Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku q =. Laske jäsenet b 3, b 7 ja b 0 sekä koko jonon summa. Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla a j = a + (j )d Summa on S n = a + a n Tehtävän jonon tapauksessa Summa on S n = a n + n = a n + (n )n d. a = a + ( )d = 5 + 4 = 9, a 8 = a + (8 )d = 5 + 7 4 = 33, a 00 = a + (00 )d = 5 + 99 4 = 40. Toinen tapa laskea summa on kaavan (n )n 499 500 d = 5 500 + 4 = 50500. kautta. Tällöin pitää ensin laskea S n = a + a n n a n = a + (n )d = 5 + 499 4 = 00. Saadaan S 500 = a + a 500 500 = 5 + 00 500 = 50500. b) Geometrisen jonon mielivaltainen jäsen a j saadaan kaavalla b j = b q j.
Summa on Tehtävän jonon tapauksessa S n = b qn q. Summa on S n = b qn q = ( ) b 3 = b q 3 = = = 0, 5, 4 ( ) 6 b 7 = b q 7 = = 0, 06, 64 ( ) 9 b 0 = q 0 = = 0, 00. 5 ( ) 0 = 0 = 9 = 9 5, 998.. Tilille talletetaan 300 euroa 8 vuoden ajan joka vuoden lopussa. Tilin bruttokorkokanta on 4, 5% ja lähdevero 30%. Kuinka paljon tilillä on rahaa a) heti kahdeksannen talletuksen jälkeen? b) kahdeksan vuoden kuluttua ensim. talletuksesta? Ratkaisu: a) Jaksollisten suoritusten loppuarvo heti viimeisen suorituksen tapahduttua lasketaan kaavalla S = k ( + i)n, i missä i nettokorkokanta, n suoritusten lkm, k yksittäinen suoritus. Nettokorkokanta on i = 4, 5% 0, 7 = 3, 5% = 0, 035. Suoritusten lukumäärä on 8 ja yksittäinen suoritus on 300 euroa. Näin ollen tilillä heti kahdeksannen talletuksen jälkeen on rahaa S = 300 (, 035)8 0, 035 = 68, 94AC.
b) Viimeinen, kahdeksas, talletus tapahtuu seitsemän vuoden kuluttua ensim. talletuksesta. Kun ensimmäisestä talletuksesta on kulunut vielä vuosi, edellisen vuoden tilin kokonaispääoma 68, 94AC (laskettu a-kohdassa) kasvattaa korkoa vielä yhden kokonaisen korkojakson, joten tällöin tilillä, 035 68, 94 = AC766, 4. 3. Mikä pääoma pitää varata 6% tilille, jotta sieltä voitaisiin nostaa 0 vuoden ajan vuosittain 000 euroa? Lähdevero 30% ja ensimmäinen nosto tehdään vuoden kuluttua talletuksesta. Ratkaisu: Alkuarvo lasketaan kaavalla A = ( + i)n ( + i) n i k, missä nyt i = 6% 0, 07 = 4, %, n = 0, k = 000. Näin ollen alussa tilillä on oltava vähintään (, 04) 0 000 606, 48., 04 0 0, 04 4. Vuoden alussa 5, 75 prosentin nettokorkokantaisella tilillä oli 66, 7 euroa. Vuoden lopusta alkaen tililtä tehdään vuoden välein samansuuruinen nosto. Kuinka suuri nosto on, kun tili tyhjennetään seitsemässä vuodessa? Ratkaisu: Yksittäinen nosto saadaan alkuarvon kaavasta A = ( + i)n ( + i) n i k ratkaisemalla k, jolloin jälkimmäiselle saadaan kaava k = ( + i)n i ( + i) n A. Sijoitetaan tähän i = 0, 0575, A = 66, 7, n = 7, jolloin saadaan k = 77, 9. 3
