INTERFERENSSIN VAIKUTUS LINEAARISESSA MODULAATIOSSA
|
|
- Aapo Kähkönen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 INTERFERENSSIN VIUTUS LINERISESS MOULTIOSS Teolkenneeknkka I a äkkänen Osa
2 Inefeenssn vakuus lneaasessa odulaaossa Radoaausa nefeenssä RFI sn usa äeselsä, kun oa kanoaaloaauus on lähellä uden kasaa. Lsäks kohnaa. Takasellaan deenssen ksaausen kanoaalohäön vakuusa. Se anaa valude äää ös sokassen kohnahäöden ekansea. Havasee, eä häön vakuus suouskkn ppuu palon sä, onko kseessä lneaanen va epälneaanen odulaao. Takasellaan lannea, ossa SB/M-odulaaon svukasa uodosuva kosnsanoasa a kanoaaloon suauuu f f - aaunen häökanoaalo apludlla f häön offseaauus. os os os os Teolkenneeknkka I a äkkänen Osa
3 3 19 Teolkenneeknkka I a äkkänen Osa 15 Inefeenssn vakuus lneaasessa odulaaossa oheenssa lasussa keoaan lasukanoaallolla 2 os a suo. LPF: Nähdään, eä sanoa a nefeenss ova suauuneena lasen lähdössä, kuen ne olva suauuneena kanavassa. Tää on lneaaslle vasaanolle pllnen onasuus. Epälneaasella vehokäälsella lanne on elanen epälneaasuudesa ohuen, vakka M on snänsä lneaanen od. Eseään edellä kuvau sgnaalakenne osonesksenä, oa ääe havannollsen ä VI:ssa apahuu. Veko vodaan pää suheessa kanoaaloon aaellaan, eä 0. VI seuaa kuvassa 3.39 vekon puua R. os os e e e e e e e e e e e Re Re
4 Inefeenssn vakuus epäln. vehokäälasussa oeaan aep kaava uueen uooon gonoeaa kääen: os os os [ os os sn sn] [ os os ] os sn sn Jos >>, älkänen e on ekkseön, ollon saadaan: os os El penen nefeenssason apauksessa kohen lasu a VI ova denses C-koponen oleeaan poseuks. Teolkenneeknkka I a äkkänen Osa
5 5 19 Teolkenneeknkka I a äkkänen Osa 15 Inefeenssn vakuus epäln. vehokäälasussa Jos <<, 3.170:n älkänen e e ole enää ekkseön. un >>, älkänen e vesässä kaavassa on pen. Nähdään, eä nfoaao a häö evä ole enää suauuneena, kuen koheenssa lasussa, vaan ne keova osaan. Sen seuauksena nfoaao eneeään vehokäälasussa, kun >> s. nfoaao häö ~ häö. [ ] [ ] [ ] [ ] sn sn os sn os os os os sn sn os os os os sn sn os os os os os os L L L L os os os Häö Häö Infoaao
6 Inefeenssn vakuus epäln. vehokäälasussa Häö vakuaa addvses Häö vakuaa ulplkavses Vehokäälasussa apludlaan suuna aauuskoponena pdeään auoaases kanoaalona. Jos >>, efekvsellä kanoaallolla on aauuena, a VI o kuen koheen lasu. Jos >>, vakuavaks kanoaalloks ulee aalo aauudella a nfoaao odulouukn shen. Tää nfoaaon palauuaona enesä kusuaan knnslöks, oka ohuu VI:n epälneaasesa luoneesa. Se lenee ös kohnan vakuaessa sekä PM & FM -odulaaolla. Huo! addvsessakn apauksessa häö eenkn lenee VI:n lähdössä. Sen elnoseks avaan es. häönvaennna. Teolkenneeknkka I a äkkänen Osa
