RATKAISUT: 13. Harmoninen värähtely
|
|
- Jaana Alanen
- 10 vuotta sitten
- Katselukertoja:
Transkriptio
1 Phyica 9 1 paino 1(7) 13 Haroninen värähtely : 13 Haroninen värähtely 131 a) Voia, jona uuruu on uoraan verrannollinen poieaaan taapainoaeata ja jona uunta on ohti taapainoaeaa b) Suure, joa ilaiee aiayiöä tapahtuvien värähdyten luuäärän c) Suure, joa ilaiee värähtelijän uurian poieaan taapainoaeata d) Lyhin värähtelyä toituva liieen oa e) Värähtelyä äännöllieti toituva tila f) Vapaati värähtelevän värähtelijän taajuu ) Iliö, joa värähtelijälle yötetään eneriaa en oinaitaajuudella 13 Punnuen aa on = 100 ja punnuen aiheuttaa venyä Δ x = 0,064 Joui-punnu-yteein jaonaia on T = π, joten en värähtelytaajuu on 1 1 f = T = π Kun punnu on levoa jouen päää, iihen vaiuttaa ai voiaa: painovoia alapäin ja jouen ohditaa voia Δx ylöpäin, joa Δx on jouen venyä Koa punnu on levoa voiat ovat yhtä uuret Δ x = Jouen jouivaio on iten 0,100 9,81 = = = 15, 381 Δx 0,064 Joui värähtelee ii taajuudella f 15,381 = 1 1 1,9704 Hz,0 Hz π = π 0,100 = Vatau: Punnu alaa värähdellä taajuudella,0 Hz 133 Heilurin heilahduaia eli jaonaia on T = 1, 0 Mateaattien heilurin heilahduaia on l T = π, jota rataiealla heilurin pituudelle aadaan lauee T l = Kun tähän ijoitetaan 9,81 ( 1,0 ) tunnetut arvot, aadaan l = = 0, 485 4,9 c Vatau: Seuntiheilurin lanan pituu on 4,9 c Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
2 Phyica 9 1 paino (7) 13 Haroninen värähtely 134 Kun punnu riippuu jouea, iihen vaiuttaa ai voiaa: painovoia G alapäin ja jouen ohditaa voia F ylöpäin Voiien uuruudet ovat G = ja F = y, joa y on jouen venyä Koa punnu on levoa, voiat ovat yhtä uuret ja ewtonin II lain F = a uaan voiien vetoriua on nolla F = 0 Kun poitiivinen uunta valitaan alapäin, punnuen liieyhtälö alaariuodoa on y = 0 eli y = Jouen venyä riippuu iten punnueen riputetun punnuen aata niin, että y = Tää on uotoa y = ax olevan uoran yhtälö Yhtälötä nähdään, että uoran fyiaalinen ulaerroin on a = Sijoitetaan ittautuloet y-oordinaatitoon, ja ovitetaan piteiiin uora: Valitaan ulaertoien arvon äärittäiei tarvittavii piteii orio ja pite (300, 50 ) Kulaertoien arvoi aadaan Δy 0,050 = = = 0,1667 Δ 0,300 Jouivaio on iten 9,81 = = = 58, ,1667 Vatau: Tutitun jouen jouivaio on Jouen ja punnuen uodotaan yteein värähtelyn jaonaia on T = π 4 π Korottaalla yhtälö puolittain toieen aadaan T = = Värähtelyn jaonajan neliö on ii verrannollinen punnuen aaan Yhtälö on uotoa y = ax olevan uoran yhtälö Yhtälötä nähdään, että uoran fyiaalinen ulaerroin on a = Laetaan ittautuloten peruteella jaonaiojen neliöt, ijoitetaan arvot T -oordinaatitoon, ja ovitetaan piteiiin uora () T ( ) 0,18 0,34 0,48 0,67 0,81 0,94 Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
