3Eksponentiaalinen malli

Koko: px
Aloita esitys sivulta:

Download "3Eksponentiaalinen malli"

Transkriptio

1 3Eksponentiaalinen malli Bakteerien määrä lihassa lisääntyy 250 % jokaisen vuorokauden aikana. Epilepsialääkkeen määrän puoliintuminen elimistössä vie aina yhtä pitkän ajan, 12 tuntia. Tällaisia suhteellisia muutoksia kuvataan eksponentiaalisella mallilla. Kuinka paljon tilillä on rahaa kolmen vuoden kuluttua, kun sille on talletettu aluksi 100 ja tilin korko on 3 %? Kaupungin keskustassa karkaa 10 kania. Kanien määrä kasvaa joka vuosi 35 %. Kuinka monta citykania on kymmenen vuoden kuluttua? Radioaktiivisen uraanin määrä on aluksi 250 g, ja siitä hajoaa 1 % vuodessa. Mikä on radioaktiivisen uraanin määrä 20 vuoden kuluttua?

2 Eksponentiaalinen kasvaminen ja väheneminen esimerkki 1 Pankkitilille talletetaan 500. Tilin vuotuinen korko on 2 %. a) Laske, kuinka paljon tilillä on rahaa vuoden ja kolmen vuoden kuluttua. b) Muodosta funktio f(x), joka ilmaisee, kuinka monta euroa tilillä on x:n vuoden kuluttua. Tilillä ei ole muita tapahtumia kuin koronmaksu. Eksponentiaalinen malli ratkaisu a) Vuoden kuluttua tilillä oleva rahamäärä voidaan laskea kahdella eri tavalla. Tapa 1 Lasketaan ensin ensimmäisen vuoden korko ja lisätään se talletettuun rahamäärään. 0, = = 510 Tapa 2 Vuoden kuluttua tilillä on rahaa 100 % + 2 % = 102 % alkuperäisestä talletuksesta. Kysytty rahamäärä on siis 1, = 510. Kolmen vuoden kuluttua tilillä oleva rahamäärä saadaan nopeimmin jatkamalla tavan 2 ideaa. Rahamäärä kahden vuoden jälkeen: 1,02 1, = 520,20. Rahamäärä kolmen vuoden jälkeen: 1,02 1,02 1, = 530,60. 97

3 Eksponentiaalinen malli b) Rahamäärä kolmannen vuoden lopussa voidaan laskea lyhyemmin potenssimerkinnän avulla: 1, Vastaavalla tavalla viiden vuoden kuluttua tilillä oleva rahamäärä saadaan lausekkeesta 1, Samalla päättelyllä x:n vuoden kuluttua tilillä on rahaa 1,02 x 500. Kysytty funktio on siis f(x) = 1,02 x 500. vastaus a) Vuoden kuluttua tilillä on 510 ja kolmen vuoden kuluttua 530,60. b) Funktio f(x) =1,02 x 500 ilmaisee tilillä olevan rahamäärän x:n vuoden kuluttua. esimerkki 2 Vuonna 1920 maailman tiikerikannan suuruudeksi arvioitiin yksilöä. Salametsästyksen seurauksena tiikerikanta pienentyi keskimäärin 7,4 % vuodessa aina 1960-luvun lopulle asti. a) Muodosta funktio f(x), jonka avulla voidaan arvioida maailman tiikeri kannan suuruus, kun vuodesta 1920 on kulunut x vuotta. b) Mikä oli tiikerikannan suuruus vuonna 1965? ratkaisu a) Kun tiikerikanta pienenee vuodessa 7,4 %, siitä on vuoden kuluttua jäljellä 100 % 7,4 % = 92,6 %. Tiikerien määrä muuttuu vuodessa 0,926-kertaiseksi. Vuoden kuluttua määrä on 0, , kahden vuoden kuluttua 0, ja x vuoden kuluttua 0,926 x Kun vuodesta 1920 on kulunut x vuotta, kannan suuruuden ilmaisee funktio f(x) = 0,926 x