7 INTERFERENSSIN VIUTUS EPÄLINERISISS ULMMOULTOISS Teolkenneeknkka I a äkkänen Osa
8 8 19 Teolkenneeknkka I a äkkänen Osa 15 ulaodulaaon a häökanoaallon peuskaava Tullaan havaseaan, eä häön vakuus on elanen kun ln. od.. nals anaa veä ös kohnakääsesä. Oleeaan, eä dsknaaon saapuu oduloaon kanoaalo a häökanoaalo aauudella Huo: ln. od. ap. ol ös sanoa ukana. Jos >>, nn vodaan appoksoda: [ ] R R ψ ψ os sn an sn os os sn sn os os os os os R ψ sn os os 1 sn os
9 sknaaon vase häöön PM- a FM-odulaaolla sknaaon lähö PM:lle: sknaaon lähö FM:lle: π FM:lla häön apludvakuus on sä suuep ä kauepana häökanoaalo on keskaauudesa! PM:lla se e pu :sä. Lsäks nähdään, eä häövakuusa vodaan penenää :n avoa kasvaaalla. un <<, edellsen kalasa oleuksa e voda ehdä, ekä dsk. o knnksen läpuolella, oen laneen anals vakeapaa. Jonknlanen näkes saadaan ukalla häön vaheen θ vakuusa oson häö on ss aan funkona kevä oson. nalsssä käeään geoean eoa, eä -säesen pän ssään äävän θ-kulasen sekon kaaen puus s θ. PM FM 1 2 sn d d sn { e e } ], θ Re [ f os Teolkenneeknkka I a äkkänen Osa
10 ulaodulaao a häökanoaalo vekoesksenä Takasellaan kolea elasa apausa: selväs suuep kun. hukan suuep kun. hukan penep kun. Teolkenneeknkka I a äkkänen Osa
11 11 19 Teolkenneeknkka I a äkkänen Osa 15 ulaodulaao a häökanoaalo vekoesksenä un selväs suuep kun : Pen uuos θ:ssä aheuaa velä peneän saansuunasen uuoksen esulankulassa ψ, oa dsknaao seuaa. on posvnen suue, kun f > 0, a negavnen, kun f < 0. 0, 2 0, ] [ f d d s θ ψ π ψ θ ψ θ
12 12 19 Teolkenneeknkka I a äkkänen Osa 15 ulaodulaao a häökanoaalo vekoesksenä un hukan suuep kun a θ on lähellä avoa π: Pen posvnen uuos θ:ssä aheuaa suuen negavsen uuoksen kulassa ψ. Seuaa negavnen ännepkk dsk. lähöön, koska dsknaao seuaa kulan uuosnopeua. on negavnen suue, kun f > 0, a posvnen, kun f < 0. π θ ψ π π ψ π θ ψ θ π, 2, ] [ ] [ f d d s
13 ulaodulaao a häökanoaalo vekoesksenä un hukan penep kun a θ on lähellä avoa π: Pen posvnen uuos θ:ssä aheuaa suuen posvsen uuoksen kulassa ψ. Seuaa posvnen pkk dsk. lähöön. s [ π θ ] [ dψ 2π d ][ π ψ ], θ, θ π π on posvnen suue, kun f > 0, a negavnen, kun f < 0. Lsäks ogo keeään, kun θ kasvaa s. ψ kasvaa nopeas 0 2π. Seuaavssa kuvssa on havannollseu edellsä analsä, kun 0.2, 0.9 a 1.1. Ogonkeo-ongelaan palaaan kohna-analsen hedessä. Teolkenneeknkka I a äkkänen Osa 15 f 13 19
14 sknaaon lähö häön apludn funkona Ogon keo Häökanoaallon vakuusa vodaan vaenaa ns. eskoosus älkkoosuseknkalla. Sä käeään ös kohnaa vasaan. Teolkenneeknkka I a äkkänen Osa
