Luento 8. Suodattimien käyttötarkoitus



Samankaltaiset tiedostot
Luento 8. Suodattimien käyttötarkoitus

Luento 8. tietoverkkotekniikan laitos

Luento 7. LTI-järjestelmät

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Analogiatekniikka. Analogiatekniikka

1 Olkoon suodattimen vaatimusmäärittely seuraava:

Suodattimet. Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth. Suodattimet samalla asteluvulla (amplitudivaste)

Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit

1 PID-taajuusvastesuunnittelun esimerkki

ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit

Signaalit ja järjestelmät aika- ja taajuusalueissa

Katsaus suodatukseen

Luento 7. tietoverkkotekniikan laitos

Tehtävä 1. Vaihtoehtotehtävät.

SaSun VK1-tenttikysymyksiä 2019 Enso Ikonen, Älykkäät koneet ja järjestelmät (IMS),

1 Vastaa seuraaviin. b) Taajuusvasteen

Helsinki University of Technology

LOPPURAPORTTI Lämpötilahälytin Hans Baumgartner xxxxxxx nimi nimi

T SKJ - TERMEJÄ

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset

Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu. Vinkit 1 a

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

ELEC-C7230 Tietoliikenteen siirtomenetelmät

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

Luento 7. Järjestelmien kokoaminen osista

Luento 4 Fourier muunnos

T Digitaalinen signaalinkäsittely ja suodatus

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

Luento 9. Epälineaarisuus

1 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu päästökaistavärähtely on 0.05 db ja estokaistalla vaimennus on 44 db.

Digitaalinen Signaalinkäsittely T0125 Luento

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot

20 Kollektorivirta kun V 1 = 15V Transistorin virtavahvistus Transistorin ominaiskayrasto Toimintasuora ja -piste 10

Radioastronomian käsitteitä

Tietoliikennesignaalit & spektri

ELEC-A7200 Signaalit ja järjestelmät

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

ELEC-A7200 Signaalit ja järjestelmät

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.

H(s) + + _. Ymit(s) Laplace-tason esitykseksi on saatu (katso jälleen kalvot):

Dynaamisten systeemien identifiointi 1/2

T DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9

Radioamatöörikurssi 2015

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

Spektri- ja signaalianalysaattorit

Alipäästösuotimen muuntaminen muiksi perussuotimiksi

Osatentti

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

2. kierros. 2. Lähipäivä

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

Alias-ilmiö eli taajuuden laskostuminen

Remez-menetelmä FIR-suodinten suunnittelussa

S Signaalit ja järjestelmät

V astaano ttav aa antennia m allinnetaan k u v an m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

Liitännät ja lisälaitteet

IIZE3010 Elektroniikan perusteet Harjoitustyö 2

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen

Radioamatöörikurssi 2014

3. kierros. 2. Lähipäivä

LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Luento 5. tietoverkkotekniikan laitos

Luento 9. tietoverkkotekniikan laitos

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

Taajuus-, Fourier- ja spektraalianalyysi

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

Taajuus-, Fourier- ja spektraalianalyysi

MATEMATIIKAN JAOS Kompleksianalyysi

ELEC-A7200 Signaalit ja järjestelmät

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen

Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P

Elektroniikka, kierros 3

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

a) I f I d Eri kohinavirtakomponentit vahvistimen otossa (esim.

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia

LABORATORIOTYÖ 2 A/D-MUUNNOS

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)

FYSP105 / K3 RC-SUODATTIMET

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

Matemaattinen Analyysi

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

Kompleksianalyysi, viikko 6

Luento 2. Jaksolliset signaalit

Signaalimallit: sisältö

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

SGN Bachelor's Laboratory Course in Signal Processing ELT Tietoliikenne-elektroniikan työkurssi. Äänitaajuusjakosuodintyö ( )