5. Tavoitesäästäjä tallettaa vuosittain euroa tilille, jonka korko on 5%. Kuinka monta vuotta kuluu, että säästöistä korkoineen kertyy 00000 euroa? Lähdevero 30%. Ratkaisu: Loppuarvon kaavasta S = k ( + i)n i tunnetaan nyt k =, i = 0, 05 0, 70 = 0, 035, S = 00000 ja n pitää ratkaista. Sijoitetaan arvot ja ratkaistaan n., 035n 0, 035, 035 n 0, 035 = 00000, 035 n = 0, 035 00000, 035 n = 0, 035 00000 = 00000 jaetaan :llä kerrotaan 0, 035:llä siirretään toiselle puolelle + otetaan logaritmi ln, 035 n = ln(0, 035 00000 +) käytetään logaritmin ominaisuuksia n ln, 035 = ln(0, 035 00000 + ) jaetaan (ln, 035):llä 00000 ln(0, 035 n = + ) ln, 035 n,. Käytännössä tarvittava rahanmäärä (ja vähän enemmän) on tilillä vasta suorituksen jälkeen. Logaritmin ominaisuus, joka käytettiin hyväksi laskussa yllä on kaava ln a b = b ln a (logaritmi muuttaa potenssi kertolaskuksi). HUOM Älä käytä välivaiheissa likiarvoja (esim. 00000 ne saattavat vaikuta vastauksen tarkkuuteen. 3, 3), sillä 4
6. Osakehuoneiston 00000 euron hinta rahoitetaan lainalla. Kuinka pitkä pitää laina-ajan olla, jotta vuosittain maksettava tasaerä olisi 8000 euroa? Lainan korkokanta on 6%. Ratkaisu: Annuiteettikaava on k = ( + i)n i ( + i) n A, missä nyt A = 00000 lainan määrä, i = 0, 06, k = 8000 euroa. Lainaaika n pitää ratkaista yhtälöstä. Merkitään x = ( + i) n =, 06 n ja ratkaistaan ensin x. Sijoittamalla tunnettuja arvoja annuiteettikaavaan saadaan x:lle yhtälö 8000 = y 0, 06 y 00000 jaetaan 00000:llä y 0, 06 y = 0, 8 kerrotaan (y ):llä 0, 06y = 0, 8(y ), 0, 06y = 0, 8y 0, 8 0, 8y 0, 6y = 0, 8 0, y = 0, 8 y = 0, 8/0, = 4, 06 n = 4 otetaan logaritmi n ln, 06 = ln 4 n = ln 4 ln, 06 Laina aika on näin ollen noin 4 vuotta. 3, 8. 7. Vuosina 000-009 kunkin vuoden lopussa talletetaan rahaa tilille, jonka nettokorkokanta on %. Korko liitetään tilille aina vuoden lopussa. Kuinka paljon tilillä on rahaa vuoden 009 lopussa, kun ensimmäisen talletuksen 500 euroa jälkeen talletuksen suuruus a) nostetaan vuosittain %, b) vähennetään vuosittain %, 5
c) nostetaan vuosittain %. Ratkaisu: a) Jaksollisten suoritusten loppuarvo (heti viimeisen suorituksen tapahduttua) kun suoritus muuttuu prosentin j verran on S = ( + i)n ( + j) n i j k, missä nyt i = 0, 0, j = 0, 0, k = 500 ja n = 0. Sijoittamalla arvoja saadaan S =, 00, 0 0 500 755, 84AC. 0, 0 0, 0 b) Sama juttu kuin a)-ssa, paitsi nyt j = 0, 0. Sijoittamalla arvoja saadaan S =, 00 0, 99 0 500 5730, 6AC. 0, 0 + 0, 0 c) Koska nyt i = j = 0, 0, edellä käytetty kaava ei ole käyttökelpoinen (nimittäjässä nolla). Tämä on erikoistapaus joka hoidetaan kaavalla S = n( + j) n k, missä nyt n = 0, j = 0, 0, k = 500. Sijoittamalla arvoja saadaan S = 0, 0 9 500 796, 9AC. 8. Henkilö saa perinnön. Hän sijoittaa sen tilille, josta saa 7, 5% vuotuisen nettotuoton. Perinnönsaaja tekee tililtä 0 nostoa vuoden välein ja ensimmäinen nosto tehdään vuoden kuluttua tilin avaamisesta. Ensimmäinen nosto on 30000 euroa ja noston suuruus kasvaa a) 6, b) 7, 5 prosenttia joka vuosi. 0 noston jälkeen tili tyhjenee. Kuinka suuri perintö oli? Ratkaisu: a) Muuttuvien jaksollisten suoritusten alkuarvo lasketaan kaavalla A = ( + i)n ( + j) n ( + i) n (i j) k, 6