4 b) Lasketaan tiikerikannan suuruus vuonna 1965 a-kohdassa muodostetun funktion avulla. Vuodesta 1920 on kulunut = 45 vuotta. Tiikereitä on vastaus f(45) = 0, = 3 144, a) Tiikerikannan suuruutta voidaan arvioida funktiolla f(x) = 0,926 x b) Vuonna 1965 maailmassa oli tiikeriä. Eksponentiaalinen malli Eksponentiaalinen muutos Kun suure kasvaa tietyssä ajassa aina yhtä monta prosenttia, sen sanotaan kasvavan eksponentiaalisesti. Tällaisia suureita ovat esimerkiksi eri maiden väkiluvut tietyllä aikavälillä sekä bakteerien tai eliöiden määrä tietyllä alueella suotuisissa olosuhteissa. Myös pankkitilin saldo kasvaa eksponentiaalisesti, jos tilillä ei ole muita tapahtumia kuin koronmaksu. Kun suure vähenee tietyssä ajassa aina yhtä monta prosenttia, sen sanotaan vähenevän eksponentiaalisesti. Tällaisia suureita ovat esimerkiksi radioaktiivisen aineen määrä, lääkkeen määrä elimistössä ja piirroskuvan korkeus, kun kuvasta otetaan useita peräkkäisiä kopioita samaa pienennysprosenttia käyttämällä. Viimeisessä tilanteessa muuttujana on ajan sijasta kopiointikertojen lukumäärä. x x Eksponentiaalinen kasvaminen Eksponentiaalinen väheneminen 99

5 Eksponentiaalinen malli Monissa käytännön tilanteissa muutos on likimain eksponentiaalista. Silloin sanotaan, että ilmiön kuvaamiseen käytetään eksponentiaalista mallia. Eläimiä eksponentiaalisella vauhdilla Eläinpopulaation kasvua kuvataan usein eksponentiaalisella mallilla. Lajin levitessä uudelle alueelle populaatio saattaa aluksi kasvaa eksponentiaalisesti. Mikään populaatio ei voi kuitenkaan kasvaa rajattomasti. Kun populaation koko kasvaa kiihtyvällä nopeudella, jossain vaiheessa ympäristön kantokyky ylittyy eikä ravintoa enää riitä kaikille. Kilpailu elintilasta, ravinnosta ja pesäpaikoista lisääntyy ja sairaudet ja loiset leviävät helpommin. Populaation kasvu johtaa nopeasti myös saalistajien lisääntymiseen. Lopulta populaation koko alkaa väistämättä vakiintua. esimerkki 3 Suomen väkiluku vuoden 2007 alussa oli 5,28 miljoonaa. Viime vuosikymmenet väkiluku on kasvanut 0,4 % vuodessa. a) Muodosta funktio f(x), joka ilmaisee Suomen väkiluvun, kun vuoden 2007 alusta on kulunut x vuotta. b) Mikä oli Suomen väkiluku vuoden 2004 alussa? c) Mikä oli Suomen väkiluku vuoden 2008 heinäkuun alussa? 100

6 ratkaisu a) Koska 100 % + 0,4 % = 100,4 %, Suomen väkiluku kasvaa joka vuosi 1,004-kertaiseksi. Kysytty funktio on f(x) = 1,004 x b) Väkiluku vuoden 2006 alussa saadaan, kun väkiluku vuoden 2007 alussa jaetaan luvulla 1,004. Vuoden 2004 väkiluku saadaan, kun vuoden 2007 väkiluku jaetaan kolme kertaa luvulla 1,004. Eksponentiaalinen malli : 1,004 : 1,004 : 1,004 = = = , ,004 1,004 1,004 1,004 3 Väkiluku voidaan laskea myös a-kohdan funktion avulla, sillä = 1, , = 3 1, Negatiivinen eksponentti: a n = 1 a n Kysytty väkiluku on funktion arvo f( 3): f( 3) = 1, = , c) Heinäkuun 2008 alku on puolentoista vuoden päässä vuoden 2007 alusta. Väkiluku saadaan, kun sijoitetaan funktion f(x) lausekkeeseen kulunut aika vuosina eli 1,5. f(1,5) = 1,004 1, = , vastaus a) Suomen väkiluvun ilmaisee funktio f(x) = 1,004 x b) Väkiluku vuoden 2004 alussa oli ja c) vuoden 2008 heinäkuun alussa