15 Eskoosus älkkoosuseknkka Jälkkoosussuodan lasen dsknaaon lähdössä on pllses RC-ppnen LPF, onka 3 db:n kasanleves on palon penep kun nfoaaonn kasanleves s. f 3 << W. f 3 -aauuden älkeen häön apludaso vaenuu sauouu, koska häöaso kasvaa lneaases f :hn veannollses a LPFsuodaen apludvase penenee 1/f-veannollses. FM PM f os sn Teolkenneeknkka I a äkkänen Osa
16 Eskoosus älkkoosuseknkka oska f 3 << W, sanoasgnaal vääs. Sks avaan lpääsöluonenen eskoosussuodan, oka esvääsää sanoaa sen, eä älkkoosuksen älkeen älkeen sanoa palauuu alkupeäseks suodaen sofunkoden ulo on sanoan kannala ekkseön, avolaan ks. Häö vaenee, koska se suauuu vasa kanavassa, ekä sen kule eskoosussuodaen läp. ohna-analsessä osoeaan aeaases, eä ää eknkka vaenaa ehokkaas ös WGN-kohnaa. Teolkenneeknkka I a äkkänen Osa
17 Eskoosus älkkoosuseknkka Meneelän haapuolena on, eä eskoosussuodan koosaa lepä sanoasgnaaln aauuksa, sä seuaa suuenunu aauusdevaao, kä edelleen näk Casonn kaavan ukases suuenuneena kasanleveenä. Usen kuenkn sanoasgnaaln, kuen puheen, suua aauuskoponen oaava van penen osuuden kokonasehosa, oen ongela e ole ekävä. Teolkenneeknkka I a äkkänen Osa
18 Eskoosus älkkoosuseknkka uvassa 4.65 esnvä d vasaa aepaa häön offse-aauua. Teolkenneeknkka I a äkkänen Osa
19 Eskoosus älkkoosuseknkka Eskoosusälkkoosuseknkka o edelleenkn, vakka dsknaao kovaasn vahelukkolasella PLL-lasna akasellaan seuaavana asana. Teolkenneeknkka I a äkkänen Osa
INTERFERENSSIN VAIKUTUS LINEAARISISSA MODULAATIOISSA
1 INTERFERENSSIN VIKUTUS LINERISISS MOULTIOISS Men yksaajunen häökanoaalo haaa lasua? 521357 Teolkenneeknkka I Osa 18 Ka Käkkänen Kevä 2015 KERTUST 2 Kanoaaloodulaaolle: os[2πf φ] Lneaanen odulaao Vahee
KVANTISOINTIKOHINA JA KANAVAN AWGN- KOHINA PULSSIKOODIMODULAATIOSSA
KVANTIOINTIKOHINA JA KANAVAN AWGN- KOHINA PULIKOODIMODULAATIOA Teolkenneeknkka I 5359A Kar Kärkkänen Osa 6 5 Kvansonkohna PCM-järjeselmässä PCM:ssa on kaks vrhelähdeä:. kvansonkohna,. kanavan kohnan aheuama
Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka
IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado
YKSISIVUKAISTAMODULAATIO (SSB)
YKSISIVUKISTODULTIO SSB Tieoliikenneekniikka I 5359 Kari Kärkkäinen Osa 6 0 Yksisivukaisamodulaaion idea DSB:ssa inormaaio on redundanisesi kaheen keraan, s. LSB & USB. Toisen kaisan läheys riiää, olloin
KOHINA KULMAMODULAATIOISSA
OHI ULMMOULIOISS ioliikkiikka I 559 ai äkkäi Osa 4 7 ulaoulaaio ouloii kohia vallissa iskiiaaoi koosuu ivaaoisa ja vhokäyäilaisisa. ivaaoi suaa -sigaali vaihkula uuosopua aajuu uuosa kskiaajuu C ypäillä.
KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN
YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä
YKSISIVUKAISTAMODULAATIO (SSB)
YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio
Soorrea. OUTC'KUMPU Oy.' Malminetsintä. O. POhjamies/pAL ,4 1 (3) VLF -MI'ITAUS. Periaate. Lähetysase.mat
- OUTCKUMPU Oy Malmnesnä O POhames/pAL 94 (3) VLF -MTAUS Peraae Läheysasema VU (= Very M Frequency) -ruauks$sa käyeään apuna 5-0 khz aauusaueea omva asea Näden asemen anenrrl ova pysyä a nssä kulkeva vra
Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi
Flow shop önvaheeju jousava lnja läpvrauspaja Flow shopssa önvaheden järjess on sama alla uoella Kosa vahea vo edelää jono vova ö olla vaheleva ja ö vova ohaa osensa äl ö evä oha osaan puhuaan permuaaoaaaulusa
3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA
S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas
VÄRÄHTELYMEKANIIKKA SESSIO 12: Yhden vapausasteen vaimenematon pakkovärähtely, harmoninen
/ VÄRÄHTELYMEKANIIKKA SESSIO : Yhden vapausaseen vaieneaon pakkoväähely, haoninen kuoiusheäe JOHDANTO Ulkoisisa kuoiuksisa aiheuuvaa väähelyä sanoaan pakkoväähelyksi. Jos syseeissä on vaiennusa, on kyseessä
EPÄLINEAARISET KULMAMODULAATIOT VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM)
1 EPÄLINERISET KULMMODULTIOT VIHEMODULTIO PM J TJUUSMODULTIO FM Mien PM a FM eroava oisisaan? Millainen on kapeakaisainen kulmamodulaaori? 521357 Tieoliikenneekniikka I Osa 14 Kari Kärkkäinen Kevä 2015
VAIHELUKKOTEKNIIKKA JA TAKAISINKYTKETYT DEMODULAATTORIT KULMAMODULAATION ILMAISUSSA
VIHELUOTENII J TISINYTETYT DEMODULTTORIT ULMMODULTION ILMISUSS Vaihohoinn ilmaisumnlmä kulmamoulaaioill? 5357 Tioliiknnkniikka I Osa 9 ari ärkkäinn ä 05 VIHELUO PLL FM & PM -ILMISINPIIRINÄ Ellä on arkaslu
KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA
1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin
S Signaalit ja järjestelmät Tentti
S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ
VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia
8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.
MUODONMUUTOKSET. Lähtöotaksumat:
MUODONMUUTOKSET Lähöoaksuma:. Maeraal on sorooppsa ja homogeensa. Hooken lak on vomassa (fyskaalnen lneaarsuus) 3. Bernoulln hypoees on vomassa (eknnen avuuseora) 4. Muodonmuuokse ova nn penä rakeneen
Sähköstaattinen energia
ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä
Telecommunication engineering I A Exercise 3
Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa 3.63. Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe,
a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön?
L53, Sinaalioria J. Laiinn..5 E3SN, E3SN5Z Väliko, rakaisu Vasaa lyhysi suraaviin kysymyksiin. 6p a Miksi sinaalin aksollisuus on ärkä ominaisuus? Min aksollisuus vaikuaa sinaalin aauussisälöön? b Miä
Korjausrakentaminen Maiju Kianta Metropolia 2014
p y ö r ä k e k u Korjurkenmnen Mju Kn Meropo 2014 M m n v n h e m r k e n n u Rkenneu v. 1934 Arkkeh Thure Heröm TAVOITTEET - äyää rkennu rvoen kunno ueve ukupove - muuoke oeuev oem oev rkennu kunnoen
COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT
COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks
12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa
Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007
Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan
DEE-53000 Sähkömagneettisten järjestelmien lämmönsiirto
DEE-53000 Sähkömageese järjeselme lämmösro Lueo 8 1 Sähkömageese järjeselme lämmösro Rso Mkkoe Dfferessmeeelmä Numeersa rakasua haeaa aluee dskreeesä psesä. Muodoseaa verkko ja eseää dervaaa erousosamäärä.
Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut
Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss
( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN
ENERGIAMARKKINAVIRASTO 1 Le 2 Säkön jakeluverkkoomnnan yryskoasen eosamsavoeen määrely YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY Asanosanen: Vaasan Säköverkko Oy Lyy pääökseen dnro 491/424/2007 Energamarkknavraso
Ohjelmiston testaus ja laatu. Ohjelmistotekniikka dokumentointi
Ohjelmson esaus ja laau Ohjelmsoeknkka dokumenon Ohjelmsoyöhön kuuluu oleellsena osana dokumenen krjoamnen laadukkaden dokumenen uoamnen vakeaa akaaulujen panaessa päälle, dokumenonnsa on helppo npsää
VÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2
/ ÄRÄHELYMEKANIIKKA SESSIO : Usea vapausastee vaeeato oasvärähtely osa MONINKERAISE OMINAISAAJUUDE Sesso MS oreeratu oasuodo { lasetaeetelässä oletett, että o ysertae oasulataauus. arastellaa velä tapausta,
SATE2140 Dynaaminen kenttäteoria syksy /7 Laskuharjoitus 4 / Sähkömagneettiset aaltojen polarisoituminen
SATE14 Dnaainen kenäeoia sks 16 1 /7 Laskuhajoius 4 / Sähköagneeise aalojen polaisoiuinen Tehävä 1. Vapaassa ilassa väähelevän piseläheen aiheuaan palloaallon sähkökenän voiakkuus on A V E, sincos k e.
Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille
Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial
VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali
7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin
Piehingin osayleiskaava 27.10.2014 Kysely alueen asukkaille ja maanomistajille
Phingin osayliskaava 27.10.2014 Kysly alun asukkaill ja maanomistajill Arvoisa vastaanottaja, Raahn kaupunginhallitus on päättänyt aloittaa Phingin osayliskaavan ajaasaistamistyön. Phingin osayliskaava
6. Stokastiset prosessit (2)
Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella
Valmistaminen tai ostaminen varastoon tasainen kysyntä
Valmsamnen varasoon Make-o-sock (MTS) -uoanoapaa käyävä yrykse, joka valmsava loppuuoea a osa erssä ja valmsuksen jälkeen varasova uoee varasoon odoamaan kysynää MTS-uoanomalln euna ova lyhye omusaja asakkaalle,
KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
1 KULMMODULOITUEN SIGNLIEN SPEKTRIN LSKEMINEN Mie laskea eroaa lieaarise odulaaioide apauksesa? Milä spekri äyää epälieaarise prosessi jälkee? 51357 Tieoliikeeekiikka I Osa 15 Kari Kärkkäie Kevä 015 SPEKTRIN
VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS YRITYSVEROTUKSEN KOORDINOINTI JA VEROKILPAILU EUROOPAN UNIONISSA
VTT-ESUSTELULOITTEIT VTT DISCUSSION PPERS 434 YRITYSVEROTUSEN OORDINOINTI J VEROILPILU EUROOPN UNIONISS nss ohonen Valon aloudellnen ukmuskeskus Governmen Insue for Economc Research Helsnk 2007 ISN 978-951-561-749-1
x v1 y v2, missä x ja y ovat kokonaislukuja.
Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen
Lassi Warsta METSÄTEOLLISUUDEN ENERGIATUOTANNOSSA SYNTYVÄN TUHKAN HYÖTYKÄYTTÖ: HAITALLISTEN AINEIDEN KULKEUTUMINEN
TENILLINEN OREAOULU Rakennus- a ympärsöeknkan osaso Lass Warsa METSÄTEOLLISUUEN ENERGIATUOTANNOSSA SYNTYVÄN TUAN YÖTYÄYTTÖ: AITALLISTEN AINEIEN ULEUTUMINEN plomyö oka on äey arkaseavaks opnnäyeenä dplom-nsnöörnuknoa
(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA
Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi
Mittaustekniikan perusteet, piirianalyysin kertausta
Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä
LUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN
LUKU 6 KOHINN VIKUUS NLOGISEN MOULIOIEN SUORIUSKYKYYN ieoliikeeekiikka I 5359 Kari Kärkkäie Osa 6 Luku 6 Kohia vaikuus aalogisii odulaaioihi Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie Kaaaajuie järjeselä
Luento 6 Luotettavuus ja vikaantumisprosessit
Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,
JLP:n käyttämättömät mahdollisuudet. Juha Lappi
JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p
VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte
4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.