missä nyt k = 30000, i = 0, 075, j = 0, 06, n = 0. Sijoittamalla arvoja saadaan A =, 075 0, 06 0 30000 506, 7AC., 075 0 (0, 075 0, 06) b) Tämä on erikoistapaus jossa i = j joten edellistä kaava ei voi käyttää (nolla nimittäjässä). Tällaisessa tapauksessa lasketaan kaavalla Lisätehtävät: A = n + i k = 0 30000 559440, 56., 075 9. Henkilö päättää säästää rahaa siten, että vuoden ensimmäisenä päivänä hän säästää senttiä, toisena 4 senttiä ja vastaavasti koko vuoden aikana joka päivä senttiä enemmän kuin edellisenä päivänä. a) Kuinka suuri on viimeinen talletus? b) Kuinka paljon henkilö on säästänyt vuoden aikana? Vuosi ei ole karkausvuosi. Ratkaisu: a) Talletukset muodostavat aritmeettisen jonon jossa a = 0, 0 = d (euroissa). Viimeinen talletus on a 365 = a + (365 )d = 0, 0 + 364 0, 0 = 7, 30AC. Toisaalta voidaan yksinkertaisesti päätellä suoraan päätellä, että j. päivänä talletus on 0, 0j. b) Summa on (aritmeettisen jonon summana) S = a + a n n = 0, 0 + 7, 3 0. Säästäjä tallettaa 5% tilille viiden vuoden ajan a) 00 euroa kunkin kuukauden alussa, b) 00 euroa kunkin kuukauden lopussa, c) 50 euroa kunkin kuukauden 5.päivänä. 7 365 = 335, 90AC
Päivien laskutapa on 30/360 ja korko lisätään tilille aina vuoden lopussa. Kuinka paljon tilillä on rahaa vuoden 5. lopussa? Ratkaisu: a) Jokaisen vuoden sisällä vuodet talletusten loppuarvot vuoden lopussa korkoineen muodostavat aritmeettisen jonon. Jos tämän jonon jäseniä muodostaa käänteisessä järjestyksessä, alkaen viimeisestä talletuksesta, niin jonon ensimmäinen jäsen on a = 00( + 0, 05 ) (joulukuun talletus, koska talletukset kuukauden alussa ehtii kasvattaa korkoa yhden kuukauden verran). Viimeinen jäsen on a = 00, 05 eli tammikuun talletus, joka on kasvattamassa korkoa koko vuoden. Tämä aritmeettisen jonon summa on S = a + a = 3, 50AC. Voidaan siis ajatella, että vuosittain tilille laitetaan vuoden lopussa 3, 50 euroa viiden vuoden ajan. Viiden vuoden päästä tilillä on jaksollisten suoritusten loppuarvon kaavalla rahaa S = k ( + i)n i S = 3, 50, 055 0, 05 680, 34AC. b) Yhden vuoden suoritus lasketaan samalla tavalla kuin a)-kohdassa aritmeettisen jonon summana, mutta nyt tässä jonossa a = 00, koska viimeisen kuun talletus ei ehdi enää kasvattaa korkoa ollenkaan ja viimeinen jäsen on a = 00( + 8 0, 05 ),