Aikatason vaste vs. siirtofunktio Tehtävä

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku ) E a 2 ds

Taajuus-, Fourier- ja spektraalianalyysi

LABORATORIOTYÖ 2 A/D-MUUNNOS

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

ELEC-A7200 Signaalit ja järjestelmät

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio

Radioamatöörikurssi 2017

Transkriptio:

Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden vaimentaminen Signaalien erottaminen muista signaaleista esim. radiovastaanottimessa Halutun pulssimuodon tai -spektrin generoiminen Sovitettu suodatin signaalikohinasuhteen maksimoimiseksi näytteenottohetkellä Siirtokanavan aiheuttamien lineaaristen vääristymien korjaus Alkuperäisen signaalin rekonstruktio näytteistä Dupleksisuodattimet (ylä- ja alasuunnan liikenteen erottaminen omille kaistoilleen) Esikorostus/jälkikorjausmenetelmät Peilitaajuussignaalin vaimentaminen superhetero dyneperiaatteella toimivassa radiovastaanottimessa jne 8..006

Lineaarinen suodatus Vasteen y(t) Fourier-muunnos: Y()=H()U() ut () y() t ht () U( ) Y H ( ) Vasteen y(t) spektritiheys saadaan impulssivasteen ja herätteen spektritiheyksien tulona: U Y Y = H U H ( ) H ( ) Tehonsiirtounktio Järjestelmä suodattaa signaalia u(t) 8..006 3 Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Ideaalinen suodatin Päästökaistalla: A()=A ja φ()=πt d => Suodin ei aiheuta amplitudi ja vaihevääristymiä Estokaistalla amplitudivaste A()=0 => Estokaistalla oleva signaali ei näy suotimen ulostulossa lainkaan H ( ) { H } arg A Päästökaista B 8..006 π td 4

Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Alipäästösuodatin H ( ) A Kaistanpäästösuodatin H ( ) A Päästökaista Päästökaista Ylipäästösuodatin H ( ) A Kaistanestosuodatin H ( ) A Estokaista Estokaista 8..006 5 Ideaalinen alipäästösuodatin Tarkastellaan ideaalista alipäästösuodinta, jonka päästökaistan leveys on B. Suodattimen siirtounktio iπ t H =Π e d B Π ( ) = 0 > H ( ) Suodattimen impulssivaste ht () = F H = BAsinc B t td { } ( ) B A 8..006 6 3

Ideaaliset yli- ja kaistanpäästösuodattimet Ideaalinen ylipäästösuodin H ( ) A Estokaista iπ t H = e d Π B ( ) ht () = δ ( t td) BAsinc B t td Ideaalinen kaistanpäästösuodin H + i t c H c π = e d Π +Π B B A ht = BAsinc( B( t t )) cos( π t) d c 8..006 7 Ideaalinen alipäästösuodin Alipäästösuodattimen impulssivaste ut () = δ () t y() t = h() t U( ) = H ( ) Y( ) = H.5 δ(t) t d 0.5 Impulssiheräte ajanhetkellä 0 t=0 näkyy vasteessa y(t) -0.5 myös ajanhetkinä t<0 - => Ideaalinen alipäästösuodin ei ole -.5 kausaalinen eikä sitä voida - -0-8 -6-4 - 0 4 6 8 0 realisoida käytännössä t Myös ideaaliset yli-, esto- ja kaistanpäästösuodattimet ovat epäkausaalisia. 8..006 8 h(t) t=t d +/(B) t=t d -/(B) 4

Aika- ja taajuustason rajoitukset Aikarajoitettu (Time limited signal) vt () = 0, t< t t> t 0 Kaistarajoitettu signaali (Bandlimited signal) V = 0, > W Signaali ei voi olla rajoitettu sekä aika- että taajuustasossa. => Ei ole mahdollista tehdä suodatinta, jonka impulssivaste olisi aikatasossa rajattu ja jonka päästökaista olisi taajuustasossa rajattu 8..006 9 Käytännön suodattimet Käytännön suodattimessa Päästökaistan (passband) amplitudivaste ei ole vakio vaan sillä sallitaan ΔA p suuruisia amplitudieroja. Päästökaistaa seuraa ylimenokaista (transition region), jolla amplitudivaste laskee nopeasti Estokaistalla (stopband) amplitudivaste valitaan sovelluksen kannalta riittävän pieneksi. ΔA e kuvaa estokaistalle vaadittua vaimennusta päästökaistan maksimiin nähden KÄYTÄNNÖN SUODATIN 0log A() ΔA p -0 db -0 db ΔA e -30 db -40 db päästökaista 8..006 ylimenokaista 0 estokaista 5

