Luento 2: Kuvakoordinaattien mittaus

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Luento 2: Kuvakoordinaattien mittaus"

Transkriptio

1 Maa Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, ) Luento 2: Kuvakoordinaattien mittaus Mitä pitäisi oppia? Muunnokset informaatiokanavassa (osin kertausta) Erotella kuvaan ja kohteeseen liittyvät pisteet, termistö Eri menetelmät kuvakoordianaattien mittaamiseksi AIHEITA Muodon mittaaminen etäisyyshavainnoin Muunnokset informaatiokanavassa Kuvakoordinaatteja tuottavat laitteet Komparaattorimittaus Mitattavat pisteet Komparaattorin mittanormaalit Stereokomparaattorit ja ylivientikojeet Muodon mittaaminen etäisyyshavainnoin Kohteen muoto voidaan määrittää pelkin etäisyyshavainnoin. Etäisyyshavaintojen vähimmäismäärä riippuu kohteen esitysavaruuden ulottuvuuksien määrästä.yksinkertaisimman 3-D kohteen eli 4 sivuisen pyramidin esittämiseen tarvitaan vähintään kuusi etäisyyshavaintoa. Kohteen muoto esitetään yleensä suorakulmaisessa kolmiulotteisessa koordinaatistossa. Tällöin muodon ilmaisemiseen käytetään etäisyyshavaintojen sijaan 3-D koordinaatteja. Koordinaatiston avulla voidaan esittää myös erillisten kohteiden sijaintia toistensa suhteen. Muoto voidaan mitata kuvilta 2-D etäisyyksinä. Fotogrammetriassa komparaattorimittauksella ymmärretään etäisyyksien mittaamista kuvilta. Yhden kuvan etäisyyshavainnot ilmaistaan 2-D kuvakoordinaatteina. Myös kuvakoordinaatistossa voidaan esittää erillisten kohteiden sijaintia toistensa suhteen. Muotoa määrittävien pisteiden lukumäärä Muodon mittaaminen etäisyyshavainnoin Muodon dimensio Havaittavien etäisyyksien lukumäärä Yhden lisäpisteen edellyttämä havaintojen lukumäärä 1 1-D D D D D D... 4 n 3-D 2 + (n-3) x 4 4

2 Muodon määritys pelkin etäisyyshavainnoin. Muunnokset informaatiokanavassa Geometriset muunnokset 1. Perspektiivinen muunnos 3-D kohde muunnetaan 2-D kuviksi optinen muunnos muunnos tehdään optisena keskusprojektiokuvauksena joka leikataan kuvatasolla 2. Projektiivinen muunnos 2-D kuva muutetaan toiseksi 2-D kuvaksi elektroninen muunnos latentti (piilevä) valokuva muunnetaan näkyväksi kuvaksi analogiakuva muunnetaan digitaaliseksi tai päinvastoin muunnos tehdään joko valokuvalta tai videokuvalta digitoiden 3. Rekonstuoiva muunnos (uudelleen muodostava) 2-D digitaaliset kuvat muunnetaan 3-D digitaaliseksi kohdemalliksi matemaattinen muunnos kuvat tulkitaan ja kohde mitataan kuvakoordinatteina kuvapisteet muunnetaan pisteiksi kohdekoordinaatistossa kohde kuvataan rautalankamallina tai pintamallina Radiometriset muunnokset o Muunnoksen yhteydessä voidaan käsitellä myös kohteen värejä. Kun pintamalliin liitetään värisävyt, puhutaan fotorealistisesta 3-D kohdemallista. Aiheesta lisää: Maa Fotogrammetrian perusteet, luento 4. Mitattavat pisteet Kameraan liittyvät pisteet o kameraan merkittyjä kamerakoordinaatiston pisteitä: reunamerkit o filmille kuvautuvia 2-D pisteitä: réseau-pisteet Kohteen mittauspisteet o esityskoordinaatiston osoittamiseen (orientointi) kohdekoordinaatiston signaloidut kiintopisteet ja luonnolliset tukipisteet, joita käytetään ilmakolmioinnin ja pistetihennyksen lähtöpisteet suunnittelukoordinaatiston nimellispisteet o kohteen mittaamiseen liittyvät pisteet signaloidut pisteet, muodonmuutosten mittauspisteet, jne. kuvilta tulkittavat kohdepisteet (nurkat, risteykset, jne.) Kuvaustavasta johtuvat pisteet