3 Phyica 9 1 paino 3(7) 13 Haroninen värähtely Edellä olevata yhtälötä nähdään, että uoran fyiaalinen ulaerroin on = Valitaan ulaertoien arvon äärittäiei tarvittavii piteii orio ja pite (65, 1,0 ) Kulaertoien arvoi aadaan ΔT 1, 0 = = = 1, 600 Δ 0,65 Jouen jouivaio on iten = = = 4, , 600 Vatau: Jouen jouivaio on Kuulan aa on = 0, 4, ouaohdan oreu h = 18, nopeu ouihetellä Δ x = 0, 45 v = 3, ja jänteen uurin poieaa taapainoaeata Kuulaan ohdituva ilanvatu on lennon aiana erityetön, joten tehtävää voidaan äyttää eaanien enerian äilyilaia Uloien voian teeä työ uuttaa jouen ja punnuen uodotaan yteein eaanita eneriaa, W =Δ E e Kun painovoiaan liittyvän potentiaalienerian nollataoi valitaan lähtötao, alua eaaninen eneria on pelää jouen potentiaalieneria Kuulan ouea aaliin eaaninen eneria on painovoiaan liittyvää potentiaalieneriaa ja uulan liie-eneriaa, joten Ep,jouiv = Ep,painov + E eli 1 1 Δ x = h+ v Jouta viritettäeä voia avaa uoraan verrannolliena venyään, joten jännettä taapainoaeata venytettäeä tehdään työ Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
4 Phyica 9 1 paino 4(7) 13 Haroninen värähtely F FΔx W = Δ x =, joa F on voia, joa ohditetaan joueen, un e on viritetty ääriilleen Siten F Δ x 1 = h + v Tätä yhtälötä voidaan rataita yytty voia 0, 4 9, ( h+ v ) F = = = Δx 0, 45 Vatau: Jouta on viritettävä 1,3 :n voialla 3 1, ,3 137 Kun värähtely on vaientunut, punnu on taapainoa F = 0, joten iihen vaiuttavat voiat, jouen ohditaa voia F = y ja painovoia G =, ovat yhtä uuret y = Tää y on tehtävää yytty pituu, illä en verran punnu venyttää jouta taapainotilanteea Se voidaan rataita, un jouen jouivaio tunnetaan: y = Jouen ja punnuen uodotaan yteein jaonaia on T = π, jota aadaan jouivaion laueeei = T Jaonajan arvo voidaan äärittää uvaajata Kuvaajata nähdään, että,5 3, 0 värähdyeen on ulunut aia 3,0, joten yhden jaon aia on T = = 1,,5 Kun taapainoyhtälöön ijoitetaan jouivaion lauee aadaan ( ) 9,81 1, T y = = = = 0,3578 0,36 T Vatau: Joui lyhenee 36 c, un punnu otetaan poi 138 Kuorittaattoan jouen pituu on l 0 = 0,30, jouen jouivaio on = 10,0, punnuen aa = 0,050 ja jouen ja pytyuoran välinen ula θ = 30 Punnueen vaiuttavat vatuvoiat voidaan jättää huoioiatta, joten punnuen liie ääräytyy jouen punnueen ohditaan voian F ja painovoian G peruteella Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
5 Phyica 9 1 paino 5(7) 13 Haroninen värähtely Punnuen liieyhtälö on ewtonin II lain F = a uaan F + G = a Punnuella ei ole iihtyvyyttä pytyuunnaa ja vaaauunnaa iihtyvyy on noraaliiihtyvyyttä, oa punnu on vaaataoa ypyräliieeä Liieyhtälö on uvaan erityllä oordinaatiton valinnalla oponenttiuodoa iten x: Fx = an Fx = Fcoθ, joa jouivoian oponentit ovat y: Fy = 0 Fy = Finθ a) Meritään jouen venyää tunnuella Δ l Jouivoia on haroninen, F = Δ l, joten punnuen pytyuuntainen liieyhtälö F coθ = aa uodon Δ lcoθ = Tätä voidaan rataita yytty jouen venyä 0,050 9,81 Δ l = = = 0, coθ 10,0 co30 b) Punnu on taaiea ypyräliieeä Liieyhtälön vaaauunnaa on F inθ = an oraaliiihtyvyy ulanopeuden avulla ilaituna on punnuen ypyräradan äde on Fin r l θ = ω = ω inθ Tätä aadaan ulanopeudelle lauee r = linθ, joten a v r ω r r n = = = ω r, ja ω = F l Koa ierrotaajuu on 1 ω n = =, jaonaia on T π ( +Δ ) ( +Δ ) ( +Δ ) π π l l0 l l0 l l0 l T = = = π = π = π = π ω F F F l coθ ( 0,30 + 0,05664) co30 = π = 1,1149 1,1 9,81 Vatau: a) Jouen venyä on 57 b) Punnuen ierroaia on 1,1 coθ 139 Poijun oonaiaa on = 4 A = 0,050 ja ellueen poiipinta-ala Koa väliaineen vatu on erityetön, poijuun vaiuttavat voiat ovat paino G ja note Taratellaan voiia eä poijun taapainoaeaa, joa F = 0, että iitä poieutetua aeaa Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
