MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma esille uudellee. Aloitetaa biomitodeäöisyydellä. Biomitodeäöisyydestä Olemme laseeet esimerejä, joissa o heitetty oppaa, milloi erra, milloi olme ertaa tai olioa, milloi ahdesa ertaa, milloi jotai muuta. Koetta, joa oostuu useaa ertaa samalaisea toistettavasta, toisistaa riippumattomasta osasta ute olio heittämie, saotaa toistooeesi. Esimeri 37 Palataa vielä Esimeri 9 oripalloilijoihi. Heitä oli olme, A, B ja C ja he heittävät vapaaheito ohi todeäöisyysillä vastaavasti 5%, 0% ja 5%. Tarastellaa yt oripalloilija C:tä. Millä todeäöisyydellä hä oistuu a) ahdella eljästä heitosta b) olmella eljästä heitosta c) aiilla eljällä heitolla? Rataisu Kosa yhde heito epäoistumise todeäöisyys o 0,5, ii se oistumise todeäöisyys o 0,85. Ku pelaaja C heittää eljä heittoa, ysittäise heito oistumie tai epäoistumie ei vaiuta muitte heittoje mahdollisuusii. Joaie heitto o siis erillie tapahtuma verrattua muihi heittoihi. Täte TN(oistuu, oistuu, epäoistuu, epäoistuu) = 0,85 0,85 0,5 0,5 = 0,06565. a) Kasi heittoa voidaa valita eljästä = 6 eri tavalla. Nämä tapauset erottaa toisistaa tai - oetiivi. Kosa heitot ovat erilliset, ii ahdella tapahtumalla imeltä heitto (!) ei ole yhtää yhteistä aliota. Täte TN(oistuu jollai uudesta tavasta) = 0,85 0,85 0,5 0,5 = 0,0975375. Vastaus: Kasi heittoa eljästä oistuu todeäöisyydellä 0,097. b) Kolme heittoa voidaa valita eljästä = eri tavalla. Päättelemällä ute a) ohdassa 3 saadaa TN(oistuu jollai eljästä tavasta) = 0,85 0,85 0,85 0,5 = 0,36875. 3 Vastaus: Kolme heittoa eljästä oistuu todeäöisyydellä 0,368. c) =. Päättelemällä vielä erra ute a) ohdassa saadaa TN(oistuu aiilla eljällä heitolla) = 0,85 0,85 0,85 0,85 = 0,85 = 0,50065. Vastaus: Kaii eljä heittoa oistuvat todeäöisyydellä 0,5.
Esimeri 37 päättely voidaa yleistää toistooeisii, joissa ullai toistettavalla osaoeella o sama oistumise todeäöisyys. Meritää oistumise todeäöisyyttä irjaimella p ja epäoistumise todeäöisyyttä irjaimella q, jolloi p + q =. Kosa tapausta voidaa valita :stä vaihtoehdosta eri tavalla ja osa ui tapaus o muista riippumato, ii todeäöisyys sille, että oee sarjasta toistooeesta tapahtuu, o p ( p) = p q. Tätä saotaa biomitodeäöisyydesi. Biomitodeäöisyys: Jos ui osaoee oistumise todeäöisyys o p, ii : toistooee sarjasta oistuu oetta todeäöisyydellä p ( p) = p q, u vielä meritää: p + q = Esimeri 38 Heitetää olioa 0 ertaa. Millä todeäöisyydellä saadaa 6 laavaa? Rataisu Sovelletaa biomitodeäöisyyde aavaa. Nyt aava p =, = 0 ja = 6. Sijoitetaa aavaa: p q 0 = 6 6 = 05 5 = 0,05. Esimeri 39 Heitetää oppaa ahdesa ertaa. Millä todeäöisyydellä saadaa uutoe olme ertaa? Rataisu Käytetää biomitodeäöisyyde aavaa taas. Nyt aava p = 6, p = 6 5, = 8 ja = 3. 3 5 8 5 875 Kaavaa sijoittamalla saadaa yt: = = 0,. 3 6 6 0995 Vastaus: Ku oppaa heitetää ahdesa ertaa, olme uutosta saadaa todeäöisyydellä 0,. Huomaa, että Esimerissä 39 opaheitosta tehtii edellä oleva määritelmä muaie toistooe tarastelemalla asiaa äöulmasta tuleeo uutoe vai ei.