7 Eksponentiaalinen malli Eksponentiaalista muutosta kuvaavat funktiot Eksponentiaalista muutosta kuvaavien funktioiden lausekkeet ovat muotoa f(x) = k x c, missä c ja k ovat positiivisia lukuja. Funktioita kutsutaan eksponenttifunktioiksi. Nimitys johtuu siitä, että funktioiden lausekkeissa muuttuja x on eksponentissa. Funktioiden arvoja voidaan laskea kaikilla muuttujan x arvoilla. Jos muuttuja x kuvaa aikaa, positiiviset x:n arvot kuvaavat tulevaa aikaa ja negatiiviset mennyttä aikaa. esimerkki 4 Hiilidioksidipäästöjä halutaan vähentää vuosittain 10 %. Kuinka paljon päästöt vähentyvät kuudessa vuodessa, jos tavoite toteutuu? ratkaisu Päästöjen alkuperäiselle määrälle ei ole annettu mitään lukuarvoa, joten merkitään sitä kirjaimella a. Vuoden kuluttua päästöistä on jäljellä 100 % 10 % = 90 %. Päästöjen määrä on silloin 0,90a. Päästöjen määrä kuuden vuoden kuluttua on 0,90 6 a = 0,531441a 0,53a. Tämä on 53 % alkuperäisestä määrästä. Päästöt vähentyvät siis 100 % 53 % = 47 %. vastaus Päästöt vähentyvät 47 %. Avainkäsitteet: eksponentiaalinen malli eksponentiaalinen kasvaminen eksponentiaalinen väheneminen 102

8 Tehtäviä Sarja Sopivissa olosuhteissa bakteerien lukumäärä kaksinkertaistuu tunnissa. Bakteerien määrä on aluksi 40. Täydennä taulukko. Kulunut aika (h) x Bakteerien määrä 264. Kopiokoneella otetaan peräkkäisiä pienennöksiä piirroksesta, jonka korkeus on 26,0 cm. Pienennöksen mitat ovat aina 90 % kopioitavan kuvan mitoista. Täydennä taulukko. Pienennöksiä (kpl) x Piirroksen kor keus (cm) 265. Pankkitilille talletetaan 400. Tilin vuotuinen korko on 3 %. Tilillä ei ole muita tapahtumia kuin koronmaksu. a) Laske, kuinka paljon tilillä on rahaa neljän vuoden kuluttua. b) Muodosta funktio f(x), joka ilmaisee tilillä olevan rahamäärän eli tilin saldon euroina x vuoden kuluttua Kopiokoneella otetaan peräkkäisiä suurennoksia kuvasta. Kussakin kopioinnissa käytetään samaa suurennus prosenttia. Funktio g(x) = 1,08 x 1,6 ilmaisee kuvan korkeuden (cm), kun suu rennoksia on otettu x kertaa. a) Laske kuvan korkeus kuudennessa kopiossa. b) Mikä on kuvan alkuperäinen korkeus? c) Kuinka monen prosentin suurennuksella kopiointi tehtiin? 267. Uhanalaisia suippohuulisarvikuonoja oli Afrikassa vuonna 1970 vielä yksilöä. Sen jälkeen niiden määrän on arvioitu pienentyneen 9 % vuodessa. a) Muodosta funktio f(x), joka ilmaisee sarvikuonojen määrän, kun vuodesta 1970 on kulunut x vuotta. b) Arvioi funktion avulla sarvikuonojen määrä vuosina 1980 ja Tehtäviä 103