VÄRÄHTELYMEKANIIKKA SESSIO 23: Usean vapausasteen vaimenematon ominaisvärähtely osa 1
/ VÄRÄHTELYEANIIA SESSIO : Usean vapausasteen vaeneaton onasvärähtely osa JOHDANTO Usean vapausasteen systeen leyhtälöt ovat ylesessä tapausessa uotoa [ ]{ & } [ C]{ & } [ ] { } { F} & ( un vaennusta e
Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi:
77 Aemmn oleen, eä mars A on dagonalsouva. Tällanen on lanne äsmälleen sllon, un joasen omnasarvon geomernen eraluu on sama un algebrallnen. Täydenneään eoraa seuraavlla uloslla apaussa, jossa monnerasen
Toistoleuanvedon kilpailusäännöt
1.0 Yleisä Toisoleuanvedossa kilpailija suoriaa häjaksoisesi mahdollisimman mona leuanveoa omalla kehonpainollaan. Kilpailijalla on käössään ksi kilpailusuorius sekä asauloksen sauessa mahdollise uusinakierrokse
Systeemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen
Valmistuksen hieno-ohjaus
Valmsuksen heno-ohaus Yksäskonemall Prorson Opmonmall Opmaalse algorm Heurska Aseukse huomoon oava mall Rnnakkase konee Valmsuslna Sekauoano FM-äreselmä Lean-uoanoflosofa CONWIP Kanban Pullonkaula m. Yksäsen
2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt:
84 RDIOTKNIIKN PRUSTT aois. Las a gadini f, n f,, b divgnssi, n c oooi, n on n b- ohdassa.. Ti oaao saava vapaassa ilassa olva nä Mawllin hälö:.. Oloon vapaassa ilassa sähönä oplsivoina sinä. Määiä a aallon
Aamukatsaus 13.02.2002
Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%
Yhden vapausasteen värähtely - harjoitustehtäviä
Dynaiia 1 Liie luuun 8. g 8.1 Kuvan jousi-assa syseeissä on = 10 g ja = 2,5 N/. Siiryä iaaan saaisesa asapainoaseasa lähien. luheellä = 0 s assa on saaisessa asapainoaseassaan ja sillä on nopeus 0,5 /
Riskienhallinnan peruskäsitteitä
Rskenhallnnan peruskäseä Juss Kangaspuna 7. Syyskuua 2011 Työn saa allenaa ja julksaa Aalo-ylopson avomlla verkkosvulla. Mula osn kakk okeude pdäeään. Esyksen ssälö Todennäkösyyspohjanen vekehys aloudellsen
ABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst
W dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
Liikenne- ja viestintävaliokunta Lainsäädäntöjohtaja Hanna Nordström
Halluksen esys HE 203/2017 vp laks solaseduselusa ja eräks shen lyvks laeks Lkenne- ja vesnävalokuna 20.2.2018 Lansäädänöjohaja Hanna Nordsröm Solaseduselun kohee Teduselumeneelmällä saadaan hankka eoa
HERNESAARI OSAYLEISKAAVAEHDOTUS VESIHUOLLON YLEISSUUNNITELMA
HERNESAAR OSAYLESKAAAEHDOTUS ESHUOLLON YLESSUUNNTELMA KS/TEK SSÄLLYSLUETTELO Yä S- v p äöd d ävvä Hvvä K äää ää Nyy S Yä d ävvä Hvvä v v L: L y HELSNGN KAUUNK KAUUNKSUUNNTTELURASTO Y Td Yä y vää H yv-
1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
Tietoliikennesignaalit
ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime
Mat Sovelletun matematiikan erikoistyö. ARCH -mallit Atso Suopajärvi 57512W
Ma-.8 Sovelleun maemakan erkosyö ARCH -mall 9.9.5 Aso Suopajärv 575W Ssällyslueelo OSA I : Teora OSA II: Smulon. Johdano.... Mall.. Paramer.. Parameren esmon.... Kaavan (9) joho 5. Keromsa..6 5. Heeroskedassuuden
Konvoluution laskeminen vaihe vaiheelta Sivu 1/5
S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,
f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)
Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)
Harjoituksen pituus: 90min 3.10 klo 10 12
Pallollse puolustae: Sokea ja ta käspallo/ Lppupallo Tavote: aalteo estäe sjottue puolustavalle puolelle, potku ta heto estäe, syöttäse estäe rstäe taklaus, pae tla vottase estäe sjottue puolustavalle