sillä ensimmäinen talletus tehdään tammikuun lopussa joten se kasvattaa korkoa kuukauden verran. Jokaisen vuoden panos on siis S = a + a = 7, 50AC. Jaksollisten suoritusten loppuarvon kaavalla saadaan tilin saldoksi 5. vuoden lopussa. S = 7, 50, 055 0, 05 678, 7AC. c) Nyt jokaisen vuoden suoritus on summa aritmeettisesta jonosta, jossa ja viimeinen jäsen a = 00 ( + a = 00 ( + 0, 05 5 ) 360 0, 05 345 ). 360 Summa on S = a + a = 30, 00AC. aksollisten suoritusten loppuarvon kaavalla saadaan tilin saldoksi 5. vuoden lopussa. S = 30, 055 0, 05 6796, 53AC.. Vuoden 0 alussa stipendirahastotilin pääoma on miljoona eroa ja nettokorkokanta 3%. Kuinka suuri on rahaston pääoma välittömästi 7 talletuksen jälkeen, kun vuoden 0 alussa rahastoon talltaan 0000 euroa lisää ja seuraavana vuonna a) aina 4%, b) aina 3% enemmän kuin edellisenä vuonna? Ratkaisu: Tilillä alunperin oleva pääoma 000000 kasvattaa tavallista koronkorkoa ja 6 korkojakson (heti 7. talletuksen jälkeen) päästä on korkoineen 000000, 03 6 9
(piirrä vuosista diagrammi). Lisäksi muuttuvat jaksolliset suoritukset kasvavat a)-kohdassa kaavan S = ( + i)n ( + j) n i j mukaan, jossa i = 0, 03, j = 0, 04, k = 0000. Yhdessä 7. talletuksen jälkeen tilillä rahaa 000000, 03 6 +, 037, 04 7 0, 03 0, 04 k 0000 800, AC. b)-kohdassa lasketaan samalla periaatteella, mutta koska i = j = 0, 03, täytyy käyttää muuttuvien jaksollisten suoritusten loppuarvolle kaavaa S = n( + j) n k. Yhdessä 7. talletuksen jälkeen tilillä rahaa 000000, 03 6 + 7, 03 6 0000 77635, 96AC.. Kiinteistön hinta maksetaan kuudessa erässä: heti 0000 euroa ja sen jälkeen vuoden välein 7500 euroa. Mikä on kiinteistön arvo kaupantekohetkellä, kun korkokanta on % vuodessa? Ratkaisu: Diskonttausperiaatteen mukaan kiinteistön arvo kaupantekohetkellä on 0000 + 7500, + 7500, +... + 7500,. 5 Kaikki termit tässä summassa, paitsi ensimmäinen, muodostavat geometrisen sarjan, jossa b = 7500 ja q =. Jäseniä jonossa on 5.,, Geometrisen sarjan summakaavan mukaan saadaan arvoksi kaupantekohetkellä 0000 + 7500,, 5, 5738, 65AC. Geometrisen jonon summa voi myös laskea valmiilla jaksollisten suoritusten alkuarvon kaavalla, koska lainan arvo kaupantekohetkellä on tasan jaksollisen suorituksen alkuarvo A = ( + i)n ( + i) n i k. 0
Sieventämällä yllä mainittu lauseke 7500, 5,, poistamalla murtolausekkeita nimittäjästä ja osoittajasta, itse asiassa päästään juuri lausekkeeseen, 5, 5 0, 7500 (yksityiskohdat lukijalle). Kyseessähän on laina, tarkemmin: osamaksukauppa, jossa 0000 käsiraha ja 7500 annuiteetti. 3. Yhdistys perustaa rahaston. Kymmenen talletuksen jälkeen rahaston pääoma on 500000 euroa. Samansuuruiset talletukset tehdään vuosittain tilille, jonka nettokorkokanta on %. Kuinka suuri on vuotuinen talletus? Ratkaisu: Kaavasta ratkaistaan k, saadaan S = k ( + i)n i i k = S ( + i) n. Tähän sijoitetaan i = 0, 0, n = 0, S = 500000 ja saadaan k 45663, 6 euroa.