9 Tehtäviä 268. Vuonna 2005 Hyvinkään kaupungin väkiluku oli Väkiluku on kasvanut viime aikoina 0,5 % vuodessa. a) Muodosta funktio f(t), joka ilmaisee Hyvinkään väkiluvun, kun vuodesta 2005 on kulunut t vuotta. b) Laske arvio Hyvinkään väkiluvulle vuonna c) Mikä oli Hyvinkään väkiluku vuonna 2000? 269. Radioaktiivisen uraanin isotoopin U-232 määrä on 250 g. Siitä hajoaa 1 % vuodessa. a) Muodosta funktio, joka ilmaisee radioaktiivisen uraanin määrän grammoina t vuoden kuluttua. b) Mikä on radioaktiivisen uraanin määrä 3,5 vuoden kuluttua? c) Mikä oli radioaktiivisen uraanin määrä 2,5 vuotta sitten? 270. Kinosten perheyritys asettaa liikevaihdon kasvutavoitteeksi 5 % vuodessa. Kuinka monta prosenttia yrityksen liikevaihto kasvaa 8 vuodessa, jos tavoite toteutuu? 271. Paperitehtaan johdon tavoitteena on vähentää päästöjä 15 % vuodessa. a) Kuinka monta prosenttia päästöt vähenevät viidessä vuodessa, jos tavoitteessa pysytään? b) Tutki kokeilemalla, kuinka monen vuoden kuluttua päästöjen määrä on alle 25 % tämänhetkisestä määrästä, jos tavoite toteutuu Luonnontieteissä eksponentiaalista muutosta ilmaisevien funktioiden lausekkeissa käytetään usein kantalukuna ns. Neperin lukua e, jonka kaksidesimaalinen likiarvo on 2,72. Neperin luku löytyy myös useimmista laskimista. Laske kaksidesimaalinen likiarvo a) funktion f(x) = e 2x arvoille f(3) ja f( 2) b) funktion g(x) = e 0,15x arvoille g(18) ja g( 5,5). Sarja Sade lähettää tekstiviestin kolmelle ystävälleen. Jokainen heistä lähettää saman viestin eteenpäin kolmelle ystävälleen, joista jokainen lähettää viestin kolmelle ystävälleen ja niin edelleen. Täydennä taulukko, kun oletetaan, että sama henkilö ei saa viestiä kahta kertaa. Lähetyskierros n Viestin saaneita ihmisiä lähetys kier roksella 104

10 274. Laske funktion f(x) = 1,5 x 90 arvo a) f(5) b) f( 2). c) Jos funktio f(x) kuvaa bakteerien lukumäärää, kun tarkastelun alkuhetkestä on kulunut x tuntia, mikä merkitys on funktion lausekkeen luvuilla 90 ja 1,5? 275. Yrityksen liikevaihto oli eräänä vuonna Yrityksen tulevaisuuden tavoitteena on kasvattaa liikevaihtoaan 8 % vuodessa. a) Muodosta funktio f(x), joka ilmaisee tavoitteen mukaisen liikevaihdon euroina x vuoden kuluttua. b) Laske tavoitteen mukainen liikevaihto kymmenen vuoden kuluttua Funktio f(t) = 0,871 t 400 ilmaisee särkylääkkeen määrän elimistössä milligrammoina, kun lääketabletin ottamisesta on kulunut t tuntia. a) Mikä on lääkkeen määrä elimistössä 4,5 tunnin kuluttua lääkkeen ottamisesta? b) Kuinka paljon lääkettä tabletissa oli? c) Kuinka monta prosenttia lääkkeen määrä elimistössä vähenee tunnissa? 279. Tummennetun lasin paksuus on 1,0 cm, ja se päästää lävitseen 55 % siihen tulevasta valosta. Kuinka monta prosenttia valosta pääsee läpi samanlaisesta lasista, jonka paksuus on a) 3,0 cm b) 4,5 cm c) 0,5 cm? Vihje: a-kohdassa kannattaa ajatella, että 3,0 cm paksu lasi koostuu kolmesta peräkkäisestä 1,0 cm:n paksuisesta lasista. Laskutavasta saa sen jälkeen idean b- ja c-kohtiin Pankkitilin vuotuinen korko on 3,10 %. a) Kuinka monta prosenttia tilille tehty talletus on kasvanut korkoa viiden vuoden aikana? b) Tutki kokeilemalla, kuinka monen vuoden kuluttua talletuksen arvo on kasvanut 1,5-kertaiseksi. Tehtäviä 277. Intian väkiluku oli vuoden 2006 alussa 1,095 miljardia. Vuotuinen väestönkasvu on Intiassa noin 1,4 %. a) Muodosta funktio f(x), joka ilmaisee Intian väkiluvun, kun vuoden 2006 alusta on kulunut x vuotta ja väestönkasvu pysyy samanlaisena. b) Laske funktion avulla ennuste Intian väkiluvulle vuoden 2015 alussa. c) Arvioi funktion avulla Intian väkiluku vuoden 1995 alussa Energiankulutusta halutaan vähentää 2 % vuodessa. Kuinka monella prosentilla kulutus pienenee kymmenessä vuodessa, jos tavoite toteutuu? 105

