Radiotekniikan sovelluksia

Koko: px
Aloita esitys sivulta:

Download "Radiotekniikan sovelluksia"

Transkriptio

1 Poutanen: GPS-paikanmääritys sivut Kai Hahtokari

2 Konventionaalinen inertiaalijärjestelmä (CIS) Järjestelmä, jossa z - akseli osoittaa maapallon impulssimomenttivektorin suuntaan standardiepookkina J ja x - akseli saman epookin kevättasauspisteeseen ja origo on sijoitettu aurinkokunnan barysentriin. Kvasaareihin sidottuna CIS muodostaa eräänlaisen "absoluuttisen" ajasta ja paikasta riippumattoman koordinaatiston. GPS paikanmääritys Kai Hahtokari 2

3 Siirtyminen maahan sidottuun koordinaatistoon Siirryttäessä taivaallisista koordinaateista maahan sidottuihin koordinaatteihin tehdään muunnos CIS:stä CTS:ään neljällä kierrolla, ts. x y z CT S x = R M R S R N R P y z CIS, (1) missä R M = napavariaatio, R S = tähtiaika, R N = nutaatio ja R P = prekessio. Ensin tehdään prekessiosta ja nutaatiosta johtuva korjaus havaintoepookkiin. Tämän jälkeen tehdään kierto z - akselin ympäri Greenwichin keskimääräisen tähtiajan verran, jolloin saadaan x - akseli osoittamaan kevättasauspisteen sijasta havaintohetken keskimääräiseen Greenwichin meridiaaniin. GPS paikanmääritys Kai Hahtokari 3

4 Siirtyminen maahan sidottuun koordinaatistoon Viimeinen muunnos R M kääntää CIS-koordinaatiston z - akselin CTS:ään ottamalla huomioon napavariaation, ts. 1 0 x p R M = 0 1 y p, (2) x p y p 1 missä x p ja y p ovat hetkellisen navan koordinaatit CIO:n suhteen. GPS-järjestelmän koordinaatit ovat jo alunperin havaintohetkessä, koska sateliittien rataelementit annetaan havaintoepookille. Muunnoksissa joudutaan tekemään siis vain tähtiaika- ja napavariaatiokorjaukset. GPS paikanmääritys Kai Hahtokari 4

5 Koordinaattimuunnokset Koordinaattimuunnoksia tehdään, jotta päästään GPS:n avulla saadusta järjestelmästä johokin paikalliseen koordinaatiastoon tai jotta saamme lähtöpisteen koordinaatit paikallisesta globaaliin koordinaatistoon. Toisena koordinaatistona on usein KKJ tai ED50 ja toisena on WGS84, ITRF-nn tai EUREF89. Koordinaattimuunnokset ja niihin liittyvät muunnosparametrit sekä eri koordinaatistojen olemassaolo ovat yleisimmät GPS:n käyttöön liittyvistä ongelmista. Tarkkuusvaatimuksesta ja mitattavan verkon koosta riippuu muunnoksen vaikeus. GPS paikanmääritys Kai Hahtokari 5

6 Helmert-muunnos Siirtyminen kahden eri koordinaatiston välillä suoritetaan usein yleisen yhdenmuotoisuusmuunnoksen eli Helmert-muunnoksen avulla, ts. käytetään kiertoja, origon siirtoa ja mahdollista mittakaavan muutosta: x 2 y 2 = µr x 1 y 1 z 2 z 1 x + y, (3) z missä µ = 1 + m on koordinaatistojen välinen mittakaavakerroin, x, y, z ovat origojen väliset koordinaattierot ja R on kiertomatriisi; 1 e z e y R = e z 1 e x, e y e x 1 missä e x,e y,e z ovat kiertokulmia (laskuissa kulmat radiaaneina, taulukoissa kaarisekuntteina). GPS paikanmääritys Kai Hahtokari 6

7 Bursa Wolf -muunnos Bursa Wolf -muunnoksessa muunnos suoritetaan koordinaatiston origon suhteen: x 2 y 2 z 2 = x 1 y 1 z 1 m e z e y + e z m e x e y e x m missä m, x, y, z,e x,e y,e z kuten Helmert-muunnoksessa. x 1 y 1 z 1 x + y, (4) z GPS paikanmääritys Kai Hahtokari 7

8 Molodensky Badekas -muunnos Molodensky Badekas -muunnoksessa muunnos tehdään mitatun verkon painopisteen suhteen: x 2 y 2 z 2 x 1 x m x = µr y 1 y m + y + z 1 z m z x m y m z m, (5) missä µ,r, x, y, z kuten Helmert-muunnoksessa ja (x m,y m,z m ) T ovat järjestelmän painopisteen koordinaatit: x m y m z m = 1 n x 1i n y 1i n. z 1i n GPS paikanmääritys Kai Hahtokari 8

9 Kartastokoordinaattijärjestelmä Kartastokoordinaattijärjestelmä (KKJ) on Suomen kartoissa käytetty järjestelmä. Ennen KKJ:ää Suomen kartoissa oli Helsingin Yliopiston tähtitornia lähtöpisteenä käyttäen luotu koordinaatisto (Helsingin järjestelmä, Vanha valtion järjestelmä). Vuonna 1970 Maanmittaushallitus siirtyi käyttämään KKJ:ää. Kyseessä on tasoprojektio, jossa maantieteelliset koordinaatit on projisoitu tasolle Gauss Krüger -projektiota käyttäen. Projektion jälkeen koordinaatistoa on siirretty ja kierretty tasossa (kaksiulotteinen Helmert-muunnos). Jos jälkimmäinen vaihe jää pois (kuten usein ulkolaisissa muunnosohjelmissa), niin seurauksena on sadan metrin suuruusluokkaa oleva virhe. GPS paikanmääritys Kai Hahtokari 9

10 Kartastokoordinaattijärjestelmä Tasolle projisoidusta ED50-koordinaateista päästään KKJ:ään tekemällä Helmert-muunnos tasossa: x KKJ = y KKJ a b b x ED50 x a y y ED50, (6) missä a, b, x, y ovat muunnosparametreja. Muunnosketju WGS84/EUREF89 ED50 KKJ on formaalisti oikea ja takaa yhtenäisen tuloksen koko maan alueella. GPS paikanmääritys Kai Hahtokari 10

11 Kartastokoordinaattijärjestelmä Siirtyminen suoraan WGS84/EUREF89:stä KKJ:ään voidaan kohtuullisella tarkkuudella tehdä seuraavalla polynomikaavalla: ϕ KKJ λ KKJ = ϕ WGS + ϕ = λ WGS + λ (7) missä ϕ λ = a 0 + a 10 ϕ WGS + a 01 λ WGS + a 20 ϕ 2 WGS + a 11ϕ WGS λ WGS + a 02 λ 2 WGS = a 0 + b 10 ϕ WGS + b 01 λ WGS + b 20 ϕ 2 WGS + b 11ϕ WGS λ WGS + b 02 λ 2 WGS kertoimet a i j,b i j löytyvät taulukoista ja korjaukset ϕ, λ saadaan kaarisekunteina, kun kulmat ϕ, λ annetaan asteina. GPS paikanmääritys Kai Hahtokari 11

12 Lähtöpisteen koordinaatit Suhteellisessa GPS-mittauksessa vähintään yksi piste jonka koordinaatit tunnetaan. Täydellisen kontrollin saaminen vaatii vähintään kolme tunnettua pistettä. Jos lähtöpisteiden koordinaatit eivät ole samassa koordinaatistossa kuin missä satelliittien rataelementit on annettu, niin on tehtävä koordinaattimuunnos. Väärin valittu koordinaatisto voi olla suurin yksittäinen virhelähde. Jos lähtöpisteitä on vain yksi, niin virhe ei välttämättä tule esiin edes tasoituslaskennan yhteydessä. GPS paikanmääritys Kai Hahtokari 12

13 Lähtöpisteen koordinaatit Käytännössä lähtöpisteistön valinnassa ja laskennassa on otettava huomioon seuraavat seikat: 1. Paikallinen mittaus, jossa tunnetut pisteet ovat KKJ:ssä. Riittää katsoa KKJ-koordinaatteihin tehtävä korjaus kuvasta, jossa on WGS-84:n ja KKJ:n väliset leveys- ja pituusaste-erot, tai laskea korjaus kavalla (7). Lähtökoordinaatin arvoiksi otetaan pisteen KKJ-koordinaatit ja korkeudeksi N60-korkeus. 2. Alueellinen mittaus, jossa on EUREF-FIN -koordinaatistossa tunnettuja pisteitä. Tarkkuusvaatimuksesta ja alueen koosta riippuu mitä muunnoksia tarvitsee tehdä. 3. Valtakunnan laajuinen tai laajempi mitaus, jossa on mukana IGSverkon pisteitä, joiden koordinaatit ovat ITRF-nn:ssä. Tarvitaan kaikkia edellä esitettyjä koordinaattimuunnoksia. GPS paikanmääritys Kai Hahtokari 13

14 Lähtöpisteen väärin valitusta koordinaatistosta johtuva virhe Etäisyydestä ja atsimuutista johtuvat virheet vältetään, kun suoritetaan laskut globaalissa koordinaatistossa ja vasta lopuksi muunnetaan uusi piste haluttuun koordinaatistoon ja karttaprojektiolle. Käytettäessä todellisen ellipsoidikorkeuden sijasta pisteen N60-korkeutta saadaan virheellinen skaalaus. Kun saatu avaruusvektori projisoidaan takaisin ellipsoidille virhe kasvaa huomattavasti. Jotta skaalan oikeellisuus maanlaajuisissa mittauksissa taattaaisiin millimetritasolla, on lähtökoordinaatin ellipsoidikorkeus tunnettava senttimetritarkkuudella. GPS paikanmääritys Kai Hahtokari 14

15 Suomen GPS-verkko Perusverkko on ollut varsin harva. Peruspisteenä on Metsähovin tutkimusaseman IGS-verkkoon kuuluva pysyvä GPS-piste. EUREF-FIN -koordinaatiston peruspisteistön muodostaa Suomen pysyvä GPS-verkko ja vuosina mitatut luokan kolmiopistettä. GPS:n käytön ja sovellusten lisääntyessä pitäisi pyrkiä luopumaan KKJ:stä ja siirtymään esim. EUREF-FIN -pohjaisiin koordinaatteihin. GPS paikanmääritys Kai Hahtokari 15

16 Mahdollisia tenttikysymyksiä Esitä ja selosta muunnos CIS:stä CTS:ään. Esitä Helmert-muunnos. Miten KKJ on määritelty? Mitä on otettava huomioon lähtöpisteistön valinnassa ja laskennassa? GPS paikanmääritys Kai Hahtokari 16

Uusi koordinaatti- ja korkeusjärjestelmä

Uusi koordinaatti- ja korkeusjärjestelmä Uusi koordinaatti- ja korkeusjärjestelmä Markku Poutanen Geodeettinen laitos Uusi koordinaatti- ja korkeusjärjestelmä Taustaa Uuden koordinaattijärjestelmän perusteet JHS ja käyttöönotto Uusi korkeusjärjestelmä

Lisätiedot

EUREF ja GPS. Matti Ollikainen Geodeettinen laitos. EUREF-päivä 29.1.2004 Teknillinen korkeakoulu Espoo

EUREF ja GPS. Matti Ollikainen Geodeettinen laitos. EUREF-päivä 29.1.2004 Teknillinen korkeakoulu Espoo EUREF ja GPS Matti Ollikainen Geodeettinen laitos EUREF-päivä 29.1.2004 Teknillinen korkeakoulu Espoo Kuinka EUREF sai alkunsa? EUREF (European Reference Frame) o Perustettiin Kansainvälisen geodeettisen

Lisätiedot

EUREF-FIN/N2000-MUUNNOKSET HELSINGIN KAUPUNGISSA

EUREF-FIN/N2000-MUUNNOKSET HELSINGIN KAUPUNGISSA 1 (10) EUREF-FIN/N2000-MUUNNOKSET HELSINGIN KAUPUNGISSA 5.3.2012 2 (10) Sisältö: 1 Johdanto... 3 1.1 Muunnosasetukset paikkatieto-ohjelmistoissa... 3 1.2 Lisätiedot... 3 2 Korkeusjärjestelmän muunnos NN

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

RAPORTTI 04013522 12lUMVl2001. Urpo Vihreäpuu. Jakelu. OKMElOutokumpu 2 kpl PAMPALON RTK-KIINTOPISTEET. Sijainti 1:50 000. Avainsanat: RTK-mittaus

RAPORTTI 04013522 12lUMVl2001. Urpo Vihreäpuu. Jakelu. OKMElOutokumpu 2 kpl PAMPALON RTK-KIINTOPISTEET. Sijainti 1:50 000. Avainsanat: RTK-mittaus RAPORTTI 04013522 12lUMVl2001 Urpo Vihreäpuu Jakelu OKMElOutokumpu 2 kpl PAMPALON RTK-KIINTOPISTEET - 4333 07 Sijainti 1:50 000 Avainsanat: RTK-mittaus OUTOKUMPU MINING OY Mairninetsnnta RAPORTTI 04013522

Lisätiedot

Koordinaatit, korkeus, kartat ja GPS

Koordinaatit, korkeus, kartat ja GPS Koordinaatit, korkeus, kartat ja GPS Markku Poutanen Geodeettinen laitos Markku.Poutanen@fgi.fi Paikan esittämiseen tarvitaan koordinaatit. Vaikka koordinaattien tuottaminen onkin GPS-mittausten perustehtäviä,

Lisätiedot

Pieksämäen kaupunki, Euref-koordinaatistoon ja N2000 korkeusjärjestelmään siirtyminen

Pieksämäen kaupunki, Euref-koordinaatistoon ja N2000 korkeusjärjestelmään siirtyminen Pieksämäen kaupunki, Euref-koordinaatistoon ja N2000 korkeusjärjestelmään siirtyminen Mittausten laadun tarkastus ja muunnoskertoimien laskenta Kyösti Laamanen 2.0 4.10.2013 Prosito 1 (9) SISÄLTÖ 1 YLEISTÄ...

Lisätiedot

Maanmittauspäivät 2014 Seinäjoki

Maanmittauspäivät 2014 Seinäjoki Maanmittauspäivät 2014 Seinäjoki Parempaa tarkkuutta satelliittimittauksille EUREF/N2000 - järjestelmissä Ympäristösi parhaat tekijät 2 EUREF koordinaattijärjestelmän käyttöön otto on Suomessa sujunut

Lisätiedot

Koordinaatistoista. Markku Poutanen Geodeettinen laitos. Koordinaattijärjestelmä Koordinaatisto Karttaprojektio

Koordinaatistoista. Markku Poutanen Geodeettinen laitos. Koordinaattijärjestelmä Koordinaatisto Karttaprojektio Koordinaatistoista Markku Poutanen Geodeettinen laitos Koordinaattijärjestelmä Koordinaatisto Karttaprojektio Koordinaattijärjestelmä sisältää määritelmät, Reference system contains definitions koordinaatisto

Lisätiedot

EUREF-FIN JA KORKEUDET. Pasi Häkli Geodeettinen laitos 10.3.2010

EUREF-FIN JA KORKEUDET. Pasi Häkli Geodeettinen laitos 10.3.2010 EUREF-FIN JA KORKEUDET Pasi Häkli Geodeettinen laitos 10.3.2010 EUREF-FIN:n joitain pääominaisuuksia ITRF96-koordinaatiston kautta globaalin koordinaattijärjestelmän paikallinen/kansallinen realisaatio

Lisätiedot

Markku.Poutanen@fgi.fi

Markku.Poutanen@fgi.fi Global Navigation Satellite Systems GNSS Markku.Poutanen@fgi.fi Kirjallisuutta Poutanen: GPS paikanmääritys, Ursa HUOM: osin vanhentunut, ajantasaistukseen luennolla ilmoitettava materiaali (erit. suomalaiset

Lisätiedot

KIINTOPISTEMITTAUKSET MML:ssa

KIINTOPISTEMITTAUKSET MML:ssa KIINTOPISTEMITTAUKSET MML:ssa ESITYKSEN SISÄLTÖ: Koordinaattijärjestelmän uudistus (EUREF-FIN) Korkeusjärjestelmän uudistus (N2000) MML:n tasokiintopistemittaukset MML:n korkeuskiintopistemittaukset Mittaukset

Lisätiedot

Koordinaattijärjestelmä Koordinaatisto Karttaprojektio

Koordinaattijärjestelmä Koordinaatisto Karttaprojektio Koordinaattijärjestelmä Koordinaatisto Karttaprojektio Koordinaattijärjestelmä sisältää määritelmät, koordinaatisto on sen realisaatio maastossa ja karttaprojektio tämän esitysmuoto kaksiulotteisella kartalla

Lisätiedot

AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla

AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla Tähtitieteellinen merenkulkuoppi on oppi, jolla määrätään aluksen sijainti taivaankappaleiden perusteella. Paikanmääritysmenetelmänäon ristisuuntiman

Lisätiedot

GPS:n käyttö suunnistuskartoituksessa

GPS:n käyttö suunnistuskartoituksessa GPS:n käyttö suunnistuskartoituksessa SSL karttapäivä 16.2.2008, Varala Esa Toivonen, TarpS 30 vuotta IT systeemien parissa opiskelun ja työn merkeissä 25 vuotta harrastuksena suunnistus, 83 Epilän Esa,

Lisätiedot

JHS 154 ETRS89-järjestelmään liittyvät karttaprojektiot, tasokoordinaatistot ja karttalehtijako

JHS 154 ETRS89-järjestelmään liittyvät karttaprojektiot, tasokoordinaatistot ja karttalehtijako JHS 154 ETRS89-järjestelmään liittyvät karttaprojektiot, tasokoordinaatistot ja karttalehtijako Versio: Julkaistu: Voimassaoloaika: Toistaiseksi Sisällys 1 Johdanto... 1 2 Soveltamisala... 2 3 Viittaukset...

Lisätiedot

TIEDÄ SIJAINTISI. Koordinaattihaku. satakunta.punainenristi.fi

TIEDÄ SIJAINTISI. Koordinaattihaku. satakunta.punainenristi.fi TIEDÄ SIJAINTISI Koordinaattihaku satakunta.punainenristi.fi Hätäpuhelun soittajan on hyvä tietää sijaintinsa Karttakoordinaattien avulla on mahdollista selvittää tarkka sijainti Koordinaatit on mahdollista

Lisätiedot

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen 1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki

Lisätiedot

Paikkatietokantojen EUREFmuunnoksen

Paikkatietokantojen EUREFmuunnoksen Paikkatietokantojen EUREFmuunnoksen käytännön toteutus EUREF-II teemapäivä Jukka Vänttinen Sisältö Koordinaattimuunnokset Teklan ohjelmistoissa Muunnostyön valmistelu ja vaiheistus Muunnokset tietojärjestelmän

Lisätiedot

ETRS89- kiintopisteistön nykyisyys ja tulevaisuus. Jyrki Puupponen Kartastoinsinööri Etelä-Suomen maanmittaustoimisto

ETRS89- kiintopisteistön nykyisyys ja tulevaisuus. Jyrki Puupponen Kartastoinsinööri Etelä-Suomen maanmittaustoimisto ETRS89- kiintopisteistön nykyisyys ja tulevaisuus Jyrki Puupponen Kartastoinsinööri Etelä-Suomen maanmittaustoimisto Valtakunnalliset kolmiomittaukset alkavat. Helsingin järjestelmä (vanha valtion järjestelmä)

Lisätiedot

JHS XXX EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako

JHS XXX EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako JHS XXX EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako Versio: 27.7.2015 palautekierrosta varten Julkaistu: Voimassaoloaika: toistaiseksi Sisällys 1 Johdanto... 3 2

Lisätiedot

KOORDINAATTI- JA KORKEUSJÄRJESTELMIEN VAIHTO TURUSSA 15.2.2010

KOORDINAATTI- JA KORKEUSJÄRJESTELMIEN VAIHTO TURUSSA 15.2.2010 KOORDINAATTI- JA KORKEUSJÄRJESTELMIEN VAIHTO TURUSSA 15.2.2010 Ilkka Saarimäki Kaupungingeodeetti Kiinteistöliikelaitos Kaupunkimittauspalvelut ilkka.saarimaki@turku.fi VANHAT JÄRJESTELMÄT Turun kaupungissa

Lisätiedot

JHS-suositus(luonnos): Kiintopistemittaus EUREF-FIN koordinaattijärjestelmässä

JHS-suositus(luonnos): Kiintopistemittaus EUREF-FIN koordinaattijärjestelmässä JHS-suositus(luonnos): Kiintopistemittaus EUREF-FIN koordinaattijärjestelmässä EUREF-II -päivä 2012 Marko Ollikainen Kehittämiskeskus Maanmittauslaitos MAANMITTAUSLAITOS TIETOA MAASTA Mittausohjeiden uudistamisesta

Lisätiedot

EUREF-FIN/N2000 käyttöönotto Helsingissä

EUREF-FIN/N2000 käyttöönotto Helsingissä EUREF-FIN/N2000 käyttöönotto Helsingissä http://www.hel.fi/hki/kv/fi/kaupunkimittausosasto/kartat+ja+paikkatiedot/koordinaatisto Muutokset Helsngissä: Korkeusjärjestelmä: Tasokoordinaatisto: Pohjoiskoordinaatti

Lisätiedot

TTY Mittausten koekenttä. Käyttö. Sijainti

TTY Mittausten koekenttä. Käyttö. Sijainti TTY Mittausten koekenttä Käyttö Tampereen teknillisen yliopiston mittausten koekenttä sijaitsee Tampereen teknillisen yliopiston välittömässä läheisyydessä. Koekenttä koostuu kuudesta pilaripisteestä (

Lisätiedot

Geodeettisen laitoksen koordinaattimuunnospalvelu

Geodeettisen laitoksen koordinaattimuunnospalvelu Geodeettisen laitoksen koordinaattimuunnospalvelu Janne Kovanen Geodeettinen laitos 10.3.2010 Koordinaattimuunnospalvelusta lyhyesti Ilmainen palvelu on ollut tarjolla syksystä 2008 lähtien. Web-sovellus

Lisätiedot

Koordinaattimuunnospalvelut Reino Ruotsalainen

Koordinaattimuunnospalvelut Reino Ruotsalainen Koordinaattimuunnospalvelut 11.12.2009 Reino Ruotsalainen MAANMITTAUSLAITOS TIETOA MAASTA 2009 Lisätietoja: http://www.fgi.fi/julkaisut/pdf/gltiedote30.pdf Geodeettisen laitoksen tiedote 30/2009: SUOMEN

Lisätiedot

Rauman kaupungin siirtyminen EUREF-FIN-tasokoordinaatistoon ja N2000-korkeusjärjestelmään. Ari-Pekka Asikainen kiinteistö- ja mittaustoimi 13.9.