3 o kuvaparin orientointipisteet ja kuvablokissa kuvien väliset liitospisteet o liitospisteinä tulevat kyseeseen joko signaloidut tai yliviedyt pisteet Stereomalleilta tulkitut ja mitatut kohdepinnan 3-D pisteet poikkeavat em. pisteistä sikäli, että ne ovat kohdepinnan havaintoja, eikä samoja pisteitä juuri pyritä mittaamaan muilta malleilta uudestaan. Digitaalikameran pikselit. Digitaalikameran kuvakoordinaatisto määrittyy kuva-anturin asennuksen myötä. Koska kuvakoordinaatisto säilyy kuvasta toiseen samana, reunamerkkejä ei tarvita. Kuvakoordinaatisto toimii myös mittauskoordinaatistona. Tässä kuvassa laatikon nurkkaa lähinnä olevan pikselin kuvakoordinaatit ovat 871 ja 484 (../../../300/luennot/6/6.html#Kuvakoordinaatisto). Kuvakoordinaatisto. Tyypillisesti kuvankäsittelyohjelmat asettavat origon vasempaan ylänurkkaan ja akselit kasvavat oikealle ja alas. Mitään estettä ei kuitenkaan ole sille, että origon sijainti tai akselien kasvusuunnat valittaisiin jotenkin toisin. Jos havainnoissa huomioidaan nurkkaa osoittavat pikselit laajalla alueella, mittauspisteen koordinaatit lasketaan näistä ja ne saadaan osapikselien tarkkuudella. Kuvakoordinaatit muunnetaan kamerakoordinaateiksi origon siirrolla ja koordinaatiston muuttamisella oikeakätiseksi (../../../300/luennot/6/6.html#Kamerakoordinaatisto).

4 Kamerakoordinaatisto kuvatasolla tarkasteltuna. x- ja y-akselien leikkauspiste kuvatasolla osuu kuvan pääpisteeseen. Pääpiste on yleensä lähellä kuvan keskipistettä, mutta oikea pääpisteen sijainti kuvalla saadaan vain kalibroimalla kamera. Todellinen kamerakoordinaatisto sijaitsee siten, että origo (O) on kameran projektiokeskuksessa. Projektiokeskuksen kohtisuoraa etäisyyttä kuvatasosta kutsutaan kameravakioksi. x- ja y-akselien suunnat asetetaan kuvan sivujen suuntaisiksi. Positiivikuvan ja oikeakätisen koordinaatiston tapauksessa z-akseli kasvaa kuvatasosta ylöspäin. Analogiakameran reunamerkit. Mittakamerassa kamerakoordinaatisto näkyy kuvalla reunamerkeissä (kehysmerkit). Reunamerkit sijaitsevat kiinteästi kameran rungossa kuvaportin reunalla. Joissakin mittakameroissa on kuvaporttiin kiinnitetty lasilevy, johon on kaiverrettu tasavälinen ja tarkka réseau-ristikko. Réseau-ristien kamerakoordinaatit määritetään kalibroimalla ja ne toimivat reunamerkkien tavoin tasaisesti yli koko kuva-alan. Kuva mitataan mittalaitteen koordinaatistossa ja muunnos tästä kamerakoordinaatistoon lasketaan reunamerkkien havainnoista. Muunnos on kuvakohtainen ja se pitää määrittää uudestaan samallekin kuvalle,

5 mikäli kuva välillä poistetaan mittalaitteesta. Koordinaatistomuunnoksen muuttujia ovat origon siirto, koordinaatiston kierto ja mittakaava sekä kuvan affiinisuus. Réseau-ristejä käytetään filmin muodonmuutosten korjaamiseen. Oikealla Rolleiflex 6006 metric ja kameran kuvaporttiin asennettu réseau-levy. Rolleiflex 6006 metric, kuva ja siinä kuvautuvat réseau-ristit. Kohdekoordinaatisto tunnetaan tukipisteinä, joita käytetään kolmioinnin ja pistetihennyksen lähtöpisteinä. Koordinaatiston tukipiste voi olla kiintopiste (control point) tai luonnollinen piste (natural control point). Kiintopisteiden koordinaatit tunnetaan ja pisteet signaloidaan ennen kuvausta. Tässä tukipisteenä käytetään mittauskuvalta (alin kuva) valittua kohteen yksityiskohtaa. Yksityiskohdan identifioimiseksi tukipiste kuvattiin myös zoomattuna (ylempi kuva oikealla). Tukipisteen koordinaatit mitattiin kuvauksen jälkeen takymetrillä ja tarkka mittauskohta tallennettiin kuvaamalla (ylempi kuva vasemmalla). o Kiintopisteet../../../300/luennot/8/8.html#Koordinaatisto ja signalointi o Kuvien väliset liitospisteet../../../300/luennot/12/12.html#ilmakolmiointi