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

Potenssiyhtälö ja yleinen juuri

Potenssiyhtälö ja yleinen juuri Potenssiyhtälö ja yleinen juuri 253. Tutki sijoittamalla, mitkä luvuista ovat yhtälön ratkaisuja. a) x 2 = 1 b) x 3 = 8 x = 2 x = 1 x = 1 x = 2 x 2 = 1 x = 1 ja x = 1, koska 1 2 = 1 ja ( 1) 2 = 1 x 3 =

Lisätiedot

Eksponenttiyhtälö ja logaritmi

Eksponenttiyhtälö ja logaritmi Eksponenttiyhtälö ja logaritmi 225. Valitse yhtälölle oikea ratkaisu. a) 3 = 9 b) 7 = 7 c) 2 = 16 = 1 = 2 = 3 = 4 a) = 2 b) = 1 c) = 4 226. Päättele yhtälön ratkaisu. a) 10 = 100 b) 10 = 1 000 000 c) 10

Lisätiedot

Potenssi eli potenssiin korotus on laskutoimitus, jossa luku kerrotaan itsellään useita kertoja. Esimerkiksi 5 4 = Yleisesti.

Potenssi eli potenssiin korotus on laskutoimitus, jossa luku kerrotaan itsellään useita kertoja. Esimerkiksi 5 4 = Yleisesti. x 3 = x x x Potenssi eli potenssiin korotus on laskutoimitus, jossa luku kerrotaan itsellään useita kertoja. Esimerkiksi 4 = Yleisesti a n = a a a n kappaletta a n eksponentti kuvaa tuloa, jossa a kerrotaan

Lisätiedot

Eksponentti- ja logaritmifunktiot

Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot liittyvät läheisesti toisiinsa. Eksponenttifunktio tulee vastaan ilmiöissä, joissa tarkasteltava suure kasvaa tai vähenee suhteessa senhetkiseen

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto Ekspontentiaalinen kasvu Eksponenttifunktio Logaritmifunktio Yleinen juurenotto Missä on eksponenttimuotoista kasvua tai vähentymistä? Väestönkasvu Bakteerien kasvu Koronkorko (useampivuotinen talletus)

Lisätiedot

Huippu 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Huippu 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty KERTAUS KERTAUSTEHTÄVIÄ K1. a) Kun suoran s pisteen -koordinaatti kasvaa yhdellä, pisteen y- koordinaatti kasvaa kahdella. Suoran s kulmakerroin on siis. Kun suoran t pisteen -koordinaatti kasvaa kahdella,

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. TEHTÄVIEN RATKAISUT Luku 4.1 183. a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. Lasketaan funktioon syötetyn luvun neliö: 5 = 5. Saatuun arvoon lisätään luku 1:

Lisätiedot

Huippu 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Huippu 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty KERTAUS KERTAUSTEHTÄVIÄ K1. a) Kun suoran s pisteen -koordinaatti kasvaa yhdellä, pisteen y- koordinaatti kasvaa kahdella. Suoran s kulmakerroin on siis. Kun suoran t pisteen -koordinaatti kasvaa kahdella,