Ympäristöakatemia 7.-8.6.2010 Rymättylä MITÄ ITÄMEREN HUONO TILA MEILLE MAKSAA? Kari Hyytiäinen MTT
Ympärsöaaema 7.-8.6.2010 Rymäylä MITÄ ITÄMEREN HUONO TILA MEILLE MAKSAA? Kar Hyyänen MTT JOHDANTO Rehevöymnen Iämeren esenen ongelma Ravnneuormus (ypp ja fosfor) Saunnasa levälauoja Iämerellä jo 1800-luvulla
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan
Käyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma
KSU-430/Ten 4..2008/Prof. Seppo Vranen /3 Käyövarmuuden ja kunnossapdon perusee, KSU-430: Ten ma 4..2008 Huom. Vasaus van veen kysymykseen. Funko- ja/a ohjelmoavan laskmen, musnpanojen, luenomonseden ja
Jaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
01/2013. Köyhyyden dynamiikka Suomessa 1995 2008. Eläketurvakeskus. Ilpo Suoniemi
0/203 ELÄKETURVAKESKUKSEN TUTKIMUKSIA PALKANSAAJIEN TUTKIMUSLAITOKSEN TUTKIMUKSIA 4 Köhden dnamkka Suomessa 995 2008 Ilpo Suonem Eläkeurvakeskus PENSIONSSKYDDSCENTRALEN 0/203 ELÄKETURVAKESKUKSEN TUTKIMUKSIA
Ei asemakaavaa. E3 Söörmarkun eritasoliittymä
X= Värn slyks Suunnllu : Y = Tään suunnlan ukaan Y = raknnaa a parannaa X= Mudn suunnln ukaan raknnaa E asakaaaa Tdn hallnnllsssa järjslyssä apahdu uusa Y E Söörarkun raslyä Y Y M a s a Va Y P r R R Va
8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY
Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora
Dynaaminen optimointi ja ehdollisten vaateiden menetelmä
Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä
Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)
Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta
joka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx =
HY / Maemaiikan ja ilasoieeen laios Differeniaalihälö I kevä 09 Harjois 4 Rakaisehdoksia. Rakaise differeniaalihälö = (x + + Rakais: Tehdään differeniaalihälöön lineaarinen mnnos z(x = x + (x + jolloin
t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<
1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5
Talousmatematiikan perusteet
vä9 / orms.3 Talousmatmatiian prustt 6. harjoitus, viio 9 45...3.9 L Ma A R5 Ti 4 6 F453 R Ma 4 F453 L To 8 A R Ma 6 8 F453 R6 To 4 F4 R3 Ti 8 F45 R7 P 8 F453 R4 Ti 4 F453 R8 P F453. Las intgraalit a 6x
P S. Va r äi n. m m2 2. e a / puistossa säilyvät puut. korko muuttuu, kansi uusitaan SVK asv.
TI E f as 8 5 5 pu ke lu pi ip iv - le / te AP 1 4 KI +8 8 +8 9 O le lem ht a ip ss uu a st ol oa ev aa rk ki ip met A L 31 6 L AP P LE IK S E T ei l y tu pu r u va liu m k u at m to äk i in u hl M 22
Öljysäiliö maan alla
Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö
Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi
Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri
Lisäpainoleuanvedon kilpailusäännöt
1.0 Yleisä Lisäpainoleuanvedossa kilpailija suoriaa hden leuanvedon mahdollisimman suurella lisäpainolla. Kilpailijalla on käössään kolme kilpailusuoriusa sekä voiajalla mahdollinen limääräinen SE-ris.
LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015
1 LUKU 7 KOHINAN VAIKUUS ANALOGISEN MODULAAIOIDEN SUORIUSKYKYYN 51357A ieoliikeeekiikka I Osa 4 Kari Kärkkäie Kevä 15 LUKU 7 KOHINA ANALOGISISSA MODULAAIOISSA Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie
3 *ä;r ä:e 5ä ä{ :i. c oo) S g+;!qg *r; Er ; l[$ E ;;iä F:ä ä :E ä: a bo. =. * gäf$iery g! Eä. a is äg*!=."fl: ä; E!, \ ins:" qgg ;._ EE üg.