6 Kuvakoordinaatteja tuottavat laitteet Kuvia mittaavat laitteet o Komparaattorit pisteen osoitus mittamerkillä kohdistaen kuvakannatinta siirtämällä (kuva liikkuu ja mittamerkki pysyy paikallaan) mittamerkkiä siirtämällä.(kuva pysyy paikallaan) kuvakoordinaattien mittaus liikettä rekisteröiden (komparaattori rekisteröi mittausten aiheuttamat liikkeet) x-liikkeen ja y-liikkeen havaitsemiseen perustuva etäisyyshavainnot mitataan koordinaattiakseleiden suunnassa x _ _ y kaarileikkaukseen perustuva etäisyyshavainnot mitataan kahdesta kiinteästä pisteestä kuvakoordinaatit lasketaan ympyräkaarien leikkauspisteestä o Analyyttiset stereomittauskojeet komparaattoreita, joissa mittamerkki kohdistetaan epäsuorasti käsipyörillä ohjaten (mallikoordinaatistossa X,Y,Z) käsipyörien kiertoliikkeet rekisteröidään rotaatioantureilla ja muunnetaan matemaattisella mallilla kuvakannattimen x- ja y-liikkeiksi => servomoottorit siirtävät kuvia niin, että stereotarkastelu on mahdollista kuvakannattimen liikkeet rekisteröidään, jolloin voidaan kontrolloida kuvaliikeiden toteutuminen tarkasti (=suljettu takaisinkytkentä) o Digitointitabletit sähkömagneettisesti Kuvia lukevat laitteet eli skannerit, jotka tuottavat diskreettejä x- ja y-koordinaatteja o lukupäänä liikkuvat CCD-anturit puolijohteeseen sähköisesti varattu valokennosto kennoston hilajärjestys sisältää koordinaattitiedon (rivi _ _ sarake) voi olla rakenteeltaan rivi- tai kuva-anturi o kuvakannattimena pyörivä rumpu x- ja y-liikkeet rummun pyörimissuunnassa ja tätä vastaan kohtisuorassa lukupään siirtämisen suunnassa (rumpuskannerit) taso lukupään x- ja y-liikkeet tuotetaan askelmoottoreilla ja välitetään hammaspyörillä hihnoille, jotka siirtävät lukupäätä (desktopskannerit) komparaattorin liikkeiksi (fotogrammetriset skannerit) Digitaaliset kamerat o lukupäänä kiinteät CCD-anturit kuvatasolla o kuvien rekisteröinti digitaalisena kuvakorteille videosignaalina analogisena videosignaalina, joka digitodaan uudestaan videodigitointikorteilla

7 Skannerien toimintaperiaate ja rakennevaihtoehtoja. Rumpuskannerissa lukupää muodostuu yhdestä pistemäisestä ilmaisimesta. Kuvaliikkeet saadaan aikaan kiertämällä rumpua ja siirtämällä lukupäätä rummun akselin suuntaan. Tasoskannerissa lukupää voi muodostua ilmaisinrivistä tai ilmaisinmatriisista. Riviskannerissa kuvaa luetaan riveinä ja kohtisuora liike saadaan aikaan siirtämällä riviä kuvan yli. Matriisiskannerissa kuva luetaan siirtämällä matriisia kuvan yli kahdessa toisiaan vastaan kohtisuorassa suunnassa. Matriisin sisällä koordinaatisto muodostuu ilmaisimen omasta rivi- ja sarakekoordinaatistosta. Vexcel VX 4000 Scanner. Komparaattorin johteet muodostavat suorakulmaisen koordinaatiston. Kuvakoordinaatit x ja y rekisteröidään mittamerkin liikkeinä johteiden suuntaan.

8 Monokomparaattori Zeiss PK 1. Komparaattorimittaus Periaatteessa kaikki fotogrammetriset mittaukset ovat komparaattorimittauksia, ja niissä mitataan kohteen muotoa kuvalla. Muoto mitataan 2-D koordinaatteina. Komparaattorimittaus on yksin pistein mittaamista. Koska stereomallia ei ole orientoitu. Komparaattorilla ei voi tehdä malli- eikä kohdekoordinaatein ohjattua jatkuvaa mittausta. Stereokomparaattorissa mittamerkin kohdistus pisteelle voidaan tehdä stereotulkintaa käyttäen, mutta kyse ei ole jatkuvasta stereomittauksesta, koska jokaiseen mittaukseen liittyy kohdistus sekä x- että y- parallaksin suunnassa. Havainnot ovat komparaattorikoordinaatteja ja stereokomparaattorissa myös parallakseja. Havainnoista voidaan laskea o kuvien sisäinen orientointi o kuvien ulkoinen orientointi o kuvien keskinäinen orientointi o pisteiden malli- ja kohdekoordinaatit. Perinteisesti komparaattorimittaus on liitetty tarkkoihin fotogrammetrisiin mittauksiin eli ilmakolmiointiin tai teollisuusmittauksiin, joissa kummassakin mittauspisteet pyritään signaloimaan etukäteen, ja havainnot tehdään joka tapauksessa yksin pistein. Analyyttinen stereomittauskoje koostuu periaattessa kahdesta komparaattorista. Tässä roolissa se toimiikin, kun kuvapari orientoidaan stereomalliksi. Vaikka orientoinnin jälkeen stereotulkintaa ohjataan pelkästään 3-D koordinaatein, komparaattorihavaintoja käytetään koko ajan kojeen 3-D ohjauksen sisäiseen tarkistamiseen (suljettu takaisinkytkentä). Kuva laatikosta, nurkat 2D-kuvakoordinaatistossa ja kuvakoordinaatit.

9 Monokomparaattorin periaate (Kuvan ilmakuva: Lentokuva Vallas Oy). Digitointitabletti (Kuvan ilmakuvat: Lentokuva Vallas Oy). Komparaattorien mittanormaalit Komparaattorimittaus on vertausmittausta: Pisteen 2-D paikka mitataan kuvalla jonkun vertauskoordinaatiston suhteen. Mittanormaali on kalibrointimittauksissa käytettävä vertausmittauslaite. Kuvakoordinaatteja tuottavassa komparaattorissa mittaussuureena on joko pituus (esim. lineaarianturi) tai aika (esim. pikselikello). Vertauskoordinaatisto voi muodostua: o komparaattorin kuvakannattimen liikkeistä, jolloin liikettä mitataan johteen suuntaan esim. askelmoottorein, rotaatioanturein tai lineaarianturein o komparaattorin kuvakannattimeen kaiverretuista suorista, jotka toimivat johteina, jolloin mitattava liike on johdesuuntaan nähden poikittaista, ja sitä mitataan esim. lineaarianturein. o kuvan päälle kuvatusta vertausruudukosta (réseau, grid), joka on asennettu kiinteästi kameran kuvaporttiin, ja välittää kamerakoordinaatiston koko kuva-alalle. o komparaattorin kuvakannattimelle asetetusta vertausruudukosta (réseau, grid, gitteri), joka muodostaa komparaattorikoordinaatiston

10 o kuvaskannerin liikkeistä, jolloin kuvakoordinaatisto tallentuu kuva-alkioiden (pikselien) järjestysluvuiksi o videokameran ilmaisinten järjestysluvuista (rivi, sarake) ja videodigitointikortin kellosignaalista, joka on tahdistettu kameran kellon kanssa ja pilkkoo kamerasta tulevan videosignaalin jälleen riveiksi ja sarakkeiksi o digitointitabletin sähkömagneettisesta kentästä (digitoidut pisteet) komparaattorikoordinaatistosta pitää yleensä tehdä laskennallinen muunnos kamerakoordinaatistoon Komparaattorin kuvakannatin johteineen ja lineaariasteikoineen. Komparaattorin koordinaattianturin lukupää. Koordinaatin lukeminen.

11 Komparaattori voidaan rakentaa myös yhdellä johteella, joka kiertyy kiinteän pisteen ympäri. Mittaushavaintona on pisteen etäisyys r tästä kiertopisteestä. Kuvan pisteet mitataan kahdessa vaiheessa ja mittausten välillä kuvaa kierretään 90 astetta. Kuvakoordinaatit x ja y lasketaan kaarileikkauksena. Kaarileikkaus. Stereokomparaattorit ja ylivientikojeet Stereokomparaattorin periaate.

12 Stereokomparaattori Zeiss PSK 2. Stereokomparaattorin Zeiss PSK 2 mittaustoiminnot. Monokomparaattori ja ylivientikoje Kern CPM1.

13 Monokomparaattorin Kern CPM1 kuvakannattimet. Ylivientipiste merkattuna kuvalle. Ylivientikoje Zeiss PM1. Maa Fotogrammetrian yleiskurssi

Luento 7: Fotogrammetrinen mittausprosessi

Luento 7: Fotogrammetrinen mittausprosessi 7Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 7.2.2003, Päivityksiä: Katri Koistinen, 5.2.2004 ) Luento 7: Fotogrammetrinen mittausprosessi

Lisätiedot

Luento 6: 3-D koordinaatit

Luento 6: 3-D koordinaatit Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 6: 3-D koordinaatit AIHEITA (Alkuperäinen luento: Henrik Haggrén, 16.2.2003, Päivityksiä: Katri Koistinen 5.2.2004

Lisätiedot

Luento 8: Kolmiointi AIHEITA. Kolmiointi. Maa-57.301 Fotogrammetrian yleiskurssi. Luento-ohjelma 1 2 3 4 5 6 7 8 9 10

Luento 8: Kolmiointi AIHEITA. Kolmiointi. Maa-57.301 Fotogrammetrian yleiskurssi. Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 12.10.2004) Luento 8: Kolmiointi AIHEITA Kolmiointi Nyrkkisääntöjä Kuvablokki Blokin pisteet Komparaattorit

Lisätiedot

Luento 5: Stereoskooppinen mittaaminen

Luento 5: Stereoskooppinen mittaaminen Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 5: Stereoskooppinen mittaaminen AIHEITA Etäisyysmittaus stereokuvaparilla Esimerkki: "TKK" Esimerkki: "Ritarihuone"

Lisätiedot

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1 Luento 4 Georeferointi 2007 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)

Lisätiedot

Luento 3: Kuvahavainnot

Luento 3: Kuvahavainnot Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 22.9.2004) Luento 3: Kuvahavainnot Mitä pitäsi oppia? Viimeistään nyt pitäisi ymmärtää kuva-, komparaattori- ja kamerakoordinaatistojen

Lisätiedot

Luento 4 Georeferointi

Luento 4 Georeferointi Luento 4 Georeferointi 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)

Lisätiedot

Luento 11: Stereomallin ulkoinen orientointi

Luento 11: Stereomallin ulkoinen orientointi Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 17.2.2003, Päivityksiä: Katri Koistinen, 23.2.2004 ) Luento 11: Stereomallin ulkoinen

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 6 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 6: Stereo- ja jonomallin muodostaminen

Luento 6: Stereo- ja jonomallin muodostaminen Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 5.10.2004) Luento 6: Stereo- ja jonomallin muodostaminen AIHEITA Keskinäinen orientointi Esimerkki

Lisätiedot

Luento 9 3-D mittaus. fotogrammetriaan ja kaukokartoitukseen

Luento 9 3-D mittaus. fotogrammetriaan ja kaukokartoitukseen Luento 9 3-D mittaus 1 Luennot 2008 JOHDANTO Koko joukko kuvia! Kuvien moniulotteisuus. LUENNOT I. Kuvien ottaminen Mitä kuvia ja miten? Mitä kuvista nähdään? II. III. IV. Kuvien esikäsittely Miten kartoituskuvat

Lisätiedot

Luento 4: Kiertomatriisi

Luento 4: Kiertomatriisi Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 28.9.2004) Luento 4: Kiertomatriisi Mitä pitäisi oppia? ymmärtää, että kiertomatriisilla voidaan kiertää koordinaatistoa ymmärtää, että

Lisätiedot

Luento 7: Kuvan ulkoinen orientointi

Luento 7: Kuvan ulkoinen orientointi Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 6.10.2004) Luento 7: Kuvan ulkoinen orientointi AIHEITA Ulkoinen orientointi Suora ratkaisu Epäsuora

Lisätiedot

Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus

Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 27.9.2005) Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus Mitä pitäsi oppia? Nyt pitäisi viimeistään ymmärtää, miten kollineaarisuusyhtälöillä

Lisätiedot

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Luento 2 Stereokuvan laskeminen 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Aiheet Stereokuvan laskeminen stereokuvan piirto synteettisen stereokuvaparin tuottaminen laskemalla stereoelokuva kollineaarisuusyhtälöt

Lisätiedot

Luento 9: Analyyttinen stereomittaus. Kuvien oikaisu. Ortokuvaus

Luento 9: Analyyttinen stereomittaus. Kuvien oikaisu. Ortokuvaus Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 13.10.2004) Luento 9: Analyyttinen stereomittaus. Kuvien oikaisu. Ortokuvaus AIHEITA Stereomittaus

Lisätiedot

Fotogrammetrian termistöä

Fotogrammetrian termistöä Fotogrammetrian termistöä Petri Rönnholm, Henrik Haggrén, 2015 Hei. Sain eilen valmiiksi mukavan mittausprojektin. Kiinnostaako kuulla yksityiskohtia? Totta kai! (Haluan tehdä vaikutuksen tähän kaveriin,

Lisätiedot

Luento 7 Stereokartoituskojeet. 2007 Maa-57.1030 Fotogrammetrian perusteet 1

Luento 7 Stereokartoituskojeet. 2007 Maa-57.1030 Fotogrammetrian perusteet 1 Luento 7 Stereokartoituskojeet 1 Stereokartoitus (Hannu Hyyppä, Petri Rönnholm, TKK) 2 Fotogrammetrinen prosessi 3 Stereokartoituskoje Stereokartoituskojeessa kuvaparin stereoskooppinen tarkastelu ja tarkka

Lisätiedot

Luento 9. Stereokartoituskojeet

Luento 9. Stereokartoituskojeet Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 9. Stereokartoituskojeet AIHEITA Analogiset stereokartoituskojeet Analyyttiset stereokartoituskojeet Digitaalinen

Lisätiedot

Luento 5. Stereomittauksen tarkkuus Maa Fotogrammetrian perusteet 1

Luento 5. Stereomittauksen tarkkuus Maa Fotogrammetrian perusteet 1 Luento 5 Stereomittauksen tarkkuus 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Stereokuvauksen * tarkkuuteen vaikuttavat asiat tarkkuuden arviointi, kuvauksen suunnittelu ja simulointi stereomallin

Lisätiedot

Maa-57.1030 Fotogrammetrian perusteet

Maa-57.1030 Fotogrammetrian perusteet Maa-57.1030 Fotogrammetrian perusteet Luento 8 Kartoitussovellukset Petri Rönnholm/Henrik Haggrén Mitä fotogrammetrisella kartoituksella tuotetaan? 3D koordinaatteja kohteesta Maaston korkeusmalli Topograafiset

Lisätiedot

Luento 10: Optinen 3-D mittaus ja laserkeilaus

Luento 10: Optinen 3-D mittaus ja laserkeilaus Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 19.10.2004) Luento 10: Optinen 3-D mittaus ja laserkeilaus AIHEITA Optinen 3-D digitointi Etäisyydenmittaus

Lisätiedot

(Petri Rönnholm / Henrik Haggrén, ) Luento 1: Opintojakson järjestäytyminen. Motivointia. Kertausta. Kuvamittauksen vaihtoehdot.

(Petri Rönnholm / Henrik Haggrén, ) Luento 1: Opintojakson järjestäytyminen. Motivointia. Kertausta. Kuvamittauksen vaihtoehdot. Maa-57.301 Fotogrammetrian yleiskurssi (Petri Rönnholm / Henrik Haggrén, 12.9.2005) Luento 1: Opintojakson järjestäytyminen. Motivointia. Kertausta. Kuvamittauksen vaihtoehdot. Mitä pitäisi oppia? Palauttaa

Lisätiedot

Luento Fotogrammetrian perusteet. Henrik Haggrén

Luento Fotogrammetrian perusteet. Henrik Haggrén Luento 8 6.5.2016 Fotogrammetrian perusteet Henrik Haggrén Sisältö Fotogrammetrinen kuvaaminen Avaruussuorat ja sädekimput Sisäinen ja ulkoinen orientointi Kollineaarisuusehto kohteen ja kuvan välillä

Lisätiedot

Luento 3: Keskusprojektiokuvaus

Luento 3: Keskusprojektiokuvaus Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 11.3.2003, Päivityksiä: Katri Koistinen, 20.1.2004) Luento 3: Keskusprojektiokuvaus