Päästökaista Puolentehon kaistanleveys kertoo taajuuskaistan, missä signaalin amplitudi erot ΔA on pienempi kuin Δ A = Erot tehonsiirrossa kaistalla on tällöin enintään 3dB H max H H() -3 db B -3 db 8..006 Selektiivisyys Useissa käytännön sovelluksissa tavoitteena on mahdollisimman kapea ylimenokaista. Suodattimen selektiivisyys kertoo ylimenokaistan koosta Määritellään selektiivisyyssuhde r sel suodattimen 3dB ja -60 db kaistanleveyksien suhteena B 0log 3dB 0 A() rsel = päästökaista B 60dB -3 db -60 db estokaista B 3dB 8..006 B 60dB 6

Selektiivisyys Oktaaaviselektiivisyys A( ) ( 0 A min 0log 0,0log0 ) ( 0 OS = A 0,5 0 A 0) 0log 0 A( 0 ) 0log0 A 0 ( ) 0log0 A 0 0 0 0 8..006 3 RC-suodatin Siirtounktio -3 db päästökaista AB ( 3) H =, τ = RC = = iπ τ + A(0) ( πb ) 3 τ + Amplitudiunktio ( πb 3 τ ) + = A = πb 3 τ = ( π τ) + B 3 = πτ maksimi löytyy taajudelta -60 db kaista =0 Hz 60 AB ( 60) 0 A(0)= = = 0 = A(0) 6 ( πb 60τ) 0 + 6 ( πb 60τ) + = 0 6 πb 60τ = 0 000 6 0 B 60 = 8..006 πτ 4 7

RC-suotimen selektiivisyys B RC-suodatin 3 6 sel = = πτ = 0 000 B 6 60 r 0 πτ 8..006 5 Kaksi RC-suodatinta sarjassa Siirtounktio ja amplitudiunktio H =, τ = RC ( iπ τ + ) Valitaan aikavakio τ siten, että päästökaista on sama kuin edellä B 3 = πτ A = = πτ π τ + πτ τ = τ τ = τ 0.64τ 8..006 6 8

Kaksi RC-suodatinta sarjassa -60 db:n kaista 60 0 AB 60 = = 0 = ( πb 60 ) 000 τ + ( πb 60τ ) + = 000 999 B 60 = 999 = πτ πτ 999 = B 3 τ = τ 0.64τ r 3 999 rsel = = 49, r 60 Toisen asteen suodattimella saadaan huomattavasti parempi selektiivisyys 8..006 7 K. ja. kertaluvun RC suotimet Boden amplitudikäyrän approksimaationt -3dB kaista -3dB kaista /τ -0 db/dec -40 db/dec -60 db => 3 dec => ω 000/τ ω -60 db =>.5 dec => ω 3.6/τ /τ 8..006 8 ω 9

. ja. kertaluvun RC suotimet RC-suodatin ja kaksi RC-suodatinta sarjassa τ = τ 0.64τ 0 Bode Diagram. asteen RC-suodatin Magnitude (db) -0-40 -60-80 -00-0 0. asteen RC-suodatin Phase (deg) -45-90 -35-80 0-0 - 0 0 0 0 0 3 8..006 Frequency (rad/sec) 9 Käytännön suodattimet Käytännölliset lineaariset suodattimet ovat kausaalisia, ja ne esitetään usein siirtounktion avulla M M M M() s s z s z...( s z ) m m H() s = = N() s N N N s p s p...( s p ) n Suodattimet valitaan stabiileiksi, jolloin siirtounktion navat N(s)=0 ovat kompleksitason vasemmassa puolitasossa. N Jotta impulssivaste olisi reaalinen, pitää taajustason siirtounktion on hermiittinen = * ( ), and H( ) = * H H H H s = iπ 8..006 0 0