6 Phyica 9 1 paino 6(7) 13 Haroninen värähtely Taapainotilanteea + G = 0, joten note ja paino ovat yhtä uuret 1 = G eli ρv = ρah =, joa A on poijun poiipinta-ala Kun poiju on poieutettu taapainoaeataan, oonaivoia on ( ) ΣF = G = ρ A h+ y Taapainoyhtälön uaan = ρ Ah, joten oonaivoia on ( ) ΣF = ρah+ y ρah= ρay Koa oonaivoia on haroninen, aadaan yhtälö ρ Ay = y Kuvan tapauea poijua on poieutettu taapainoaeata alapäin ja oonaivoian uunta on ylöpäin Ylöpäin poieutettaea oonaivoian uunta on alapäin Koonaivoian uunta on ii aina ohti taapainoaeaa, ja verrannollinen poieaaan Voia on iten haroninen Värähtelijän jouivaio on = ρ A, joten värähtelyn jaonaia on 4 T = π = π = π ρ A , 050 9,81 3 = 1,8386 1,8 Vatau: Poijun värähtelyn jaonaia on 1, Jännittäättöän uiöyden pituu on l 0 = 3, öyden jouivaio hyppääjän aa = 75 = 107 ja Kun uiöyi ei ole löyällä, hyppääjään ohdituu painovoian G liäi uiöyden ohditaa jouivoia F, joa on liiain haroninen Aliaa aeaa uiöyden voian ja hyppääjän iihtyvyyden uunta on ylöpäin, ja ne aavat uurian arvona Kun poitiivinen uunta valitaan ylöpäin, ewtonin II lain F = a perutella hyppääjän liieyhtälö on F G = a Kuiöyden voia on ääriaeaa F = y, ja painovoia G = Hyppääjän liieyhtälö y on iten y = a, ja yytty iihtyvyy on a = Kun painovoian potentiaalienerian nollataoi valitaan hyppääjän alin aea, hyppääjän ja öyden (ja Maan) uodotaalla yteeillä on lavalta irrotea vain painovoian potentiaalieneriaa ja aliaa aeaa, joa hyppääjä on hetellieti levoa, vain jouivoian potentiaalieneriaa Hyppääjään vaiuttavat vatuvoiat ovat erityettöiä, joten voidaan äyttää eaanien enerian äilyilaia Ealu = Eloppu Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
7 Phyica 9 1 paino 7(7) 13 Haroninen värähtely 1 ( ) y = l0 + y y = l0 + y = 0 y y l0 Rataitaan toien ateen yhtälö 8l0 ± + l y = = ± , , ,81 3 = ± ,953 =, 15,19998 joita alepi rataiu hylätään epäieleäänä Kiihtyvyy aliaa aeaa on iten 107 8, 953 y a = = 9,81 = 31, Vatau: Hyppääjän iihtyvyy on 31, un hän on lähipänä aanpintaa 0 Teijät ja WSOY Oppiateriaalit Oy, 007 Piirroet: Pea Könönen ja teijät
RATKAISUT: 3. Voimakuvio ja liikeyhtälö
Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy
RATKAISUT: 8. Momentti ja tasapaino
Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn
Luentomoniste: Mekaniikka Pasi Repo & Pekka Varis (päivitetty 2.1.06)
Fyiia evät 006 JAMK/IT -Intituutti Luentoonite: Meaniia Pai Repo & Pea Vai (päivitetty..06) 0. Johdanto... 0.. Fyiian ääitelä... 0.. Mittau ja yiöt.... -ulotteita ineatiiaa... 3.. Keivauhti... 3.. Keinopeu...
Kertaustehtäviä. Luku 1. Physica 3 Opettajan OPAS
(4) Luku 57. a) Mekaaniea poikittaiea aaltoliikkeeä aineen rakenneoat värähtelevät eteneiuuntaan vataan kohtiuoraa uunnaa. Eierkkejä ovat uun uaa jouen poikittainen aaltoliike tai veden pinnan aaltoilu.