Lisätiedot

Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 3 FUNKTIOITA ALOITA PERUSTEISTA 10A. Suoran yhtälössä y = kx + b kulmakerroin on k ja vakiotermi b. Kulmakerroin k ilmoittaa, kuinka monta yksikköä liikutaan y-akselin suunnassa, kun kuljetaan yksi yksikkö

Lisätiedot

Sähköinen koe (esikatselu) MAA A-osio

Sähköinen koe (esikatselu) MAA A-osio MAA2 2018 A-osio Laske molemmat tehtävät! Tee tehtävät huolellisesti. Muodosta vastaukset abitin kaavaeditoriin. Kysy opettajalta tarvittaessa neuvoa teknisissä ja ohjelmien käyttöön liittyvissä ongelmissa.

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

4 LUKUJONOT JA SUMMAT

4 LUKUJONOT JA SUMMAT Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 4 LUKUJONOT JA SUMMAT ALOITA PERUSTEISTA 45A. Määritetään lukujonon (a n ) kolme ensimmäistä jäsentä ja sadas jäsen a 00 sijoittamalla

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

6.8 Erityisfunktioiden sovelluksia

6.8 Erityisfunktioiden sovelluksia 6.8 Erityisfunktioiden sovelluksia Tässä luvussa esitellään muutama esimerkki, joissa käytetään hyväksi eksponentti-, logaritmi- sekä trigonometrisia funktioita. Ensimmäinen esimerkki juontaa juurensa

Lisätiedot

Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio

Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio Talousmatematiikan perusteet: Luento 4 Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö- tai määrittelyjoukko

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

9 VEROTUS, TALLETUKSET JA LAINAT

9 VEROTUS, TALLETUKSET JA LAINAT 9 VEROTUS, TALLETUKSET JA LAINAT ALOITA PERUSTEISTA 370A. Kunnallisveroprosentti oli 19,5, joten 31 200 tuloista oli maksettava kunnallisveroa 0,195 31 200 = 6084. Vastaus: 6084 euroa 371A. a) Hajuveden

Lisätiedot

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1. TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a) K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

3 Määrätty integraali

3 Määrätty integraali Määrätty integraali. a) Muodostuva alue on kolmio, jonka kanta on. Kolmion korkeus on funktion arvo kohdassa, eli f() = = 6. Lasketaan A() kolmion pintaalana. 6 A() 6 Vastaus: A() = 6 b) Muodostuva alue

Lisätiedot

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennolla Funktion Derivaatta f (x) kuvaa funktion

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

4 EKSPONENTIAALINEN MALLI

4 EKSPONENTIAALINEN MALLI EKSPONENTIAALINEN MALLI POHDITTAVAA 1. promillea on tuhannesosaa eli 1000 0,00. Maahan sitoutuneen hiilen määrä on 0,00 1500 biljoonaa tonnia = 6 biljoonaa tonnia. Neljä promillea maaperään sitoutuneesta

Lisätiedot

Numeerinen analyysi Harjoitus 1 / Kevät 2017

Numeerinen analyysi Harjoitus 1 / Kevät 2017 Numeerinen analyysi Harjoitus 1 / Kevät 2017 Palautus viimeistään perjantaina 3.3. Tehtävä 1: Oheinen MATLAB-funktio toteuttaa eksponenttifunktion evaluoinnin. 1 function y = seriesexp ( x ) 2 oldsum =

Lisätiedot

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. B-OSA 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. 1.1 Mitä voidaan sanoa funktion f raja-arvosta, kun x a? I Raja-arvo on f(a), jos f on määritelty kohdassa a. II Raja-arvo on f(a),

Lisätiedot

MUUTAMA HUOMIO LASKELMISTA TUOREIN TRENDILASKELMA POVAA MAAKUNTAAN AIEMPAA HITAAM- PAA VÄESTÖNKASVUA

MUUTAMA HUOMIO LASKELMISTA TUOREIN TRENDILASKELMA POVAA MAAKUNTAAN AIEMPAA HITAAM- PAA VÄESTÖNKASVUA TUOREIN TRENDILASKELMA POVAA MAAKUNTAAN AIEMPAA HITAAM- PAA Tilastokeskus laatii noin kolme vuoden välein ns. trendilaskelman. Laskelmassa arvioidaan väestönkehitystä noin 30 vuotta eteenpäin. Tuoreimman

Lisätiedot

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä.

