simuloinnin taktisia kysymyksiä Simuloinnilla on aina tavoite. Simuloitaessa on käytössä ohjelma, joka tilastollisesti riittävän
S-38.148 Tietoverkkojen simulointi
S-38.148 Tietoverkkojen simulointi S-04 S-38.148 Tietoverkkojen simulointi 13.9.2004 1 Kurssin osat Jakso 1: Teoria Jakso 2: CNCL simulointityökalu Jakso 3: Ns2 simulointityökalu 13.9.2004 2 Kirjallisuutta
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot
Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot Sievin lukio Tehtävien ratkaisut tulee olla esim. Libre officen -writer ohjelmalla tehtyjä. Liitä vastauksiisi kuvia GeoGebrasta ja esim. TI-nSpire
(p j b (i, j) + p i b (j, i)) (p j b (i, j) + p i (1 b (i, j)) p i. tähän. Palaamme sanakirjaongelmaan vielä tasoitetun analyysin yhteydessä.
Loppu seuraa suoralla laskulla: n n Tave TR = p j (1 + b (i, j)) j=1 = 1 + 1 i
12. Javan toistorakenteet 12.1
12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu
11. Javan toistorakenteet 11.1
11. Javan toistorakenteet 11.1 Sisällys Laskuri- ja lippumuuttujat. Sisäkkäiset silmukat. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Sisällys. 18. Abstraktit tietotyypit. Johdanto. Johdanto
Sisällys 18. bstraktit tietotyypit Johdanto abstrakteihin tietotyyppeihin. Pino ja jono. Linkitetty lista. Pino linkitetyllä listalla toteutettuna. 18.1 18.2 Johdanto Javan omat tietotyypit ovat jo tuttuja:
Jypelin käyttöohjeet» Miten voin liittää törmäyksiin tapahtumia?
Muilla kielillä: English Suomi Jypelin käyttöohjeet» Miten voin liittää törmäyksiin tapahtumia? Kun kaksi fysiikkaoliota törmää toisiinsa, syntyy törmäystapahtuma. Nämä tapahtumat voidaan ottaa kiinni
031021P Tilastomatematiikka (5 op) viikot 5 6
031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus
J. Virtamo Jonoteoria / Prioriteettijonot 1
J. Virtamo 38.143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot TarkastellaanM/G/1-jonojärjestelmää, jossaasiakkaaton jaettu K:hon prioriteettiluokkaan, k =1,...,K: - luokalla 1 on korkein prioriteetti
Satunnaislukujen generointi
Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
Inversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
Simulointi. Varianssinhallintaa Esimerkki
Simulointi Varianssinhallintaa Esimerkki M C Esimerkki Tarkastellaan lasersäteen sirontaa partikkelikerroksesta Jukka Räbinän pro gradu 2005 Tavoitteena simuloida sirontakuvion tunnuslukuja Monte Carlo
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
SIMULINK S-funktiot. SIMULINK S-funktiot
S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne
Matemaattisesta mallintamisesta
Matemaattisesta mallintamisesta (Fysikaalinen mallintaminen) 1. Matemaattisen mallin konstruointi dynaamiselle reaalimaailman järjestelmälle pääpaino fysikaalisella mallintamisella samat periaatteet pätevät
Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1
Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.
18. Abstraktit tietotyypit 18.1
18. Abstraktit tietotyypit 18.1 Sisällys Johdanto abstrakteihin tietotyyppeihin. Pino ja jono. Linkitetty lista. Pino linkitetyllä listalla toteutettuna. 18.2 Johdanto Javan omat tietotyypit ovat jo tuttuja:
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:
Alkuarvot ja tyyppimuunnokset (1/5) Alkuarvot ja tyyppimuunnokset (2/5) Alkuarvot ja tyyppimuunnokset (3/5)
Alkuarvot ja tyyppimuunnokset (1/5) Aiemmin olemme jo antaneet muuttujille alkuarvoja, esimerkiksi: int luku = 123; Alkuarvon on oltava muuttujan tietotyypin mukainen, esimerkiksi int-muuttujilla kokonaisluku,
START Pääohjelma - arvojen asettaminen - keskipisteet - kierrenousujen ohjaus. Tokan reiän hionta
START Pääohjelma - arvojen asettaminen - keskipisteet - kierrenousujen ohjaus Tokan reiän hionta - ruvetaan hiomaa reikää - lisätään y-arvoa joka kierroksen jälkeen Kierrenousun alku - rekisterien nollaus
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen 16.06.2014 Ohjaaja: Urho Honkanen Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Erkki Laitinen, Oulun yliopisto, matemaattisten tieteiden laitos. Mallien tyyppejä
Erkki Laitinen, Oulun yliopisto, matemaattisten tieteiden laitos Mallien tyyppejä Mallin suunnittelusta Reaalimaailman systeemi Matemaattinen systeemi Tarkkailu Malli, laskenta, päätelmät populaation kehittyminen
TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 27. lokakuuta 2009
TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 27. lokakuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe D tiistai 10.11. klo 10 välikielen generointi Kääntäjän rakenne
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
Seminaari: Keskusmuistitietokannat. Keskusmuistitietokantojen samanaikaisuuden hallinta Ilkka Pullinen
Seminaari: Keskusmuistitietokannat Keskusmuistitietokantojen samanaikaisuuden hallinta Ilkka Pullinen Sisältö Johdanto Esiteltävien menetelmien taustoja Hajautetun tietokannan spekuloiva samanaikaisuuden
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
12. Javan toistorakenteet 12.1
12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu
Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Janne Lehtonen, m84554 GENERAATTORI 3-ULOTTEISENA Dynaaminen kenttäteoria SATE2010 Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Aloittaminen. Tilojen ja ajan haku. Liikuntapalvelut Hietalahdenkatu Vaasa
Aloittaminen Kirjaudu rekisteröitymisen jälkeen varausjärjestelmään käyttäjätunnuksella ja salasanalla. Klikkaa näytöltä Varauskalenteri linkkiä tai ylävalikosta Varaukset varauskalenteri Vasemmasta sivupalkista
Estojärjestelmä (loss system, menetysjärjestelmä)
J. Virtamo 38.3143 Jonoteoria / Estojärjestelmä 1 Estojärjestelmä (loss system, menetysjärjestelmä) Tarkastellaan perinteistä puhdasta estojärjestelmää, jossa on annettu n = johtojen (varattavien elementtien)
Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat
Sisällys 12. Javan toistorakenteet Ylstä toistorakentsta. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirhtä. Silmukan rajat asetettu kierroksen
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2009 1 / 35 Listat Esimerkki: halutaan kirjoittaa ohjelma, joka lukee käyttäjältä 30 lämpötilaa. Kun lämpötilat
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä
Sisällys 11. Javan toistorakenteet Laskuri- ja lippumuuttujat.. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin lopettaminen break-lauseella.
10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys
10.2. Säteenjäljitys ja radiositeettialgoritmi Säteenjäljitys Säteenjäljityksessä (T. Whitted 1980) valonsäteiden kulkema reitti etsitään käänteisessä järjestyksessä katsojan silmästä takaisin kuvaan valolähteeseen