RATKAISUT: Kertaustehtäviä
Phyica 1 uuditettu paino OPETTAJAN OPAS 1(9) Kertautehtäiä RATKAISUT: Kertautehtäiä LUKU 3. Luua on a) 4 eriteää nueroa b) 3 eriteää nueroa c) 7 eriteää nueroa. 4. Selitetään erieen yhtälön olepien puolien
1. Oheinen kuvio esittää kolmen pyöräilijän A, B ja C paikkaa ajan funktiona.
Fotoni 4 Kertau - 1 Kertautehtäviä Luku 1 1. Oheinen kuvio eittää kolen pyöräilijän A, B ja C paikkaa ajan funktiona. a) Kuka on kulkenut piiän atkan aikavälinä 0...7? b) Milloin B aavuttaa C:n? c) Kenellä
LUKION FYSIIKKAKILPAILU 10.11.2009, ratkaisut PERUSSARJA
LUKION FYSIIKKAKILPAILU 0..009, ratkaiut PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 00 inuuttia.
RATKAISUT: 7. Gravitaatiovoima ja heittoliike
Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä
LUKION FYSIIKKAKILPAILU 8.11.2005 avoimen sarjan vast AVOIN SARJA
LKION FYSIIKKAKILPAIL 8..5 avoien arjan vat AVOIN SARJA Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooitteei, opettajai nii ekä koului nii. Kilpailuaikaa on inuuttia. Sekä tehtävä- että
Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä
Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän
RATKAISUT: 17. Tasavirtapiirit
Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö
MAOL-Pisteitysohjeet Fysiikka kevät 2004
MAOL-Piteityohjeet Fyiikka kevät 004 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa
Mekaniikan jatkokurssi Fys102
Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,
RATKAISUT: 4. Mekaaninen energia
hyica 9 1 pain 1(7) 4 Meaaninen energia : 4 Meaaninen energia 41 a) tentiaalienergia n energian laji, jta appaleella n aeana anita tentiaalienergia vi lla eierii gravitaativurvaiutuen tai juen ptentiaalienergiaa
MAOL-Pisteitysohjeet Fysiikka kevät 2010
MAOL-Piteityohjeet Fyiikka kevät 010 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa
rad s rad s km s km s
otoni 5 6- Ketautehtävien atkaiut Luku. Satelliitti kietää Maata päiväntaaajataoa 50 k Maan pinnan yläpuolella. Sen kietoaika on 90 in. Määitä atelliitin kulanopeu ja atanopeu. Maan ekvaattoiäde on noin
MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.
AMMATIKKA top 7..005 MATEMATIIKAN KOE. ateen ammatillien oulutuen aiien alojen yteinen matematiia ilpailu Nimi: Oppilaito:. Koulutuala:... Luoa:.. Sarjat: MERKITSE OMA SARJA. Teniia ja liienne:... Matailu-,raitemu-
4.3 Liikemäärän säilyminen
Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.
Metallikuulan vieriminen kaltevalla tasolla
1 Metallikuulan vieriinen kaltevalla taolla Mikko Vetola Koulun nii Fyiikka luonnontieteenä FY1-Projektityö 4.6.2002 Arvoana: K+ (10) 2 1. Työn tarkoitu Tehtävänä oli tutkia illaiia liikeiliöitä eiintyy
RATKAISUT: 9. Pyörimisen peruslaki ja pyörimismäärä
Phyic 9. pino (9) 9. Pyöiien peulki j pyöiiäää : 9. Pyöiien peulki j pyöiiäää 9. ) Hituoentti on uue, jok kuv kppleen pyöiihitutt, toiin noen itä, iten vike kppleen pyöiitä on uutt. b) Syteein pyöiiäää
LUKION FYSIIKKAKILPAILU , perussarja PERUSSARJA
LUKION FYSIIKKAKILPAILU 10.11.009, peruarja PERUSSARJA Vataa huolellieti ja iititi! Kirjoita tektaten koepaperiin oa niei, kotiooitteei, ähköpotiooite, opettajai nii ekä koului nii. Kilpailuaikaa on 100
SÄHKÖASEMAN ENSIÖPUOLEN SUUNNITTELUSSA KÄYTETTÄ- VIEN LASKENTAMENETELMIEN KEHITTÄMINEN
aalto-yliopito tenillinen oreaoulu Eletroniian, tietoliienteen ja automaation tiedeunta Rauno Hirvonen SÄHKÖASEMAN ENSIÖPUOLEN SUUNNIELUSSA KÄYEÄ- VIEN LASKENAMENEELMIEN KEHIÄMINEN Diplomityö, joa on jätetty
RATKAISUT: Kertaustehtävät
Phyica 4 OPETTAJAN OPAS (7) Kertautehtävät : Kertautehtävät Luku Piirretään tangentti hetkeä, vataavaan kohtaan Kuvan ukaan tangentin kulakerroin on 4,5 4 oikea vaihtoehto Vatau: B eli B on Taainen liike,
VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi
02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin
KERTAUSTEHTÄVIÄ. LUKU v k = 12 m/s, x = 3,0 km, t =? x. LUKU v = 90 km/h = (90/3,6) m/s = 25 m/s, t = 1 s, s =? Kuljettu matka on m s
Phyica 4 Opettajan OPAS (8) LUKU 46 v k = /, x = 3,0 k, t =? x x Kekinopeuden uuruu on vk = Ratkaitaan aika t = t v 3,0 k t = = 50 = 50 in = 4,667 in 4, in 60 k 47 v k = 50 k/h, x =,5 k, v k = 80 k/h,
VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen
/ ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai
b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.