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. 3 1 3 ja 1. Laske lukujen 4 summa b. erotus c. tulo d. osamäärä e. käänteislukujen

Lisätiedot

Funktio Laske lausekkeen 5x 4 arvo, kun a) x = 3 b) x = 0. Ratkaisu. a) = 15 4 = 11 b) = 0 4 = 4

Funktio Laske lausekkeen 5x 4 arvo, kun a) x = 3 b) x = 0. Ratkaisu. a) = 15 4 = 11 b) = 0 4 = 4 Funktio 138. Laske lausekkeen 5x 4 arvo, kun a) x = 3 b) x = 0. a) 5 3 4 = 15 4 = 11 b) 5 0 4 = 0 4 = 4 139. Banaanit maksavat 2 /kg. Kuinka paljon maksaa a) 4 kg b) 10 kg c) x kg banaaneja? a) 2 /kg 4

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio. Yo-tehtäviä Mb06 kurssista Sarja 1 k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit.

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 6.3.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) x 18 ( x 9) ( x ) ( x+ ) lim = lim = lim x+ x+ ( x + ) x x x = lim (x 6) = ( ) 6 = 1 x x + 6 ( ) + 6 0 lim = =

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. MAA Koe..05 Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko. konseptin yläreunaan. A-osio. Ilman laskinta! MAOL:in taulukkokirja saa olla käytössä. Laske kaikki tehtävät. Vastaa tälle paperille.

Lisätiedot

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. MAA9. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan

Lisätiedot

LUKUVUODEN E-KURSSI MAB3

LUKUVUODEN E-KURSSI MAB3 1 TYK AIKUISLUKIO LUKUVUODEN 2016 2017 E-KURSSI MAB3 Kurssin tunnus ja nimi Kurssin opettaja MAB3 Matemaattisia malleja I Frans Hartikainen frans.hartikainen@tyk.fi (MAB3-kurssin työtila on nähtävillä

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

k-kantaisen eksponenttifunktion ominaisuuksia

k-kantaisen eksponenttifunktion ominaisuuksia 3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

3 EKSPONENTTI- JA POTENSSIYHTÄLÖ

3 EKSPONENTTI- JA POTENSSIYHTÄLÖ 3 EKSPONENTTI- JA POTENSSIYHTÄLÖ POHDITTAVAA 1. Säännön mukaan äänenvoimakkuus kaksinkertaistuu, kun äänilähteiden määrä 10-kertaistuu. Saksofonisteja tarvitaan 1 10 = 10. Vastaus: 10 saksofonistia 2.

Lisätiedot

4 Polynomifunktion kulku

4 Polynomifunktion kulku 4 Polynomifunktion kulku. a) Funktio on kasvava jollakin välillä, jos sen arvo kasvaa tällä välillä. Kuvaajan nousemisen ja laskemisen perusteella funktio on kasvava kohtien x,4 ja x 0, välissä. b) Funktion

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2) MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle

Lisätiedot

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 9.a) Funktio f ( ) = + 6 Nollakohta f bg= + 6= = 6 :( ) = 6 = y 5 6 y = + 6 b) Funktio g ( ) = 5 Nollakohta g bg= = 5 = : 5 5 5 5 = : = = = 5 5 5 9 9

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat

Lisätiedot

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50 BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus 1, Syksy 015 1. (a) Kiihtyvyys on nopeuden derivaatta, eli a(t) v (t) 3 t 1 + 1 Nyt on siis selvitettävä, milloin kiihtyvyys kasvaa itseisarvoltaan

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.3.06 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ YLIOPPILSTUTKINTO- LUTKUNT..7 MTEMTIIKN KOE PITKÄ OPPIMÄÄRÄ -osa Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän alla olevaan ruudukkoon.