Lisätiedot

Luento 7 Stereokartoituskojeet Maa Fotogrammetrian perusteet 1

Luento 7 Stereokartoituskojeet Maa Fotogrammetrian perusteet 1 Luento 7 Stereokartoituskojeet 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Stereokartoitus (Hannu Hyyppä, Petri Rönnholm, TKK) 2008 Maa-57.1030 Fotogrammetrian perusteet 2 Fotogrammetrinen prosessi 2008

Lisätiedot

Maa-57.260. Kameran kalibrointi. TKK/Fotogrammetria/PP

Maa-57.260. Kameran kalibrointi. TKK/Fotogrammetria/PP Kameran kalibrointi Kameran kalibroinnilla tarkoitetaan sen kameravakion, pääpisteen paikan sekä optiikan aiheuttamien virheiden määrittämistä. Virheillä tarkoitetaan poikkeamaa ideaalisesta keskusprojektiokuvasta.

Lisätiedot

Ilmakolmioinnin laadunvalvonta fotogrammetristen pintamallien ja laserkeilausaineiston avulla

Ilmakolmioinnin laadunvalvonta fotogrammetristen pintamallien ja laserkeilausaineiston avulla Ilmakolmioinnin laadunvalvonta fotogrammetristen pintamallien ja laserkeilausaineiston avulla Aalto-yliopiston insinööritieteiden korkeakoulun maankäyttötieteiden laitoksella tehty diplomityö Espoo, toukokuu

Lisätiedot

MAA-C2001 Ympäristötiedon keruu

MAA-C2001 Ympäristötiedon keruu MAA-C2001 Ympäristötiedon keruu Luento 1b Petri Rönnholm, Aalto-yliopisto 1 Laserkeilauksen, fotogrammetrian ja kaukokartoituksen harjoituksista Laserkeilausharjoitus Tarkempi aikataulu julkaistaan lähiaikoina

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

Luento 10 3-D maailma. fotogrammetriaan ja kaukokartoitukseen

Luento 10 3-D maailma. fotogrammetriaan ja kaukokartoitukseen Luento 10 3-D maailma 1 Luennot 2007 JOHDANTO Koko joukko kuvia! Kuvien moniulotteisuus. LUENNOT I. Kuvien ottaminen Mitä kuvia ja miten? Mitä kuvista nähdään? II. III. IV. Kuvien esikäsittely Miten kartoituskuvat

Lisätiedot

Malleja ja menetelmiä geometriseen tietokonenäköön

Malleja ja menetelmiä geometriseen tietokonenäköön Malleja ja menetelmiä geometriseen tietokonenäköön Juho Kannala 7.5.2010 Johdanto Tietokonenäkö on ala, joka kehittää menetelmiä automaattiseen kuvien sisällön tulkintaan Tietokonenäkö on ajankohtainen

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Luento 4: Kolmiointihavainnot

Luento 4: Kolmiointihavainnot Maa-57.220 Fotogrammetrinen kartoitus Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 4: Kolmiointihavainnot Luento 4: Kolmiointihavainnot Reconstruction procedure Kuvahavainnot Kollineaarisuusyhtälö

Lisätiedot

Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry)

Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry) Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry) -luennot: --ti 12-14 M5, to 12-14 M5 --Henrik Haggrén (HH), Petteri Pöntinen (PP) 1. Johdanto ja teoreettisia perusteita I,

Lisätiedot

Luento 4: Kuvien geometrinen tulkinta

Luento 4: Kuvien geometrinen tulkinta Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 4: Kuvien geometrinen tulkinta AIHEITA Muunnokset informaatiokanavassa Geometrisen tulkinnan vaihtoehdot Mittakaava

Lisätiedot

LIITE 1(5) TYÖOHJELMA NUMEERISEN KAAVAN POHJAKARTAN LAATIMINEN. 1. Tehtävän yleismäärittely

LIITE 1(5) TYÖOHJELMA NUMEERISEN KAAVAN POHJAKARTAN LAATIMINEN. 1. Tehtävän yleismäärittely LIITE 1(5) TYÖOHJELMA NUMEERISEN KAAVAN POHJAKARTAN LAATIMINEN 1. Tehtävän yleismäärittely 2. Lähtötilanne Kartoituskohde Tuusulan kunta, Siippoon alue Karttatyyppi numeerinen kaavan pohjakartta Kartoitusalueen

Lisätiedot

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit

Lisätiedot

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg 3D-kuvauksen tekniikat ja sovelluskohteet Mikael Hornborg Luennon sisältö 1. Optiset koordinaattimittauskoneet 2. 3D skannerit 3. Sovelluskohteet Johdanto Optiset mittaustekniikat perustuvat valoon ja

Lisätiedot

FOTOGRAMMETRINEN PISTETIHENNYS

FOTOGRAMMETRINEN PISTETIHENNYS FOTOGRAMMETRINEN PISTETIHENNYS 1. Yleistä 2. Ilmakuvaus SKM Gisair Oy Työssä määritettiin ulkoinen orientointi Sotkamon kunnan keskustan alueen ilmakuvaukselle. Ilmakuvauksen teki SKM Gisair Oy keväällä

Lisätiedot

Piste ja jana koordinaatistossa

Piste ja jana koordinaatistossa 607 Piste ja jana koordinaatistossa ANALYYTTINEN GEOMETRIA MAA5 Kertausta kurssi Eri asioiden välisten riippuvuuksien havainnollistamiseen kätetään usein koordinaatistoesitstä Pstakselilla riippuvan muuttujan

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

TTY Mittausten koekenttä. Käyttö. Sijainti

TTY Mittausten koekenttä. Käyttö. Sijainti TTY Mittausten koekenttä Käyttö Tampereen teknillisen yliopiston mittausten koekenttä sijaitsee Tampereen teknillisen yliopiston välittömässä läheisyydessä. Koekenttä koostuu kuudesta pilaripisteestä (

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

Stereopaikannusjärjestelmän tarkkuus (3 op)

Stereopaikannusjärjestelmän tarkkuus (3 op) Teknillinen korkeakoulu AS 0.3200 Automaatio ja systeemitekniikan projektityöt Stereopaikannusjärjestelmän tarkkuus (3 op) 19.9.2008 14.01.2009 Työn ohjaaja: DI Matti Öhman Mikko Seppälä 1 Työn esittely

Lisätiedot

Leica Sprinter Siitä vain... Paina nappia

Leica Sprinter Siitä vain... Paina nappia Sprinter Siitä vain... Paina nappia Sprinter 50 Tähtää, paina nappia, lue tulos Pölyn ja veden kestävä Kompakti ja kevyt muotoilu Virheettömät korkeuden ja etäisyyden lukemat Toiminnot yhdellä painikkeella

Lisätiedot

Luento 3 Kuvaus- ja mittauskalusto. erikoissovellukset

Luento 3 Kuvaus- ja mittauskalusto. erikoissovellukset Luento 3 Kuvaus- ja mittauskalusto 1 Aiheita Mittakamerat Digitaaliset kamerat Komparaattorit Ohjelmistot 2 Photogrammetry 1907 27 stations 111 photographs 7 geodetic control points 3 Photogrammetric documentation

Lisätiedot

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen 1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

JHS-suositus(luonnos): Kiintopistemittaus EUREF-FIN koordinaattijärjestelmässä

JHS-suositus(luonnos): Kiintopistemittaus EUREF-FIN koordinaattijärjestelmässä JHS-suositus(luonnos): Kiintopistemittaus EUREF-FIN koordinaattijärjestelmässä EUREF-II -päivä 2012 Marko Ollikainen Kehittämiskeskus Maanmittauslaitos MAANMITTAUSLAITOS TIETOA MAASTA Mittausohjeiden uudistamisesta

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Raidegeometrian geodeettiset mittaukset osana radan elinkaarta

Raidegeometrian geodeettiset mittaukset osana radan elinkaarta Raidegeometrian geodeettiset mittaukset osana radan elinkaarta Suunnittelija (Maanmittaus DI) 24.1.2018 Raidegeometrian geodeettisen mittaukset osana radan elinkaarta Raidegeometrian geodeettisilla mittauksilla

Lisätiedot

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2 8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason

Lisätiedot

I Geometrian rakentaminen pisteestä lähtien

I Geometrian rakentaminen pisteestä lähtien I Geometrian rakentaminen pisteestä lähtien Koko geometrian voidaan ajatella koostuvan pisteistä. a) Matemaattinen piste on sellainen, millä EI OLE LAINKAAN ULOTTUVUUKSIA. Oppilaita voi johdatella pisteen

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

LIITE 1(5) TYÖOHJELMA ASEMAKAAVAN POHJAKARTAN TÄYDENNYSKARTOITUS. 1. Tehtävän yleismäärittely

LIITE 1(5) TYÖOHJELMA ASEMAKAAVAN POHJAKARTAN TÄYDENNYSKARTOITUS. 1. Tehtävän yleismäärittely LIITE 1(5) TYÖOHJELMA ASEMAKAAVAN POHJAKARTAN TÄYDENNYSKARTOITUS 1. Tehtävän yleismäärittely 2. Lähtötilanne Kartoituskohde Tuusulan kunta, Vanhakylän alue Karttatyyppi digitaalinen asemakaavan pohjakartta

Lisätiedot

Mittaustekniikka (3 op)

Mittaustekniikka (3 op) 530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 4 Suora ja taso Ennakkotehtävät 1. a) Kappale kulkee yhdessä sekunnissa vektorin s, joten kahdessa sekunnissa kappale kulkee vektorin 2 s. Pisteestä A = ( 3, 5) päästään pisteeseen P, jossa kappale sijaitsee,

Lisätiedot

iwitness-harjoitus, kohteen mallinnus

iwitness-harjoitus, kohteen mallinnus Maa-57.1010, Johdanto valokuvaukseen, fotogrammetriaan ja kaukokartoitukseen iwitness-harjoitus, kohteen mallinnus Harjoituksen kulku tiivistettynä A. Aloitustilaisuus 29.1. klo 14.15. B. Mallinnuskuvien

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

SINI- JA KOSINILAUSE. Laskentamenetelmät Geodeettinen laskenta - 1-1988-1999 M-Mies Oy

SINI- JA KOSINILAUSE. Laskentamenetelmät Geodeettinen laskenta - 1-1988-1999 M-Mies Oy SINI- JA KOSINILAUSE SINILAUSE: Kolmiossa kulman sinien suhde on sama kuin kulman vastaisten sivujen suhde. Toisin sanoen samassa kolmiossa SIN Kulma / Sivu = Vakio (Jos > 100 gon: Kulma = 200 kulma).