nergia. Työ ja teho OHDI JA TSI -. Opettaja ja opikelija tekevät hyvin paljon aanlaita ekaanita työtä, kuten liikkuinen, kirjojen ja eineiden notainen, liikkeellelähtö ja pyähtyinen. Uuien aioiden oppiinen
Äänen nopeus pitkässä tangossa
IXPF24 Fyiikka, ryhälaboratoriotyö IST4S1 / E1 / A Okanen Janne, Vaitti Mikael, Vähäartti Pai Jyväkylän Aattikorkeakoulu, IT-intituutti IXPF24 Fyiikka, Kevät 2005, 6 ECTS Opettaja Pai Repo Äänen nopeu
S Piirianalyysi 2 1. Välikoe
S-55.0 Piirianalyyi. Välioe 9.3.007 ae tehtävät eri paperille uin tehtävät 3 5. Muita irjoittaa joaieen paperiin elväti nimi, opielijanumero, urin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Muita
HARMONINEN VÄRÄHTELIJÄ
Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt 1 1 HARMONINEN VÄRÄHELIJÄ 1. yön tavoitteet 1.1 Mittausten taroitus ässä työssä tutustut jasolliseen, määrätyin aiavälein toistuvaan liieeseen,
HARMONINEN VÄRÄHTELIJÄ
Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt HARMONINEN VÄRÄHELIJÄ yön taoitteet ässä työssä tutustut asolliseen, äärätyin aiaälein toistuaan edestaaiseen ärähdysliieeseen. Värähdysliie
Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.
5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41
S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006
S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita
LUKION FYSIIKKAKILPAILU 8.11.2005 perussarjan vastaukset PERUSSARJA
PERUSSARJA Vataa hulellieti ja iititi iiteen tehtäään! Kirjita tetaten epaperiin a niei, tiitteei, ähöptiite, pettajai nii eä ului nii. Kilpailuaiaa n 00 inuuttia. Seä tehtää- että epaperit palautetaan
Esimerkkilaskelma. Jäykistävä CLT-seinä
Eimerilaelma Jäyitävä CLT-einä 30.5.014 Siällyluettelo 1 LÄHTÖTIEDOT... - 3 - LEVYJÄYKISTEEN TIEDOT... - 3-3 ATERIAALI... - 4-4 PANEELILEIKKAUSKESTÄVYYS... - 4-5 LAELLIN LEIKKAUSKESTÄVYYS... - 5-6 LAELLIEN
MAOL-Pisteitysohjeet Fysiikka kevät 2002
MAOL-Piteityhjeet Fyiikka kevät 00 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -/3 p - lakuvirhe, epäielekä tul, vähintään - - vataukea yki erkitevä nuer liikaa -0
Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina
Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on maanantaina 8.8.2016. Kolmea enimmäieä lakua ovelletaan Newtonin 2. ja 3. lakia. T 4.1 (pakollinen):
SATE1150 Piirianalyysi, osa 2 syksy /10 Laskuharjoitus 1: RL- ja RC-piirit
SATE1150 Piirianalyyi, oa 2 yy 2017 1 /10 auharjoitu 1: R ja Rpiirit Tehtävä 1. a) Millainen uodatin on yeeä uvaa 1? Perutele aia taratelemalla unin yittäien omponentin impedanin taajuuäyttäytymitä. b)
BL20A0700 Sähköverkkotekniikan peruskurssi
BLA7 ähöveroteniian perusurssi Viavirrat BLA7 ähöveroteniian perusurssi Viojen aiheuttajat lastollinen ylijännite Laitteiden toiintahäiriö tai virhetoiinta nhiillinen erehdys Yliuoritus BLA7 ähöveroteniian
VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen
9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen
PD-säädin PID PID-säädin
-äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen
C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.
Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on tiitaina 23.5.2017. Ektra-tehtävät vataavat kolmea tehtävää, kun kurin lopua laketaan lakuharjoitupiteitä.
Fy07 Koe Kuopion Lyseon lukio (KK) 1 / 5
y07 Koe 8.9.05 Kuopion yeon lukio (KK) / 5 Vataa kolmeen tehtävään. Vatuken reitani on 60, käämin induktani on 0,60 H ja reitani 8 ja kondenaattorin kapaitani on 80. Komponentit ovat arjaan kytkettyinä
12. laskuharjoituskierros, vko 16, ratkaisut
1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä
7.lk matematiikka. Geometria 1. Janne Koponen versio 2.0
7.lk matematiikka 1 Janne Koponen verio 2.0 Tämä monite on tehty 7.lk. geometrian opetukeen ja olen käyttänyt itä ite Hatanpään koulua. Jo joku opettaja haluaa tätä kuitenkin käyttää omaa opetukeaan, on
Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli
hum.9. oiman potentiaalienergia Potentiaalienergiata puhutaan, kun kappaleeeen vaikuttaa jokin konervatiivinen voima. oima on konervatiivinen, jo en tekemä tö vaikutupieen iirteä tiettä paikata toieen
7. Pyörivät sähkökoneet
Pyörivät ähkökoneet 7-1 7. Pyörivät ähkökoneet Mekaanien energian muuntamieen ähköenergiaki ekä ähköenergian muuntamieen takaiin mekaanieki energiaki käytetään ähkökoneita. Koneita, jotka muuntavat mekaanien
RATKAISUT: 14. Aaltoliike, heijastuminen ja taittuminen
Phya 9 pao (7) 4 Aaltolke, hejatue ja tattue : 4 Aaltolke, hejatue ja tattue 4 a) Aalloptuu o kahde lähä aaa aheea olea ärähteljä älatka b) Aaltolkkee peruyhtälö o = λ f, joa λ o aalloptuu, f o taajuu
RATKAISUT: 5. Liikemäärä ja impulssi
Phyica 9 1. paino 1(9) 5. Liikeäärä ja ipuli : 5. Liikeäärä ja ipuli 5.1 a) Kappaleen liikeäärä on p, joa on kappaleen aa ja kappaleen nopeu. b) Ipuliperiaate: Syteein liikeäärän uuto Δ p aikaälillä Δt
12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
1 Magneetin ympärillä on magneettikenttä Perustehtävät
Phyica 7 Opettajan OPAS (6) Magneetin ympärillä on magneettikenttä Magneetin ympärillä on magneettikenttä Perutehtävät. a) Aineet voidaan luokitella magneettiiin ja ei-magneettiiin aineiiin. Oa ei-magneettiita
VÄRÄHTELYMEKANIIKKA SESSIO 07: Yhden vapausasteen vaimenematon ominaisvärähtely
7/ VÄRÄHTELYMEKNKK SESS 7: Yhden vapausasteen vaieneaton oinaisvärähtely JHDNT inaisvärähtely tarkoittaa ekaanisen systeein liikettä, jossa se liikkuu ilan ulkoisten herätevoiien vaikutusta. inaisvärähtely
Viikkotehtävät IV, ratkaisut
Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää
VÄRÄHTELYMEKANIIKKA SESSIO 23: Usean vapausasteen vaimenematon ominaisvärähtely osa 1
/ VÄRÄHTELYEANIIA SESSIO : Usean vapausasteen vaeneaton onasvärähtely osa JOHDANTO Usean vapausasteen systeen leyhtälöt ovat ylesessä tapausessa uotoa [ ]{ & } [ C]{ & } [ ] { } { F} & ( un vaennusta e
ESIM. ESIM.