Lisätiedot

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4 Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

1.1. YHDISTETTY FUNKTIO

1.1. YHDISTETTY FUNKTIO 1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400

Lisätiedot

4. Kertausosa. 1. a) 12

4. Kertausosa. 1. a) 12 . Kertausosa. a kun, : b kun, tai 8 . Paraabeli y a bc c aukeaa ylöspäin, jos a alaspäin, jos a a Funktion g kuvaaja on paraabeli, jolle a. Se aukeaa ylöspäin. b Funktion g kuvaaja on paraabeli, jolle

Lisätiedot

I I K UL U UT U T T A T JANTE T O E R O I R A

I I K UL U UT U T T A T JANTE T O E R O I R A II KULUTTAJANTEORIA.. Budjettirajoite * Ihmisten kaikkea toimintaa rajoittavat erilaiset rajoitteet. * Mikrotalouden kurssilla tärkein rajoite on raha. * Kuluttaja maksimoi hyötyään, mutta ei kykene toteuttamaan

Lisätiedot

LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE

LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE 2.2.2018 A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän alla olevaan tilaan. Mikäli

Lisätiedot

2 Yhtälöitä ja funktioita

2 Yhtälöitä ja funktioita Yhtälöitä ja funktioita.1 Ensimmäisen asteen yhtälö 50. Sijoitetaan yhtälöön 7 ja tutkitaan, onko yhtälö tosi. a) x 18 3 x 7 7 18 3 7 14 18 3 7 4 4 Yhtälö on tosi, joten luku 7 on yhtälön ratkaisu. b)

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Talousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Talousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Talousmatematiikan perusteet: Luento 8 Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennoilla Derivointisääntöjä eri funktiotyypeille: Polynomifunktio Potenssifunktio Eksponenttifunktio

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +

Lisätiedot

Eksponenttifunktio ja Logaritmit, L3b

Eksponenttifunktio ja Logaritmit, L3b ja Logaritmit, L3b eksponentti-funktio Eksponentti-funktio Linkkejä kurssi8, / Etälukio (edu.) kurssi8, logaritmifunktio / Etälukio (edu.) Potenssifunktio y = f (x) = 2 Vakiofunktion y = a kuvaaja on vaakasuora

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ ESITYS pisteitykseksi

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ ESITYS pisteitykseksi MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 ESITYS pisteitykseksi Yleisohje tarkkuuksista: Ellei tehtävässä vaadittu tiettyä tarkkuutta, kelpaa numeerisissa vastauksissa ohjeen vastauksen lisäksi yksi merkitsevä

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

5 Kertaus: Matemaattisia malleja

5 Kertaus: Matemaattisia malleja 5 Kertaus: Matemaattisia malleja 5. Kurssin keskeiset asiat. a) Muodostetaan suoran yhtälö kulmakerroin k = ja pisteen (0, 3) avulla. y ( 3) ( x 0) y 3 x y x 3 b) Muodostetaan suoran yhtälö kulmakerroin

Lisätiedot

a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja

a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Matemaattista mallintamista

Matemaattista mallintamista Johdatus GeoGebraan Matemaattista mallintamista Harjoitus 2A. Tutkitaan eksponentiaalista kasvua ja eksponenttifunktioita Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi

Lisätiedot

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää.

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. MAA Kurssikoe 9..0 Arto Hekkanen ja Jussi Tyni A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. Nimi:. Kaikki kohdat ½ pisteen arvoisia. a) x x x (x ) b) 0

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

4 TOISEN ASTEEN YHTÄLÖ

4 TOISEN ASTEEN YHTÄLÖ Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

f(x) f(y) x y f f(x) f(y) (x) = lim

f(x) f(y) x y f f(x) f(y) (x) = lim Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,

Lisätiedot