t AJ 1., t4 t4 \J : h J \) (.) \ ( J r ) tḡr (u (1) m * t *h& r( t{ L.C g :LA( g9; p ö m. gr iop ö O t : U 0J (U.p JJ! ä; >
Jarmo Kuusela PL 467 65101 VAASA 20.10.2009 MAAPERÄTUTKIMUS LAKEUDEN ANKKURI, SEINÄJOKI
YT Rkes Oy Jrmo Ksel P 6 MAAPERÄTUTKMUS 6 VAASA MAAPERÄTUTKMUS AKEUDEN ANKKUR, SENÄJOK Ylesä YT Rkes Oy: (Jrmo Ksel) omeksos o KS-Geokosl sor ohjkmkse es mlle kede Akkrll Seäjoell Aleell eh okrks seessä,
Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona:
Diskreei maemaiikka, sks 00 Harjoius 0, rakaisuisa. Esi viriävä puu suunaamaomalle verkolle G = (X, E, Ψ), kun X := {,,, }, E := { {, }, {, }, {, }, {, }, {, }}, ja Ψ on ieninen kuvaus. Rakaisu. Viriäviä
TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta
KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän
11. Takaisinkytketyt vahvistimet
Kar berg Kar berg. akankykey vahvme. ahvn yyppejä Jännevahvn Ohjaun läheen pääyyppejä Jänne hjau jännelähde ra hjau jännelähde Jänne hjau vralähde ra hjau vralähde v kun >> v kun >> ja >> njänne n en uraan
Epävarmuus diskonttokoroissa ja mittakaavaetu vs. joustavuus
Epävarmuus diskonokoroissa ja miakaavaeu vs. jousavuus Opimoiniopin seminaari - Syksy 2000 / 1 Esielmän sisälö Kirjan Invesmen Under Uncerainy osan I luvu 4 ja 5. Mien epävarmuus diskonokorossa vaikuaa
Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)
J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät
LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1.
S-445 FSIIKK III (ES) Syksy 004, LH 5 Ratkaisut LHSf5-* Osoita, että van der Waalsin kaasun tilavuuden läötilakerroin on R ( b ) R a b Huoaa, että läötilakerroin on annettu oolisen tilavuuden = / ν avulla
KAAVOITUSKATSAUS VALMISTUMASSA OLEVAT KAAVAT 3 VIREILLÄ OLEVAT KAAVAT 6 UUDET KAAVAHANKKEET, EI KAAVOITUSPÄÄTÖSTÄ 18 MAAKUNTAKAAVOITUS 18
OIUU LIU OLE IEILLÄ OLE ä - ä, ä d UUDE HNEE, EI OIUÄÄÖÄ UNOIU OLLIUINEN LIIEE:,,, - d: / O: O, ONLINN d:, Fx: - äö: ()f :wwwf / / Höö, ääö B ä, - H, äö, H, N E,,, OIUU ää ä ä ää d ä ää ä, dää g äö- :
W Hz. kohinageneraattori. H(f) W Hz. W Hz. ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 5 Sivu 1/7
ELEC-A700 LASKUHARJOIUS 5 Svu /7. Satunnassgnaaln x ( t ) keskarvo on V ja keskhajonta 4 V. Mttaukslla on todettu, että x ( t ) ja x ( t + τ ) ovat rppumattoma, kun τ 5µ s. Lsäks tedetään, että x ( t )
Korkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista
Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa
SAVONLINNAN KAUPUNKI KAAVOITUSKATSAUS 2018
ONLINNN UUNI OIUU g OIUU LIU OLE IEILLÄ OLE ä ä, ä d UUDE HNEE, EI OIUÄÄÖÄ UNOIU OLLIUINEN LIIEE:,,, d: / O: O, ONLINN d:, Fx: äö: ()f : wwwf / / Höö, ääö B ä, H, äö, H, N E,,, OIUU ää ä ä ää d ä ää ä,
Vuoden 2004 alkoholiverotuksen muutoksen kulutusvaikutuksen ennustaminen. Linden, Mikael. ISBN 952-458-441-7 ISSN 1458-686X no 13
Vuoden 004 alkoholiverouksen muuoksen kuluusvaikuuksen ennusaminen Linden, Mikael ISBN 95-458-441-7 ISSN 1458-686X no 13 VUODEN 004 ALKOHOLIVEROTUKSEN MUUTOKSEN KULUTUSVAIKUTUKSEN ENNUSTAMINEN Mika Linden
LASTENSUOJELUN TILA LÄNSI- JA KESKI- UUDELLAMAALLA 2015
LASTENSUOJELUN TILA LÄNSI- JA KESKI- UUDELLAMAALLA 2015 2015 Sisältö Lastensuojelun tila 2015 1. LASTENSUOJELUILMOITUKSET 2. LASTENSUOJELUN ASIAKKAAT 3. LASTENSUOJELUN KUSTANNUKSET 4. LASTENSUOJELUN PALVELURAKENNE