1 Vierintäita f r lasetaan samannäöisellä aavalla uin liuuitain: Ihmisunnan erästä suurimmista esinnöistä eli pyörää äytetään sen taia, että vierintäitaerroin µ r on paljon pienempi uin liuuitaerroin:
Yhden vapausasteen värähtely - harjoitustehtäviä
Dynaiia 1 Liie luuun 8. g 8.1 Kuvan jousi-assa syseeissä on = 10 g ja = 2,5 N/. Siiryä iaaan saaisesa asapainoaseasa lähien. luheellä = 0 s assa on saaisessa asapainoaseassaan ja sillä on nopeus 0,5 /
Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa
Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi
RATKAISUT: 18. Sähkökenttä
Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että
KOE 2 Ympäristöekonomia
Helingin yliopio Valinakoe.5. Maaalou-meäieeellinen iedekuna KOE Ympäriöekonomia Sekä A- eä B-oioa ulee aada vähinään 5 pieä. Mikäli A-oion piemäärä on vähemmän kuin 5 pieä B-oio jäeään arvoelemaa. B-OSIO
LAPPEENRANNAN TEKNILLINEN YLIOPISTO
LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,
Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,
Tortai 6..999 = Geometria o hyvä tapa kuvata ykikertaiia kappaleita, mutta kappaleie tullea äärettömä moimutkaiiki, käy iie kuvaamie klaie geometria avulla mahottomaki. Eimerkiki rataviiva pituue määrittämie
Intensiteettitaso ja Doplerin ilmiö
Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0
= 2 1,2 m/s 55 m 11 m/s. 18 m 72 m v v0
Kertaustehtävät. c) Loppunopeus on v = as =, /s 55 /s. 8 7 v v0 3,6 s 3,6 s. c) Kiihtyvyys on a = =,0. t 5 s s Kolessa sekunnissa kuljettu atka on 7 s3 = v0t + at = 3,0 s + (,0 /s ) (3,0 s) 55,5. 3,6 s
( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT
4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan
Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina
Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.
F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20
F Y S I I K K A KERTAUSTEHTÄVIÄ - 0 Oalla eieyiä kyyykiä vaauke ova huoaavai pidepiä kuin iä eierkiki kokeea vaaukela vaadiaan. Kokeea on oaava vain olennainen aia per ehävä. . Muua SI järjeelän ykiköihin
BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen 24.1.2011
BLY Paalulaattojen suunnittelu uitubetonista Petri Manninen BY 56 Paalulaatta - Yleistä Käytetään tyypillisesti peheillä, noraali- tai lievästi ylionsolidoituneilla savioilla ja uilla peheiöillä Mitoitustietojen
YDINSPEKTROMETRIA TENTTI mallivastaukset ja arvostelu max 30 p, pisterajat 15p 1, 18p 2, 21p 3, 24p 4, 27p - 5
5573-5 YDISPEKTROMETRIA TETTI 9.5.05 mallivatauket ja arvotelu max 30 p, piterajat 5p, 8p, p 3, 4p 4, 7p - 5. Mittautehokkuu ja iihen vaikuttavat aiat/ilmiöt gammapektrometriaa (yht. 6 p) Vatau: ilmaiimea
2 Taylor-polynomit ja -sarjat
2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.