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Paraabeli suuntaisia suoria.

Paraabeli suuntaisia suoria. 15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Luento 2: Digitaalinen kuvatuotanto I

Luento 2: Digitaalinen kuvatuotanto I Maa-57.220 Fotogrammetrinen kartoitus Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 2: Digitaalinen kuvatuotanto I Luento 2: Digitaalinen kuvatuotanto I Kuvien laatu Radiometrinen laatu Spektraali

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Rasterikarttojen ja liiteaineistojen päivitysohje SpatialWeb5 Karttapaikka

Rasterikarttojen ja liiteaineistojen päivitysohje SpatialWeb5 Karttapaikka SpatialWeb5 Karttapaikka 22.3.2006 sivu 1 (7) Rasterikarttojen ja liiteaineistojen päivitysohje SpatialWeb5 Karttapaikka SpatialWeb5 Karttapaikka 22.3.2006 sivu 2 (7) Sisältö: 1. KARTTAPAIKKASIVUJEN HAKEMISTORAKENNE...

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot 5. Grafiikkaliukuhihna: () geometriset operaatiot Johdanto Grafiikkaliukuhihnan tarkoitus on kuvata kolmiulotteisen kohdeavaruuden kuva kaksiulotteiseen kuva eli nättöavaruuteen. aikka kolmiulotteisiakin

Lisätiedot

Luento 1: Fotogrammetria? Opintojakson sisältö ja tavoitteet.

Luento 1: Fotogrammetria? Opintojakson sisältö ja tavoitteet. Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 17.1.2003) (Päivitys: Katri Koistinen, 3.2.2004) Luento 1: Fotogrammetria? Opintojakson

Lisätiedot

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 Vastaa kolmeen tehtävistä 1-4 ja tehtävään 5. 1. Selitä lyhyesti mitä seuraavat termit tarkoittavat tai minkä ongelman algoritmi ratkaisee

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

iwitness-harjoitus, kohteen mallinnus

iwitness-harjoitus, kohteen mallinnus Maa-57.1010, Johdanto valokuvaukseen, fotogrammetriaan ja kaukokartoitukseen iwitness-harjoitus, kohteen mallinnus Harjoituksen kulku tiivistettynä A. Aloitustilaisuus 25.1. klo 11.45. B. Mallinnuskuvien

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

Radiotekniikan sovelluksia

Radiotekniikan sovelluksia Poutanen: GPS-paikanmääritys sivut 72 90 Kai Hahtokari 11.2.2002 Konventionaalinen inertiaalijärjestelmä (CIS) Järjestelmä, jossa z - akseli osoittaa maapallon impulssimomenttivektorin suuntaan standardiepookkina

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

PROJECT X. 2D tarkastuksen standardi Mittausteknologian edelläkävijä

PROJECT X. 2D tarkastuksen standardi Mittausteknologian edelläkävijä PROJECT X 2D tarkastuksen standardi Mittausteknologian edelläkävijä 2-dimensioinen kameramittausjärjestelmä Project X.. 2D mittauksen standardi Project X on erilainen. Siinä on otettu käyttöön aivan uusi,

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

FYSA210/2 PYÖRIVÄ KOORDINAATISTO

FYSA210/2 PYÖRIVÄ KOORDINAATISTO FYSA210/2 PYÖRIVÄ KOORDINAATISTO Johdanto Inertiaalikoordinaatisto on koordinaatisto, jossa Newtonin mekaniikan lait pätevät. Tällaista koordinaatistoa ei reaalimaailmassa kuitenkaan ole. Epäinertiaalikoordinaatisto

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

EUREF-FIN JA KORKEUDET. Pasi Häkli Geodeettinen laitos 10.3.2010

EUREF-FIN JA KORKEUDET. Pasi Häkli Geodeettinen laitos 10.3.2010 EUREF-FIN JA KORKEUDET Pasi Häkli Geodeettinen laitos 10.3.2010 EUREF-FIN:n joitain pääominaisuuksia ITRF96-koordinaatiston kautta globaalin koordinaattijärjestelmän paikallinen/kansallinen realisaatio

Lisätiedot

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja

Lisätiedot

Luento 13: Mittausovellukset

Luento 13: Mittausovellukset Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 13: Mittausovellukset AIHEITA Off-line sovelluksia On-line sovelluksia (Alkuperäinen luento: Henrik Haggrén, 11.3.2003,

Lisätiedot

Maa Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Yhteensovitus ja kohdetiedon irrotus SAR- ja optisen alueen datasta

Maa Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Yhteensovitus ja kohdetiedon irrotus SAR- ja optisen alueen datasta Maa-57.270 Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Yhteensovitus ja kohdetiedon irrotus SAR- ja optisen alueen datasta Kevät 2006 Jonne Davidsson 1 Johdanto... 3 2 Aineistojen yhteensovitus

Lisätiedot