Biomitodeäöisyys, u =/ 0,500 0,375 6 0,33 8 0,73 0 0,6 0,6 0,09 6 0,96 8 0,85 0 0,76 Biomijaaumasta Luvussa 3 - Tuusluvut tutimme frevessijaaumia. Ne ovat tauluoita, joissa luetellaa oetuloset ja iitte toetutueet tai eustetut luumäärät. Todeäöisyysjaaumat puolestaa luetteloivat todeäöisyysiä. Biomijaaumalla taroitetaa biomitodeäöisyyde jaaumaa. Biomijaauma o esimeri disreeteistä eli epäjatuvista jaaumista. Kosa biomitodeäöisyys o toistooee todeäöisyys, biomijaauma tauluoi toistooeitte todeäöisyysiä. Tarastellaa biomijaaumaa esimeri valossa. Esimeri 0 Valitaa toistooeesi olio heittämie. Lasetaa todeäöisyyttä, että heittotulosista puolet o ruuia ja puolet laavoja, u olioa heitetää erilaisia määriä. Laaditaa tulosista tauluo. Mitä isomma tauluo siä laadit itse, sitä eemmä hyödyt tietooee äyttämisestä tässä esimerissä. Varsii diagrammi laatimie aattaa tehdä tietooeella. Millaisia luuarvoja odotat eaoo? Tarvitsemme biomitodeäöisyyde aavaa yt muodossa =, missä =,, 6,, osa ythä =. Ohessa o tauluo ja diagrammi : arvoo 0 saaa eli 0 tapausta.
Todeäöisyys r=l 0,600 0,500 0,00 TN 0,300 0,00 0,00 0,000 6 8 0 6 8 0 Parametri Varmemmasi vauudesi liitä muaa vielä diagrammi, joho o lasettu biomitodeäöisyysiä aia : arvoo 350 saaa. Se ei ole paljo. Haluat ehä itse lasea pitemmälle.
Kr = Kl u asvaa 350 0,600 0,500 0,00 0,300 0,00 0,00 0,000 8 3 50 66 8 98 30 6 6 78 9 0 6 58 7 90 306 3 338 Normaalijaauma ja todeäöisyys Palataa ormaalijaaumaa yt todeäöisyyde äöulmasta. Luvussa 3 äytimme esiarvo symbolia x :aa ja esihajoa symbolia s :ää. Toie paljo äytetty mahdollisuus meritä äitä jaauma tuusluuja ovat µ esiarvo symbolia ja σ esihajoa meriä. Kosa varsii jatuvie jaaumie tapausessa, jollaie ormaalijaaumai o, äytetää esiarvo sijasta termiä odotusarvo ja siitä meritää µ, otetaa se yt äyttöö tässä luvussa. Voit hyvi utsua µ :tä odotusarvosi, mutta ajatella sitä edellee esiarvoa. Luvussa 3 äsiteltii myös jaauma ormittamisee liittyviä asioita. Märitellää yt se meritä ja erätää muitai eseisiä meritöjä tähä appaleesee. Oloo x satuaismuuttuja. Jos satuaismuuttuja x uvaaja o ormaalijaauma eli Gaussi äyrä muotoie, se o
ormaalisti jaautuut, ute totesimme jo luvussa 3. Jos x: odotusarvo o µ ja esihajota o σ, ii meritää x ~ N ( 7 ; 3, ) Tämä meritä luetaa (satuaismuuttuja) x o ormaalisti jaautuut esiarvoa µ ja esihajotaa σ tai x o ormaalisti jaautuut parametreia µ ja σ. Esimeri Jos hippihyppiäiste pituudet ovat ormaalisti jaautueet parametreia sitä meritää µ = 7cm, σ =,3 cm, ii ( 7 ; 3, ) x ~ N. Satuaismuuttuja x voidaa ormittaa (atso luua 3), jolloi tätä uutta, ormitettua satuaismuuttujaa meritää usei irjaimella z. Normittamie tapahtuu muuosella z = x x s jolloi z: yhtälö o ( x) x µ σ z = e. σ π
Tällöi satuaismuuttuja z o ormaalisti jaautuut parametreia 0 ja, miä taroittaa ysiertaisesti vai sitä, että z: assa voidaa äyttää ormaalijaauma parametreia 0 ja tauluoita. Esimerit valaissevat asiaa. Esimeri Millä todeäöisyydellä hippihyppiäise pituus o yli 9 cm? Katso Esimeriä. Rataisu x 7,3 Jos siis x ~ N( 7;,3 ), ii z = ~ N( 0; ). Huomaa, että tämä aava voidaa tulita esimerisi ii, että esi väheetää x:stä pois esiarvo epästadardi osuus ja sitte lasetaa, uia mota esihajotaa erotus o. Luetaa tauluoirjaa ute luvu 3 Esimerissä 6 euvottii eli haetaa sieltä ormitettua 9cm 7cm esiarvoa =, 5385. Se o 0,938. Tämä luu o todeäöisyys sille, että,3cm hippihyppiäise pituus o pieempi tai yhtä suuri ui oi 9 cm. Se o siis väheettävä yösestä: 0,938 = 0,68. Lasimella ja lasetaohjelmalla saat taremma arvo, mutta sillä ei ole mitää meritystä. Kyseessähä o vai tilastollie arvio. Vastaus: Hippihyppiäise pituus o yli 9 cm todeäöisyydellä 0,6. Esimeri 3 Luvu 3 Esimeri 6: päättely ataa myös vastause ysymysee Millä todeäöisyydellä satuaisesti valittu hippihyppiäie o pitempi ui 8,0 cm. Maiitussa esimerissä huomattii välitulosessa, että hippihyppiäisistä,06% o pitempiä ui uioitettavat 8 cm. Tämä o tismallee sama asia ui todeäöisyys sille, että hippihyppiäise pituus ylittää 8 cm! Kertaa myös luvu 3 Esimerit 7 ja 8. Esimeri Jogurttipuri sisällö määrä o ormaalisti jaautuut parametreia 00 ml ja 5 ml. Millä todeäöisyydellä ostamasi purillie sisältää jogurttia 00 ml 08 ml? Rataisu Odotusarvo määritelmä muaa puolet pureista sisältää jogurttia eemmä ui 00 ml. 08ml 00ml Haetaa tauluosta luua =, 6 vastaava luuarvo. Se o 0,95. Tämä o siis 5ml todeäöisyys sille, että purissa o oreitaa 08 ml jogurttia. sisällä määrä o siis 00 millilitra ja 08 millilitra välissä todeäöisyydellä 0,95 0,5000 = 0,5. Esimeri 5 Lase satuaismuuttuja odotusarvo, jos todeäöisyys sille, että satuaie mittaus ylittää arvo 6 cm, o 7,% ja jos esihajota o cm. Rataisu
6 cm µ Määritelmä muaa pituutta 6 cm vastaa ormitettu mitta. Kosa 7,% mittausista cm ylittää 6 cm, o 6 cm alittavia mittausia 00%-ys 7,%-ys = 7,6%. Haetaa tauluosta, mitä luua tämä todeäöisyys vastaa. Se o oi 0,600. Kosa tämä o ormitettu arvo, ii 6cm µ saadaa yhtälö = + 0, 600, josta µ = 5,cm. cm Vastaus: Odotusarvo o ymmee tuumaa.
Kirjallisuusviitteet Tieteide Kuigatar. Matematiia historia osa I - II. Carl Boyer, Art House 99, suometaut Kimmo Pietiläie.