RATKAISUT: 21. Induktio
Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön
Esimerkkilaskelma. Liimapuumahapalkki. Liittyy Puuinfo Oy:n julkaisemaan mitoitusohjelmaan
Esierilasela Liiapuuahapali Liittyy Puuino Oy:n julaiseaan oitusohjelaan 1.9.018 1 1.0 Lähtötieot Palijao: =8000 Palin jänneväli: L=0000 Yläreunan altevuus: =67 ap ahapalin poiileiaus: b=15 x H =100 -
2.5 Liikeyhtälö F 3 F 1 F 2
Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä
a. Varsinainen prosessi on tuttua tilaesitysmuotoa:
ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,
MAOL-Pisteitysohjeet Fysiikka kevät 2003
MOL-Piteityohjeet Fyiikka kevät 003 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa
Eksponentti- ja logaritmiyhtälö
Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,
Telecommunication engineering I A Exercise 3
Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa 3.63. Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe,
2 1017/2013. Liitteet 1 2 MUUTOS LASKUPERUSTEISIIN TYÖNTEKIJÄN ELÄKELAIN MUKAISTA TOIMINTAA HARJOITTAVILLE ELÄKESÄÄTIÖILLE
07/03 Liitteet MUUOS LASKUPERUSEISIIN YÖNEKIJÄN ELÄKELAIN MUKAISA OIMINAA HARJOIAVILLE ELÄKESÄÄIÖILLE 07/03 3 Liite VAKUUUSEKNISE SUUREE Näiä laueruteia eiintyät auututeniet uureet laetaan yel:n muaien
2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla
MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un
S Fysiikka III (Est) Tentti
S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I
HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen
Käänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
10 Suoran vektorimuotoinen yhtälö
10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen
POSITIIVISEN LINSSIN POLTTOVÄLI
S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6
Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:
Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,
Sähköstatiikka ja magnetismi Mekaniikan kertausta
Sähöstatiia ja magnetismi Meaniian etausta Antti Haato 17.05.013 Newtonin 1. lai Massan hitauden lai Jatavuuden lai Kappaleen nopeus on vaio tai appale pysyy paiallaan, jos siihen ei vaiuta voimia. Newtonin
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5
5384A RADIOTEKNIIKAN PERUSTEET Haroitu 5. Häviötön 5 Ω:n aaltoohto on päätetty tuntemattomaan impedaniin. Aaltoohdolla olevaki ännitteen eiovan aallon uhteeki aadaan 3 a enimmäinen minimi havaitaan 5 cm:n
KOHINAN JA VAIHEVIRHEEN VAIKUTUS VAIHEKOHERENTEILLA JÄRJESTELMILLÄ
KOHINAN JA VAIHVIRHN VAIKUTUS VAIHKOHRNTILLA JÄRJSTLMILLÄ Mie vaihee epävaruu vaikuaa kohereia ilaiua? Mikä o piloiigaali? 557A Tieoliikeeekiikka I Oa 6 Kari Kärkkäie Kevä 05 VAIHVIRHN YLINN ANALYYSI QSB
S Piirianalyysi 2 1. Välikoe
S-55.0 Piirianalyyi. Välioe.3.0 ae ehävä eri paperille uin ehävä 3 5. Muia irjoiaa joaieen paperiin elväi nimi, opielijanumero, urin nimi ja oodi. Tehävä laeaan oreaoulun oepaperille. Muia papereia ei
Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.
Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.
Fysiikkakilpailu 6.11.2007, avoimen sarjan vastaukset AVOIN SARJA
Fyiikkakilpailu 6.11.007, avoimen ajan vatauket AVOIN SARJA Kijoita tektaten koepapeiin oma nimei, kotiooitteei, ähköpotiooitteei, opettajai nimi ekä koului nimi. Kilpailuaikaa on 100 minuuttia. Sekä tehtävä-
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateolliuuden Kutannuoakeyhtiö Opetuhallitu 00-uotiäätiö Otaa AMMATIKKA top..05 MALLIRATKAISUT Toien ateen ammatillien koulutuken kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH2. f i C C. λ 2, m 1 cos60,0 1, m 1,2 pm. λi λi
S-11436 FYSIIKKA IV (S), Kulutukeku Dipli, Kevät 003, LH LH-1 Ftni, jnka energia n 10,0 kev, törmää leva levaan vapaaeen elektrniin ja irttuu uuntaan, jka mudtaa 60,0 kulman ftnin alkuperäien liikeuunnan
Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL
75 95.9.59F 9.. yyppi 5 VAOX yyppi 5 Mallit: VAOX 75 VAOX 75 VK VAOX 95 VAOX 95 VK Huoneitokohtaieen ilanvaihtoon pien-, rivi- ja kerrotaloihin ulo-/poitoilanvaihto läöntalteenotolla Hyvä uodatu Siäänrakennettu
RATKAISUT: 10. Lämpötila ja paine
Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.
S-55.1220 Piirianalyysi 2 Tentti 1.9.2011
S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen
LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1.
S-445 FSIIKK III (ES) Syksy 004, LH 5 Ratkaisut LHSf5-* Osoita, että van der Waalsin kaasun tilavuuden läötilakerroin on R ( b ) R a b Huoaa, että läötilakerroin on annettu oolisen tilavuuden = / ν avulla
VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia
8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
Talousmatematiikan verkkokurssi. Koronkorkolaskut
Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu: