LABORATORIOTYÖ 2 A/D-MUUNNOS

Koko: px
Aloita esitys sivulta:

Download "LABORATORIOTYÖ 2 A/D-MUUNNOS"

Transkriptio

1 LABORATORIOTYÖ 2 A/D-MUUNNOS Päivitetty: 23/01/2009 TP 2-1

2 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä ja näytteenottotaajuus vaikuttavat signaalin laatuun, mitä laskostuminen on ja miten antialias- ja pehmennyssuodattimet vaikuttavat signaaliin ja muunnokseen. Sisältö: 2.1 Johdanto 2.2 Teoriaa 2.3 Laitteen toiminta 2.4 Tarvittavat laitteet 2.5 Esiselostustehtävät 2.6 Tehtävät 2.1 Johdanto Laite sisältää signaaligeneraattorin, radion, antialias-suodattimen, A/D-muuntimen, D/Amuuntimen, näytteenotto- ja pitopiirin (sample and hold, S/H), pehmennyssuodattimen (smoothing filter) ja päätevahvistimen, jolla voi ajaa kaiutinta. Suodatinten rajataajuudet, näytteenottotaajuus ja muuntimien resoluutio ovat säädettäviä. 2.2 Teoriaa Hieman tähän työhön liittyvää teoriaa ja pari sanaa SC-suodattimista, joista kaikilla ei välttämättä ole tietoa. A/D- ja D/A-muunnos Tähän liittyvä teoria on varmasti pääosin tuttua, mutta kertauksena pari asiaa. A/Dmuunnoksen näytteenottotaajuus f s määrää muunnettavan signaalin kaistanleveyden. Nyquistin teoreeman mukaan signaalin korkein taajuus saa olla korkeintaan f s /2, jotta signaali ei laskostu ( aliasoidu ) A/D-muunnoksessa. Myös kohina laskostuu, eli ennen A/D-muunninta kannattaa aina käyttää alipäästösuodatinta. A/D-muuntimilla on tietty referenssijännite, johon muunnettavaa signaalia verrataan. Jos signaali on yhtä suuri kuin V ref, on kaikkien digitaalilähtöjen tila 1, eli digitaaliannon arvo on suurin mahdollinen. Jos tulosignaali on jatkuvasti matalampi kuin V ref, ei muuntimen dynamiikkaa hyödynnetä täydellisesti. Siksi tulosignaalin amplitudi tulisikin säätää sellaiseksi, että signaalin huippuarvot ovat hyvin lähellä referenssijännitettä. Referenssijännite on useissa A/D-muuntimissa sisäinen, joten sitä ei voi säätää. 2-2

3 Muuntimen bittimäärä vaikuttaa kvantisointivirheeseen. Pienin havaittava signaalin muutos on FSR/2 N, jossa FSR on Full Scale Range, eli maksimi ottojännite. N on muuntimen bittimäärä. Pienten signaalimuutosten hukkuminen aiheuttaa kohinaa. D/A-muunnoksen jälkeen signaali on kvantisoitunutta, eli sen muoto on porrasmainen. Tätä pyritään siistimään pehmennyssuodattimella, jonka rajataajuus pitäisi olla sama kuin antialias-suodattimella, mutta siirtymäkaistan tulisi olla noin kaksi kertaa leveämpi. Tässä laitteessa antialias-suodattimena ja pehmennyssuodattimena käytetään SC-suodattimia, joilla jyrkkä taajuusvaste on helppo toteuttaa ja rajataajuuden säätö on yksinkertaista. Switched capacitor-tekniikka Tässä laitteessa käytetyt alipäästösuodattimet ovat switched capacitor-tyyppisiä, joten pari sanaa niistä. Switched capacitor (SC) tarkoittaa integroituja piirejä, joissa vastuksia emuloidaan kytkemällä kapasitansseja nopeasti kahden eri pisteen välillä. Kuvassa 1 on esitettynä yksinkertaisen SC-piirin toiminta ja sen vastinpiiri. Kellosignaalit φ 1 ja φ 2 eivät ole missään vaiheessa päällekkäisiä, joten kondensaattorin plus-napa on kytkettynä kerrallaan vain yhteen pisteeseen. Ideana on, että kondensaattori ehtii varautua tiettyyn jännitteeseen, jonka jälkeen varaus siirretään eteenpäin. Varauksen suuruus, eli kondensaattorin jännite, riippuu kellojakson T pituudesta. Kuvassa 2 on esimerkkinä SCintegraattori, (a.) on ei-invertoiva ja (b.) on invertoiva. Integraattori on SC-suodattimen perusrakenneosa. Kuva 1. SC-piirin toiminta. 2-3

4 Etuna SC-tekniikassa on se, että vastuksia ei tarvitse prosessoida piisubstraatille. Vastusten tarkka toteuttaminen nykyisillä pulijohdeprosesseilla on melko hankalaa ja niiden resistanssia on vaikea hallita. Vastaavasti myös kondensaattoreiden kapasitanssia ei voida määrätä tarkasti. SC-piireissä ei kuitenkaan yksittäinen kapasitanssi määrää piirin ominaisuuksia, vaan ratkaisevassa asemassa on kapasitanssien suhde toisiinsa. Puolijohdeprosessissa erilaiset virhetekijät vaikuttavat suurelle alueelle piikiekossa, joten on mahdotonta, että yksi kondensaattori olisi 10 % nimellisarvoaan suurempi ja viereinen 10 % pienempi. Jos poikkeamia on, ne vaikuttavat kaikkiin yhden piirin kondensaattoreihin samalla tavalla. Näin kapasitanssisuhteet ja myös piirin toiminta pysyvät suunniteltuina. Kuva 2. SC-integraattori. Koska kyseessä on kellosignaalilla toimiva digitaalipiiri, pitää myös mahdollisuus signaalin laskostumiseen ottaa huomioon. Yleensä kuitenkin SC-suodattimet toimivat niin korkealla kellotaajuudella (tässä laitteessa esim. 1,5 MHz), ettei tästä tule mitään ongelmia. Tämän ominaisuuden vuoksi suodattimella on aina saman muotoinen päästökaista jokaisen kellotaajuuden harmonisen ympärillä. 2.3 Laitteen toiminta Laitteen lohkokaavio on esitetty kuvassa 3. Signaalilähteinä ovat tavallinen FM-radio ja signaaligeneraattori. Radiolla voidaan tuottaa normaalia äänisignaalia (musiikkia tai puhetta). IC:n, jolla radio on toteutettu, antojännite on matala (n. 75 mv rms ), joten radion yhteydessä on vielä operaatiovahvistin. Signaaligeneraattorista saadaan sini-, kolmio- ja kanttiaaltoa kahdella taajuusalueella, 100 Hz 13 khz ja 300 Hz 40 khz. Lisäksi laitteeseen voidaan kytkeä kaksi ulkoista signaalilähdettä. Lähde valitaan kiertokytkimellä. Kytkimen jälkeen signaalia vahvistetaan lisää (jännite kaksinkertaistetaan). Tässä kohdassa on myös ensimmäinen signaalin lähtöliitin (output 1). Seuraavana signaalitiellä on alipäästösuodatin (8. asteen elliptinen) antialias-suodattimena. Suodattimen rajataajuus on valittavissa kiertokytkimellä 6 vaihtoehdosta (15 khz, 7,5 khz, 3,75 khz, Hz, 938 Hz ja 469 Hz). Lisäksi suodatin voidaan ohittaa vaihtokytkimellä. Kytkimen jälkeen on toinen lähtöliitin (output 2). 2-4

5 Tämän jälkeen signaali biasoidaan operaatiovahvistimella siten, että sen DC-komponentti on V ref /2. Tämä siksi, että A/D-muuntimen otto toimii välillä 0 V V ref. Ennen operaatiovahvistinta on potentiometri, jolla signaalia voidaan vaimentaa, haluttaessa jopa kokonaan. Jännitetaso on mitoitettu niin, että jos vaimennusta ei ole yhtään, A/Dmuuntimen otto yliohjautuu ja signaali leikkautuu. Näin voidaan demota V ref :n ja signaalin suhteen vaikutusta. Tasonsäädön ja biasoinnin tulos näkyy lähdöstä output 3. Kuva 3. A/D & D/A-demolaitteen lohkokaavio. Näiden jälkeen suoritetaan A/D-muunnos. Näytteenottotaajuus on säädettävä. Tässäkin on kiertokytkimellä valittavissa 6 vaihtoehtoa (44,1 khz, 22,05 khz, 11,025 khz, 5,51 khz, Hz ja Hz). Muuntimen dataväylässä on kytkimet jokaiselle bitille, jolloin haluttaessa voidaan muunnoksesta pudottaa bittejä pois ja kuunnella esimerkiksi musiikkia 2-bittisellä muunnoksella. Tämän jälkeen signaali D/A-muunnetaan. D/Amuuntimen maksimiantojännite on 4,095 V, jolloin LSB vastaa 1 mv jännitettä annossa, ja MSB vastaavasti 2,048 V. Tässä kohdassa on output 4. Heti tämän jälkeen jännitetaso pudotetaan vastusjaolla puoleen, koska signaalitien seuraavat osat yliohjautuisivat näin korkeasta jännitteestä. Seuraavaksi on näytteenotto- ja pitopiiri. Se on pitotilassa sillä hetkellä kun D/Amuunnin vaihtaa tilaa siltä varalta, että D/A-muuntimen annossa olisi häiriöitä. Tässä laitteessa oleva S/H-piiri on melko huono. Todellisuudessa D/A-muuntimen lähtö on häiriötön ja S/H vain heikentää signaalia, se onkin hyvä esimerkki siitä miltä huono D/Amuuntimen lähtö näyttää. S/H-piirin voi ohittaa vaihtokytkimellä, jonka jälkeen on viides lähtöliitin. Seuraavaksi on pehmennyssuodatin, jonka tapauksessa rajataajuus valitaan myös kuudesta vaihtoehdosta. Rajataajuudet ovat samat kuin antialias-suodattimessa, mutta 2-5

6 siirtymäkaista on hieman leveämpi; suodatin on 8. asteen Butterworth. Tämäkin suodatin voidaan ohittaa vaihtokytkimellä. Suodattimen perässä on output 6. Viimeinen lohko on päätevahvistin. Käytetyllä vahvistinpiirillä on kiinteä 20 db vahvistus, joten jännitetasoa pitää taas pudottaa ennen vahvistinta. Ensin on vastus ja sen jälkeen vielä potentiometri, jolla sisäänmenevää signaalia voidaan säätää. Tämä vahvistin on melko kohinainen ja se onkin tarkoitettu lähinnä kaiuttimen ohjaamiseen. Vahvistimelle menevän signaalin voi valita kiertokytkimellä, jolloin voidaan kuunnella signaalia muunnoksen eri vaiheissa. Kuvassa 4 on esitetty eri lohkojen käyttämät taajuudet graafisesti helpottamaan oikeiden säätöjen tekemistä. Kuvasta selviää suodatinten rajataajuudet, siirtymäkaistat, A/Dmuuntimen näytteenottotaajuus ja Nyquist-taajuus, radion taajuuskaista sekä signaaligeneraattorin kummatkin taajuuskaistat. Kuva 4. Taajuusalueet. 2-6

7 2.4 Tarvittavat laitteet A/D- & D/A-muunnos demolaite FFT-spektrianalysaattori (esim. Stanford model SR760) Pikaohje Numeronäppäimistön oikealla puolella olevilla napeilla valitaan, mitä ominaisuutta halutaan säätää. Freq-napilla päästään taajuusvalikkoon ja Scale-napilla jännitevalikkoon. Nämä kaksi valikkoa ovat tässä työssä tärkeimmät. Näytön reunalla olevilla napeilla valitaan mitä säädetään ja haluttu arvo syötetään joko numeronäppäimillä, jolloin valinta kuitataan valitsemalla yksikkö näytön reunalla olevilla napeilla tai säätöpyörällä. Taajuusalue kannattaa säätää alkamaan nollasta, sopiva maksimitaajuus riippuu tehtävästä. Jännitealueen alaraja voi olla esimerkiksi 0 tai -0,1 V, yläraja riippuu mittauspisteestä, yleensä sopiva on 2 3 V. Digitaalioskilloskooppi (esim. Agilent 54624A) Säädöt saa sopivaksi monissa tapauksissa Autoscale-toiminnolla. Vaakapyyhkäisyä voi joutua säätämään käsin sopivammaksi. Jos signaalia katsotaan D/A-muunnoksen jälkeen, kannattaa käyttää kertamittausta, jolloin signaalin saa pysäytettyä oskilloskoopin ruudulla. Kertaliipaisu tapahtuu Single-napista. 2-7

8 2.5 Esiselostustehtävät 1. Analoginen signaali, jonka signaali-kohinasuhde on 70 db, muunnetaan digitaaliseksi. Mikä kannattaa valita muuntimen resoluutioksi (siis montako bittiä)? 2. Haluat suorittaa A/D-muunnoksen signaalille, jonka kiinnostava kaista on välillä 0 20 khz. Signaali sisältää myös kohinaa ja erilaisia häiriöitä yli 20 khz taajuuksilla. Käytössäsi on 5. asteen Butterworth-alipäästösuodatin, jonka -3 db rajataajuus on 20 khz ja vaimennus on 30 db/oktaavi. Mikä pitää näytteenottotaajuuden vähintään olla, jotta laskostumisen aiheuttama häiriö signaalikaistalla on korkeintaan LSB:n suuruinen? Muuntimen resoluutio on 8 bittiä. 3. Kuinka suuri on 16-bittisen D/A-muuntimen dynaaminen alue (eli suurimman ja pienimmän antosignaalin suhde) desibeleinä? 4. Haluat tarkkailla valodetektorilta saatavaa signaalia. Kiinnostava taajuuskaista on 0 5 khz, mutta signaali sisältää myös laajakaistaista kohinaa ja korkeataajuisia häiriöitä. Detektorin antojännite on 0 20 mv. Mittaustulos pitää muuttaa digitaaliseksi ja käytössäsi on A/D-muunnin, jonka referenssijännite on 2,5 V. Piirrä sopiva kytkentä (lohkokaavio) detektorilta A/D-muuntimelle. 2-8

9 2.6 Tehtävät Työhön tutustuminen Tutustu A/D-demolaitteistoon. Etsi seuraavat lohkot ja kokeile miten niitä käytetään: Signaaligeneraattori, radio, antialias-suodatin, signaalin tasonsäätö, A/D- ja D/Amuuntimet, pehmennyssuodatin, audiovahvistin kaiuttimineen. Kiinnitä erityisesti huomiota siihen, mihin parametreihin voit vaikuttaa. Voit laittaa tutustumisen ajaksi radion ja kaiuttimen päälle, jotta kuulet miten säädöt vaikuttavat. Tutki aaltomuotoja myös oskilloskoopilla eri lähdöistä. Oskilloskoopin liipaisu kannattaa ottaa sisäänmenosta (output 1), koska kuva pysyy näin vakaampana. Myös liipaisun HF-reject kannattaa ottaa käyttöön (Mode/coupling -> HF-reject). Resoluution vaikutus muunnokseen Tutkitaan resoluutiota käyttäen laitteen sisäistä signaaligeneraattoria. Mittaukset tehdään oskilloskoopilla laitteen sisäänmenosta (ulostulot 1-3) ja muuntimen jälkeen (ulostulot 4 ja 6). Säädä ensin signaalin taso sopivaksi: Valitse näytteenottotaajuudeksi 44,1 khz, ota pehmennyssuodatin käyttöön (rajataajuus 15 khz) ja syötä laitteeseen sinisignaalia (matalampi taajuusalue, taajuussäätö noin puolivälissä). Tarkkaile signaalia oskilloskoopilla 6-ulostulosta ja säädä amplitudi level adjusment-nupista siten, että se on suurin mahdollinen signaalin kuitenkaan leikkautumatta. 1. Pidä näytteenottotaajuus maksimissa (44,1 khz) ja ohita kummatkin alipäästösuodattimet (kytkin bypass-asentoon). Syötä laitteeseen sinisignaalia eri taajuuksilla (esim. 500 Hz, 2 khz ja 10 khz). Tarkkaile oskilloskoopilla D/Amuuntimelta tulevaa signaalia (ulostulo 6). Miten bittimäärä vaikuttaa signaaliin? Montako bittiä voit pudottaa pois ennen kuin havaitset selkeän muutoksen ja miten siniaallon taajuus vaikuttaa tähän? Tee sama koe myös kolmio- ja neliöaallolla. Tässä kannattaa käyttää oskilloskoopin kertaliipaisua, jolloin näet valokuvan signaalista. 2. Kytke oskilloskooppi nyt pehmennyssuodattimen perässä olevaan lähtöön (ulostulo 6). Ota pehmennyssuodatin käyttöön. Jos pehmennyssuodatin on oikein säädetty, onko bittimäärän vähentämisellä minkäänlaista vaikutusta sinisignaaliin (käytä esim. samoja taajuuksia kuin edellisessä kohdassa)? Voiko pienen resoluution aiheuttamia ongelmia korjata pehmennyssuodattimella? Kokeile myös rajataajuuden vaikutusta. Vertaa signaalia ennen muunnosta (ulostulo 1) pehmennyssuodattimelta saatavaan signaaliin. Tee sama koe radiosta saatavalle äänisignaalille. 3. Ohita pehmennyssuodatin ja kuuntele radiota. Radion sijaan voit käyttää myös esim. omaa MP3-soitinta. Työpisteessä on kaapeli, jolla soittimen voi kytkeä demolaitteen sisääntuloliittimiin. Miltä bittimäärän vähentäminen kuulostaa? Monellako bitillä musiikista/puheesta saa selvää? Miltä kvantisointikohina kuulostaa tavalliseen valkoiseen kohinaan verrattuna (valkoista kohinaa voit kuunnella virittämällä radion sellaiselle taajuudelle jossa ei ole lähetystä)? 2-9

10 4. Kytke spektrianalysaattori ulostuloon 6. Mittaa kvantisointikohinan taso eri bittimäärillä. Käytä signaalina siniaaltoa valitsemallasi taajuudella. Ilmoita tulokset signaali/kohina-suhteena desibeleinä. Huomaa, että laitteessa on myös pohjakohinaa, joten esimerkiksi bitin resoluutiolla ei kohinan määrässä ole välttämättä mitään eroa. Mahdolliset särökomponentit voit jättää myös huomioimatta. Mikä on muunnoksen efektiivinen bittimäärä? Laskostuminen 5. Säädä nyt näytteenottotaajuus matalaksi: 5,51 khz. Ohita alipäästösuodattimet. Kuuntele radiota. Radion taajuuskaista on 20 Hz 10 khz, joten signaali laskostuu. Miten se vaikuttaa ääneen? Signaalia kannattaa seurata myös oskilloskoopilla ja spektrianalysaattorilla ulostulosta 6. Pystytkö pelastamaan tilanteen ilman antialiassuodatusta? 6. Pidä näytteenottotaajuus samana, ota antialias-suodatin käyttöön (pehmennyssuodatin pois) ja säädä rajataajuus sopivaksi. Saatko signaalista häiriöt pois? Ota myös pehmennyssuodatin käyttöön, ja säädä sen rajataajuus samaksi kuin antialiassuodattimella on. Paraneeko tilanne? Miksi? Tee samat testit myös 11,025 khz näytteenottotaajuudella. 7. Syötä laitteeseen seuraavaksi sinisignaalia, käytä korkeampaa taajuusaluetta. f s voi olla esim. 5,51 khz. Ohita antialias-suodatus, mutta pidä pehmennyssuodatus käytössä (15 khz). Mittaa spektrianalysaattorilla signaalia ulostulosta 6. Tarkkaile signaalia myös aikatasossa käyttäen oskilloskooppia. Piirrä kuvaaja muunnetun signaalin taajuudesta syötetyn signaalin taajuuden funktiona. (Pyyhkäise koko korkeampi taajuusalue läpi). 8. Kuten tiedät, neliöaalto sisältää perustaajuuden harmonisia. Seuraa neliöaallon laskostumista spektrianalysaattorilla (voit käyttää edellisen tehtävän kytkentää ja asetuksia, mutta pehmennyssuodatus tulee ohittaa (miksi?)). Mitä havaitset? Miksi? Signaali-kohina-suhde (SNR, signal-to-noise ratio) 9. Mittaa SNR A/D-muuntimelle menevän signaalin V p-p -jännitteen funktiona. Mittaa syöttösignaalin V p-p ulostulosta 3 oskilloskoopilla ja muunnoksen jälkeinen SNR spektrianalysaattorilla ulostulosta 6. Käytä noin 1 khz sinisignaalia, 44,1 khz näytteenottotaajuutta ja pehmennyssuodatinta 15 khz rajataajuudella. Säädä syöttöjännitteen tasoa Level adjustment-nupista, aloita nollasta ja nosta jännitettä kunnes se leikkautuu (leikkautumisen näkee parhaiten oskilloskoopilla). 2-10

LABORATORIOTYÖ 2 A/D-MUUNNOS

LABORATORIOTYÖ 2 A/D-MUUNNOS LABORATORIOTYÖ 2 A/D-MUUNNOS 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä ja näytteenottotaajuus

Lisätiedot

ELEC-C5070 Elektroniikkapaja. Laboratoriotyö 3 A/D- ja D/A-muuntimet

ELEC-C5070 Elektroniikkapaja. Laboratoriotyö 3 A/D- ja D/A-muuntimet ELEC-C5070 Elektroniikkapaja Laboratoriotyö 3 A/D- ja D/A-muuntimet Työohje Syksy 2016 Sisällysluettelo 1 Johdanto... 3 2 Teoriaa... 3 2.1 A/D- ja D/A-muunnos... 3 2.2 Switched capacitor-tekniikka... 4

Lisätiedot

11. kierros. 1. Lähipäivä

11. kierros. 1. Lähipäivä 11. kierros 1. Lähipäivä Viikon aihe AD/DA-muuntimet Signaalin digitalisointi Kvantisointivirhe Kvantisointikohina Kytkinkapasitanssipiirit Mitoitus Kontaktiopetusta: 6 tuntia Kotitehtäviä: 4 tuntia Tavoitteet:

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

ELEC-C5070 Elektroniikkapaja. Laboratoriotyö 3 A/D- ja D/A-muuntimet

ELEC-C5070 Elektroniikkapaja. Laboratoriotyö 3 A/D- ja D/A-muuntimet ELEC-C5070 Elektroniikkapaja Laboratoriotyö 3 A/D- ja D/A-muuntimet Työohje Syksy 2015 Työn tarkoitus ja kulku Tässä työssä demotaan A/D- ja D/A-muunnosten ominaisuuksia ja ongelmia. Tarkoitus on osoittaa

Lisätiedot

ELEC-C5070 Elektroniikkapaja (5 op)

ELEC-C5070 Elektroniikkapaja (5 op) (5 op) Luento 5 A/D- ja D/A-muunnokset ja niiden vaikutus signaaleihin Signaalin A/D-muunnos Analogia-digitaalimuunnin (A/D-muunnin) muuttaa analogisen signaalin digitaaliseen muotoon, joka voidaan lukea

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta. TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan

Lisätiedot

Signaalien datamuunnokset. Digitaalitekniikan edut

Signaalien datamuunnokset. Digitaalitekniikan edut Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena

Lisätiedot

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet

Lisätiedot

Successive approximation AD-muunnin

Successive approximation AD-muunnin AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register

Lisätiedot

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Virheen kasautumislaki

Virheen kasautumislaki Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain

Lisätiedot

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (008). Digital audio signal processing (nd ed). Reiss. (008), Understanding sigma-delta modulation: The solved and

Lisätiedot

A/D-muuntimia. Flash ADC

A/D-muuntimia. Flash ADC A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (

Lisätiedot

S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä

S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä S-18.18 Elektroniset mittaukset ja elektroniikan häiriökysymykset 1. Vastaa lyhyesti: a) Mitä on kohina (yleisesti)? b) Miten määritellään kohinaluku? c) Miten / missä syntyy raekohinaa? Vanhoja tenttitehtäviä

Lisätiedot

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka Vfo135 ja Vfp124 Martti Vainio Akustiikka Äänityksen tarkoitus on taltioida paras mahdo!inen signaali! Tärkeimpinä kolme akustista muuttujaa:

Lisätiedot

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen

Lisätiedot

Taitaja2004/Elektroniikka Semifinaali 19.11.2003

Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Teoriatehtävät Nimi: Oppilaitos: Ohje: Tehtävät ovat suurimmaksi osaksi vaihtoehtotehtäviä, mutta tarkoitus on, että lasket tehtävät ja valitset sitten

Lisätiedot

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset valintakriteerit resoluutio ja nopeus Yleisimmät A/D-muunnintyypit:

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Datan käsittely ja tallentaminen Käytännössä kaikkien mittalaitteiden ensisijainen signaali on analoginen Jotta tämä

Lisätiedot

LABORATORIOTYÖ 1 MITTAUSVAHVISTIMET

LABORATORIOTYÖ 1 MITTAUSVAHVISTIMET Työ 1 Mittausvahvistimet LABORATORIOTYÖ 1 MITTAUSVAHVISTIMET Päivitetty: 5/01/010 TP 1 1 Työ 1 Mittausvahvistimet 1. MITTAUSVAHVISTIMET Työn tarkoitus: Työn tarkoituksena on tutustua operaatiovahvistimen

Lisätiedot

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010 1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä

Lisätiedot

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen Flash AD-muunnin Koostuu vastusverkosta ja komparaattoreista. Komparaattorit vertailevat vastuksien jännitteitä referenssiin. Tilanteesta riippuen kompraattori antaa ykkösen tai nollan ja näistä kootaan

Lisätiedot

Signaalien datamuunnokset. Näytteenotto ja pito -piirit

Signaalien datamuunnokset. Näytteenotto ja pito -piirit Signaalien datamuunnokset Muunnoskomponentit Näytteenotto ja pitopiirit Multiplekserit A/D-muuntimet Jännitereferenssit D/A-muuntimet Petri Kärhä 26/02/2008 Signaalien datamuunnokset 1 Näytteenotto ja

Lisätiedot

83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset

83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset TAMPEREEN TEKNILLINEN KORKEAKOULU 83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset email: ari.asp@tut.fi Huone: TG 212 puh 3115 3811 1. ESISELOSTUS Vastaanottimen yleisiä

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 11 ELEKTRONIIKAN LABORAATIOT H.Honkanen OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia TYÖN TAVOITE Tutustua operaatiovahvistinkytkentään

Lisätiedot

Elektroniikka, kierros 3

Elektroniikka, kierros 3 Elektroniikka, kierros 3 1. a) Johda kuvan 1 esittämän takaisinkytketyn systeemin suljetun silmukan vahvistuksen f lauseke. b) Osoita, että kun silmukkavahvistus β 1, niin suljetun silmukan vahvistus f

Lisätiedot

S-108.1020 Mittaustekniikan perusteet Y - Tentti

S-108.1020 Mittaustekniikan perusteet Y - Tentti S-108.1020 Mittaustekniikan perusteet Y - Tentti 15.12.06/Kärhä Merkitse vastauspaperiin laboratoriotöiden suoritusvuosi. 1. Ohessa on 12 väittämää antureista. Ovatko väittämät oikein vai väärin? Oikeasta

Lisätiedot

Vahvistimet. Käytetään kvantisointi alue mahdollisimman tehokkaasti Ei anneta signaalin leikkautua. Mittaustekniikka

Vahvistimet. Käytetään kvantisointi alue mahdollisimman tehokkaasti Ei anneta signaalin leikkautua. Mittaustekniikka Vahvistimet Vahvistaa pienen jännitteen tai virran suuremmaksi Vahvistusta voidaan tarvita monessa kohtaa mittausketjua (lähetys- ja vastaanottopuolella) Vahvistuksen valinta Käytetään kvantisointi alue