Käytännön suodattimet Valitsemalla s-tasossa sopivat nolla- ja napayhdistelmät saadaan haluttuja ominaisuuksia omaavat suodattimet, esim. päästökaistan amplitudivääristymän suhteen (laakalatvaisuus, aaltoilu), päästökaistan kulkuaikavääristymän suhteen, estokaistan vaimennuksen suhteen, ylimenokaistan jyrkkyyden suhteen. Erilaisia suodatinperheitä, jotka määrittelevät navat ja nollat halutulle asteluvulle, on esitetty useita. Butterworth Bessel Tšebyshev Bessel (Thomson) Cauer 8..006 Butterworth suodartinperhe Butterworh suodattimen navat ovat :n juuria ja ne saadaan ratkaistuksi DeMoivren teoreemasta j π k m j 0 m m m = e = e k = 0,,,3, 4,, m - juuret ovat tasajakautuneita yksikköympyrän kehälle ω ω taajuustasossa. N = N =3 Jotta suodatin olisi stabiili σ valtaan vain navat, jotka ovat vasemmassa puolitasossa ω N = 4 N = 8 ω σ σ σ 8..006

3. Asteen Butterworth suodin Suunnitellaan n=3 asteen Butterworth suodin, jonka kaistanleveys on W Jos m=6 saadaan, löydetään DeMoivren teoreemalla kuusi juurta j π k m j 0 m m m = e = e k = 0,,,3, 4,, m - 3 3 s = 0 =, s = 60 = + j, s3 = 0 = + j 3 3 s4 = 80 =, s5 = 40 = j, s6 = 300 = j Joista valitaan kolme vasemmassa puolitasossa olevaa: 3 3 p = s3 = + j, p = s4 =, p3 = s5 = j 8..006 3 3. Asteen Butterworth suodin Siirtounktioksi tulee H s = = s p s p s p s + s + s+ Taajuustasossa Amplitudi unktio 3 3 H = H H = A = * s= iπ ( i π ) 6 + ( i π ) 6 + 8..006 4

3. Asteen Butterworth suodin Puolentehon kaistanleveys A = = 6 iπ + ( i π ) + = = π 6 Haluttu puolentehon kaistanleveys W saadaan valitsemalla s=s/πw s H = 3 πw 3 s + s + s+ πw πw πw 3 πw = 3 3 s + ( πw) s + ( πw) s+ ( πw) 8..006 5 3. Asteen Butterworth Siirtounktioksi saadaan siis 3 s ( πw ) H = 3 πw s + ( πw) s + ( πw) s+ ( πw) Tätä vastaa amplitudi unktio A = 6 + W 3 8..006 6 3

Butterworth suodartinperhe Suodattimen amplitudiunktio on A = n + W jossa W on suodattimen puolen tehon kaistanleveys ja n suodattimen aste-luku. Amplitudiunktio on laakalatvainen, siinä ei ole aaltoilua. Laakalatvaisuus merkitsee sitä, että amplitudiunktion n ensimmäistä derivaatta saa arvon nolla taajudella = 0. 8..006 7 Butterworth suotimet Matalilla taajuuksilla ryhmäkulkuaika on vakio, joten taajuusvääristymää ei Butterwoth suotimessa synny, jos sisäänmeno signaalin taajuuskaista << W Boden amplitudikäyrä Ryhmäkulkuaikaviive 8..006 8 4