Lisätiedot

1 db Compression point

1 db Compression point Spektrianalysaattori mittaukset 1. Työn tarkoitus Työssä tutustutaan vahvistimen ja mixerin perusmittauksiin ja spektrianalysaattorin toimintaan. 2. Teoriaa RF- vahvistimen ominaisuudet ja käyttäytyminen

Lisätiedot

Flash AD-muunnin. suurin kaistanleveys muista muuntimista (gigahertsejä) pieni resoluutio (max 8) kalliita

Flash AD-muunnin. suurin kaistanleveys muista muuntimista (gigahertsejä) pieni resoluutio (max 8) kalliita Flash AD-muunnin Flash AD-muunnin koostuu monesta peräkkäisestä komparaattorista, joista jokainen vertaa muunnettavaa signaalia omaan referenssijännitteeseensä. Referenssijännite aikaansaadaan jännitteenjaolla:

Lisätiedot

Digitaalinen signaalinkäsittely Johdanto, näytteistys

Digitaalinen signaalinkäsittely Johdanto, näytteistys Digitaalinen signaalinkäsittely Johdanto, näytteistys Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn

Lisätiedot

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina ) KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen

Lisätiedot

Laitteita - Yleismittari

Laitteita - Yleismittari Laitteita - Yleismittari Yleistyökalu mittauksissa Yleensä digitaalisia Mittaustoimintoja Jännite (AC ja DC) Virta (AC ja DC) Vastus Diodi Lämpötila Transistori Kapasitanssi Induktanssi Taajuus 1 Yleismittarin

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Tekniikka ja liikenne (5) Tietoliikennetekniikan laboratorio

Tekniikka ja liikenne (5) Tietoliikennetekniikan laboratorio Tekniikka ja liikenne 4.4.2011 1 (5) Tietoliikennetekniikan laboratorio Työ 1 PCM-työ Työn tarkoitus Työssä tutustutaan pulssikoodimodulaation tekniseen toteutustapaan. Samalla nähdään, miten A/Dmuunnin

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Muunnoskomponentit Näytteenotto ja pitopiirit Multiplekserit A/D-muuntimet Jännitereferenssit D/A-muuntimet Petri Kärhä 17/02/2005 Luento 4b: Signaalien datamuunnokset 1 Näytteenotto

Lisätiedot

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Radioamatöörikurssi 2014

Radioamatöörikurssi 2014 Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Radiotekniikka 4.11.2014 Tatu, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus

Lisätiedot

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10 Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.

Lisätiedot

Oikosulkumoottorikäyttö

Oikosulkumoottorikäyttö Oikosulkumoottorikäyttö 1 DEE-33040 Sähkömoottorikäyttöjen laboratoriotyöt TTY Oikosulkumoottorikäyttö T. Kantell & S. Pettersson 2 Laboratoriomittauksia suorassa verkkokäytössä 2.1 Käynnistysvirtojen

Lisätiedot

Kaikki kytkennät tehdään kytkentäalustalle (bimboard) ellei muuta mainita.

Kaikki kytkennät tehdään kytkentäalustalle (bimboard) ellei muuta mainita. FYSE300 Elektroniikka 1 (FYSE301 FYSE302) Elektroniikka 1:n (FYSE300) laboratorioharjoitukset sisältävät kaksi työtä, joista ensimmäinen sisältyy A-osaan (FYSE301) ja toinen B-osaan (FYSE302). Pelkän A-osan

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

Digitaalinen audio & video I

Digitaalinen audio & video I Digitaalinen audio & video I Johdanto Digitaalinen audio + Psykoakustiikka + Äänen digitaalinen esitys Digitaalinen kuva + JPEG 1 Johdanto Multimediassa hyödynnetään todellista ääntä, kuvaa ja videota

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Luennon sisältö 1. Taustaa 2. Antureiden ominaisuudet 3. AD-muunnos 4. Antureiden lukeminen Arduinolla

Lisätiedot

M2A.1000. Suomenkielinen käyttöohje. www.macrom.it

M2A.1000. Suomenkielinen käyttöohje. www.macrom.it M2A.000 Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 2 Ω 2 3 4 5 6 7 8 9 0 2 3 4 5 7 6 8 RCA-tuloliitäntä matalatasoiselle signaalille Kaiutintasoinen

Lisätiedot

TYÖ 2: OPERAATIOVAHVISTIMEN PERUSKYTKENTÖJÄ

TYÖ 2: OPERAATIOVAHVISTIMEN PERUSKYTKENTÖJÄ TYÖ 2: OPERAATIOVAHVISTIMEN PERUSKYTKENTÖJÄ Työselostus xxx yyy, ZZZZZsn 25.11.20nn Automaation elektroniikka OAMK Tekniikan yksikkö SISÄLLYS SISÄLLYS 2 1 JOHDANTO 3 2 LABORATORIOTYÖN TAUSTA JA VÄLINEET

Lisätiedot

Suodattimet. Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth. Suodattimet samalla asteluvulla (amplitudivaste)

Suodattimet. Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth. Suodattimet samalla asteluvulla (amplitudivaste) Suodattimet Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth Suodattimet samalla asteluvulla (amplitudivaste) Kuvasta nähdään että elliptinen suodatin on terävin kaikista suodattimista, mutta sisältää

Lisätiedot

Radioamatöörikurssi 2015

Radioamatöörikurssi 2015 Radioamatöörikurssi 2015 Polyteknikkojen Radiokerho Radiotekniikka 5.11.2015 Tatu Peltola, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus,