Tšebyshevin suodatinperhe Tšebyshev-suodattimen navat saadaan kun Butterworth-suodattimen navat liikkuvat vaakasuoraan ympyrään sisäänkirjoitetun ellipsin kehälle. ω N = 4 Amplitudiunktio on + ε C ( 0) s=iω+σ A = n + ε Cn ( W ) jossa ε on ellipsin eksentrisyys, ja on n:nnen kertaluvun Tšebyshevin polynomi. C n( x) = xc n ( x) C n ( x) C 0( x ) = C( x) = x Amplitudiunktio sisältää aaltoilun, jonka maksimi- ja minimiamplitudin suhde päästökaistalla on ra = + ε σ 8..006 9 Tšebyshevin suodatinperhe Mitä suurempi aaltoilu sallitaan sitä kapeampi on ylimenokaista 8..006 30 5

Transversaalisuodattimet Approksimoidaan suodatinta suoraan sen impulssivasteesta lähtien. Näytteistetään impulssivaste N:llä näytteellä N hs () t = h( kt) t kt k= 0 Taajuusvaste δ N iπ kt Hs = h( kt) e k= 0 8..006 3 Transversaalisuodattimet Suodatinta vastaa viivästysalkioista koostuva viivelinja ja jokaisen viivealkion jälkeen on väliulosotto, jossa viivästetty tulosignaali kerrotaan kertoimella h k. Väliulosottoja kutsutaan tapeiksi ja kertoimia kutsutaan tappikertoimiki. Kun tappikertoimet ovat riittävän tiheästi (näytteenottoteoreema) ja riittävän monta voidaan approksimoida mitä tahansa impulssivaste. Koska suuria tappimääriä on vaikea rakentaa, on käytettävä sopivia ikkunaunktioita katkaisun aiheuttaman spektri levenemisen lieventämiseksi. Käytännön toteutus esim. käyttäen digitaalista FIR-suodinta 8..006 3 6

Transversaalisuodattimet 8..006 33 Pulssin suodattaminen Pulssi-muotoinen signaali sisältää korkeita taajuuksia, jotka suodattuvat alipäästösuodattimessa. Pulssin kulkua suodattimen läpi kuvaa nousuaika (rise time) ja ylitys (overshoot) ja asettumisaika (settiling time) H() 8..006 34 7

Askelvaste Askelvaste kertoo järjestelmän vasteen askelmaiselle herätteelle x x(t) y(t) 8..006 35 Askelvaste Askelvasteen käyttäytymistä kuvataan seuraavilla suureilla t d = kuollut aika, viive y = lopputila x = askeleen korkeus e = pysyvä poikkeama (e = x y ) t r = nousuaika (tavallisimmin määritetty ajaksi, joka kuluu, kun vaste nousee arvosta 0.y arvoon 0.9y ). t ω = värähtelyn jaksonaika t s = asettumisaika (tavallisimmin määritetty ajaksi, jonka jälkeen vaste pysyy putken y ± % tai y ± 5% sisällä vastaavat termit ovat kahden ja viiden prosentin asettumisajat) t p = vastehuipun aika (peak time) o = ylitys (overshoot) d = vaimennuskerroin 8..006 36 8

Pulssin suodattaminen Jotta pulssi perättäiset pulssit voitaisiin erottaa toisistaan, pitää suodattimen kaistanleveys olla selvästi suurempi kuin pulssin puolentehon kaistanleveys B >> /T Jos pelkkä pulssin amplitudin havaitseminen riittää, selvitään pienemmällä kaistanleveydellä B /(T) Jos pulssille halutaan tietty nousuaika, vaaditaan B /(t r ) 8..006 37 3. Asteen Butterworth Tarkastellaan T= pituisen pulssin suodatusta. W=5 0.8 W= W=0.5 0.6 0.4 0. W=0. 0-0. 0 3 4 5 6 7 8 9 0 8..006 38 9

Nousuaika 3. Asteen Butterworth 0.8 0.6 0.4 0. 0 0. 0.4 0.6 0.8..4 W=/T W=5/T W=/(T) 8..006 39 0