Lisätiedot

1 Olkoon suodattimen vaatimusmäärittely seuraava:

1 Olkoon suodattimen vaatimusmäärittely seuraava: Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus

Lisätiedot

1. Perusteita. 1.1. Äänen fysiikkaa. Ääniaalto. Aallonpituus ja amplitudi. Taajuus (frequency) Äänen nopeus

1. Perusteita. 1.1. Äänen fysiikkaa. Ääniaalto. Aallonpituus ja amplitudi. Taajuus (frequency) Äänen nopeus 1. Perusteita 1. Äänen fysiikkaa 2. Psykoakustiikka 3. Äänen syntetisointi 4. Samplaus ja kvantisointi 5. Tiedostoformaatit 1.1. Äänen fysiikkaa ääni = väliaineessa etenevä mekaaninen värähtely (aaltoliike),

Lisätiedot

Ohjelmistoradio. Mikä se on:

Ohjelmistoradio. Mikä se on: 1 Mikä se on: SDR = Software Defined Radio radio, jossa ohjelmisto määrittelee toiminnot ja ominaisuudet: otaajuusalue olähetelajit (modulaatio) olähetysteho etuna joustavuus, jota tarvitaan sovelluksissa,

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin. VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

VIM RM1 VAL0123136 / SKC9068201 VIBRATION MONITOR RMS-MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA. VIM-RM1 FI.docx 1998-06-04 / BL 1(5)

VIM RM1 VAL0123136 / SKC9068201 VIBRATION MONITOR RMS-MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA. VIM-RM1 FI.docx 1998-06-04 / BL 1(5) VIM RM1 VAL0123136 / SKC9068201 VIBRATION MONITOR RMS-MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA FI.docx 1998-06-04 / BL 1(5) SISÄLTÖ 1. KOMPONENTTIEN SIJAINTI 2. TOIMINNAN KUVAUS 3. TEKNISET TIEDOT 4. SÄÄTÖ 5. KALIBROINTI

Lisätiedot

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. Fysiikan mittausmenetelmät I syksy 2013 Malliratkaisut 3 1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. b) Ulostulo- ja sisäänmenojännitteiden

Lisätiedot

M2A.2000. Suomenkielinen käyttöohje. www.macrom.it

M2A.2000. Suomenkielinen käyttöohje. www.macrom.it M2A.2000 Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 2 3 5 6 7 8 9 0 2 3 5 6 7 8 9 2 3 5 6 7 8 9 0 2 3 5 6 7 8 9 RCA-tuloliitäntä matalatasoiselle signaalille High Level -kaiutintasoinen

Lisätiedot

S-108.1010 Mittaustekniikan perusteet A. Esiselostustehtävät 2006. Erityisesti huomioitava

S-108.1010 Mittaustekniikan perusteet A. Esiselostustehtävät 2006. Erityisesti huomioitava S-108.1010 Mittaustekniikan perusteet A Esiselostustehtävät 2006 Ryhmän tulee merkitä vastauspaperiin työn numero, ryhmän numero, työn päivämäärä ja ryhmän jäsenten nimet. Vastaukset on kirjoitettava siististi

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

Radioamatöörikurssi 2013

Radioamatöörikurssi 2013 Radioamatöörikurssi 2013 Polyteknikkojen Radiokerho Radiotekniikka 21.11.2013 Tatu, OH2EAT 1 / 19 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

S-108.1010 Mittaustekniikan perusteet A Tentti

S-108.1010 Mittaustekniikan perusteet A Tentti S-108.1010 Mittaustekniikan perusteet A Tentti 15.12.06 / Kärhä Tehtävät 1-2 käsittelevät luentoja ja ne hyvitetään vuoden 2006 luentokuulustelupisteiden perusteella. Tehtävät 3-5 käsittelevät laboratoriotöitä

Lisätiedot

Perusmittalaitteet 2. Yleismittari Taajuuslaskuri

Perusmittalaitteet 2. Yleismittari Taajuuslaskuri Mittaustekniikan perusteet / luento 4 Perusmittalaitteet 2 Digitaalinen yleismittari Yleisimmin sähkötekniikassa käytetty mittalaite. Yleismittari aajuuslaskuri Huomaa mittareiden toisistaan poikkeaat

Lisätiedot

A / D - MUUNTIMET. 2 Bittimäärä 1. tai. A / D muunnin, A/D converter, ADC, ( Analog to Digital Converter )

A / D - MUUNTIMET. 2 Bittimäärä 1. tai. A / D muunnin, A/D converter, ADC, ( Analog to Digital Converter ) A / D - MUUNTIMET A / D muunnin, A/D converter, ADC, ( Analog to Digital Converter ) H. Honkanen Muuntaa analogisen tiedon ( yleensä jännite ) digitaalimuotoon. Lähtevä data voi olla sarja- tai rinnakkaismuotoista.

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

Supply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet

Supply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet S-108.3020 Elektroniikan häiriökysymykset 1/5 Ryhmän nro: Nimet/op.nro: Tarvittavat mittalaitteet: - Oskilloskooppi - Yleismittari, 2 kpl - Ohjaus- ja etäyksiköt Huom. Arvot mitataan pääasiassa lämmityksen

Lisätiedot

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002. Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!

Lisätiedot

FYS206/5 Vaihtovirtakomponentit

FYS206/5 Vaihtovirtakomponentit FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin

Lisätiedot

a) I f I d Eri kohinavirtakomponentit vahvistimen otossa (esim. http://www.osioptoelectronics.com/)

a) I f I d Eri kohinavirtakomponentit vahvistimen otossa (esim. http://www.osioptoelectronics.com/) a) C C p e n sn V out p d jn sh C j i n V out Käytetyt symbolit & vakiot: P = valoteho [W], λ = valodiodin ilmaisuvaste eli responsiviteetti [A/W] d = pimeävirta [A] B = kohinakaistanleveys [Hz] T = lämpötila

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

1 f o. RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET. U r = I. t τ. t τ. 1 f O. KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala

1 f o. RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET. U r = I. t τ. t τ. 1 f O. KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 7 ELEKTRONIIKAN LABORAATIOT H.Honkanen RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET TYÖN TAVOITE - Mitoittaa ja toteuttaa RC oskillaattoreita

Lisätiedot

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä 1 DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä JK 23.10.2007 Johdanto Harrasteroboteissa käytetään useimmiten voimanlähteenä DC-moottoria. Tämä moottorityyppi on monessa suhteessa kätevä

Lisätiedot

LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI

LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI Päivitetty: 25/02/2004 MV 2-1 2. SPEKTRIANALYSAATTORI Työn tarkoitus: Työn tarkoituksena on tutustua spektrianalysaattorin käyttöön, sekä oppia tuntemaan erilaisten

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet

IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet 1 IMPEDANSSIMITTAUKSIA 1 Työn tavoitteet Tässä työssä tutustut vaihtojännitteiden ja virtojen sekä vaihtovirtapiirissä olevien komponenttien impedanssien suuruuksien eli vaihtovirtavastusten mittaamiseen.

Lisätiedot

1 Tietoliikennelaboratorio V0.0. X

1 Tietoliikennelaboratorio V0.0. X 1 WCDMA SIGNAALIEN MITTAUKSET 4. Käytettävät välineet Signaalianalysaattori FSIQ 3 Rohde&Schwarz Signaaligeneraattori SMIQ 03 Rohde&Schwarz ZKL-2R5 (etsi speksit) 4.1 Aseta Rohde&Schwarz SMIQ signaali

Lisätiedot

IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.

IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen. TL536DSK-algoritmit (J. Laitinen)..5 Välikoe, ratkaisut Millaisia ongelmia kvantisointi aiheuttaa signaalinkäsittelyssä? Miksi ongelmat korostuvat IIR-suodatinten tapauksessa? Tarkastellaan Hz taajuista

Lisätiedot

Vahvistimet ja lineaaripiirit. Operaatiovahvistin

Vahvistimet ja lineaaripiirit. Operaatiovahvistin Vahvistimet ja lineaaripiirit Kotitentti 3 (2007) Petri Kärhä 20/01/2008 Vahvistimet ja lineaaripiirit 1 Operaatiovahvistin (Operational Amplifier, OpAmp) Perusvahvistin, toiminta oletetaan suunnittelussa

Lisätiedot

KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma

KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma KON-C34 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma Mitattava suure Tarkka arvo Mittausjärjestelmä Mitattu arvo Ympäristö Mitattava suure Anturi Signaalinkäsittely

Lisätiedot

Katsaus suodatukseen

Katsaus suodatukseen Katsaus suodatukseen Suodatuksen perustaa, ideaaliset suotimet, käytännön toteutuksia Suodatus Suodatusta käytetään yleensä signaalin muokkaukseen siten, että 2 poistetaan häiritsevä signaali hyötysignaalin

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

Tuntematon järjestelmä. Adaptiivinen suodatin

Tuntematon järjestelmä. Adaptiivinen suodatin 1 1 Vastaa lyhyesti seuraaviin a) Miksi signaaleja ylinäytteistetään AD- ja DA-muunnosten yhteydessä? b) Esittele lohkokaaviona adaptiiviseen suodatukseen perustuva tuntemattoman järjestelmän mallinnus.

Lisätiedot

S Signaalit ja järjestelmät

S Signaalit ja järjestelmät dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala VAHVAVIRTATEKNIIKAN LABORAATIOT H.Honkanen LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET YLEISTÄ YLEISMITTARIN OMINAISUUKSISTA: Tässä laboratoriotyössä

Lisätiedot

Digitaalinen audio & video, osa I. Johdanto. Digitaalisen audion sovellusalueet. Johdanto. Taajuusalue. Psykoakustiikka. Johdanto Digitaalinen audio

Digitaalinen audio & video, osa I. Johdanto. Digitaalisen audion sovellusalueet. Johdanto. Taajuusalue. Psykoakustiikka. Johdanto Digitaalinen audio Digitaalinen audio & video, osa I Johdanto Digitaalinen audio + Psykoakustiikka + Äänen digitaalinen esitys Digitaalinen kuva +JPEG Petri Vuorimaa 1 Johdanto Multimediassa hyödynnetään todellista ääntä,

Lisätiedot

Varauspumppu-PLL. Taulukko 1: ulostulot sisääntulojen funktiona

Varauspumppu-PLL. Taulukko 1: ulostulot sisääntulojen funktiona Varauspumppu-PLL Vaihevertailija vertaa kelloreunoja aikatasossa. Jos sisääntulo A:n taajuus on korkeampi tai vaihe edellä verrattuna sisääntulo B:hen, ulostulo A on ylhäällä ja ulostulo B alhaalla ja

Lisätiedot

T140103 Sähkömittaustekniikka

T140103 Sähkömittaustekniikka T140103 Sähkömittaustekniikka Pekka Rantala Kevät 2015 (9.3.2015) Vaadittavat suoritukset Välikokeiden tai tentin hyväksytty suorittaminen Harjoituksissa/labrassa läsnäolo (100 %) Harjoitusten/labrojen

Lisätiedot

MITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA

MITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA KAJAANIN AMMATTIKORKEAKOL Tekniikan ja liikenteen ala TYÖ 21 ELEKTRONIIKAN LABORAATIOT H.Honkanen MITTALAITTEIDEN OMINAISKSIA ja RAJOITKSIA TYÖN TAVOITE: Tässä laboratoriotyössä tutustumme mittalaitteiden

Lisätiedot