Rauman kaupungin siirtyminen EUREF-FIN-tasokoordinaatistoon ja N2000-korkeusjärjestelmään. Ari-Pekka Asikainen kiinteistö- ja mittaustoimi 13.9. Rauman kaupungin siirtyminen EUREF-FIN-tasokoordinaatistoon ja N2000-korkeusjärjestelmään Ari-Pekka Asikainen kiinteistö- ja mittaustoimi 13.9.2012 Johdanto sisältöön Menneiden ja nykyisten järjestelmien

Lisätiedot

Navigointi/suunnistus

Navigointi/suunnistus Navigointi/suunnistus Aiheita Kartan ja kompassin käyttö Mittakaavat Koordinaatistot Karttapohjoinen/neulapohjoinen Auringon avulla suunnistaminen GPS:n käyttö Reitin/jäljen luonti tietokoneella Reittipisteet

Lisätiedot

Mittaushavaintojen täsmällinen käsittelymenenetelmä

Mittaushavaintojen täsmällinen käsittelymenenetelmä Tasoituslaskun periaate Kun mittauksia on tehty enemmän kuin on toisistaan teoreettisesti riippumattomia suureita, niin tasoituslaskun tehtävänä ja päätarkoituksena on johtaa tuntemattomille sellaiset

Lisätiedot

Palautekooste: JHS XXX EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako (korvaa JHS 154-suosituksen)

Palautekooste: JHS XXX EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako (korvaa JHS 154-suosituksen) Palautekooste: JHS XXX EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako (korvaa JHS 154-suosituksen) 1. Organisaatio Vastaajien määrä: 9 - Työ- ja elinkeinoministeriö

Lisätiedot

Luento 7: Fotogrammetrinen mittausprosessi

Luento 7: Fotogrammetrinen mittausprosessi 7Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 7.2.2003, Päivityksiä: Katri Koistinen, 5.2.2004 ) Luento 7: Fotogrammetrinen mittausprosessi

Lisätiedot

N2000 korkeusjärjestelmään siirtyminen Kotkan kaupungin valtuustosali 9.10.2015

N2000 korkeusjärjestelmään siirtyminen Kotkan kaupungin valtuustosali 9.10.2015 N2000 korkeusjärjestelmään siirtyminen Kotkan kaupungin valtuustosali 9.10.2015 Sisältöä: Suomessa käytössä olevat valtakunnalliset korkeusjärjestelmät Miksi N2000 - korkeusjärjestelmään siirrytään? Kotkan

Lisätiedot

Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi

Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi Edellä pallokolmioiden yleiset ratkaisukaavat: sin B sin a = sin A sin b cos B sin a = cos A sin b cos c + cos b sin c cos a = cos A sin b sin

Lisätiedot

Mittajärjestelmät ja mittasuositukset.

Mittajärjestelmät ja mittasuositukset. Mittajärjestelmät ja mittasuositukset. Hannu Hirsi Johdanto: Mittajärjestelmien tarkoitus: Helpottaa eri toimijoiden järjestelmien ja osien yhteensovittamista : suunnittelua, valmistusta, asentamista,

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

Visibiliteetti ja kohteen kirkkausjakauma

Visibiliteetti ja kohteen kirkkausjakauma Visibiliteetti ja kohteen kirkkausjakauma Interferoteriassa havaittava suure on visibiliteetti V (u, v) = P n (x, y)i ν (x, y)e i2π(ux+vy) dxdy kohde Taivaannapa m Koordinaatisto: u ja v: B/λ:n projektioita

Lisätiedot

Savonlinnan runkoverkon homogeenisuus

Savonlinnan runkoverkon homogeenisuus Tuomas Kyllönen Savonlinnan runkoverkon homogeenisuus Opinnäytetyö Maanmittaustekniikan koulutusohjelma Joulukuu 2010 KUVAILULEHTI Opinnäytetyön päivämäärä 22..21.2010 Tekijä(t) Tuomas Kyllönen Nimeke

Lisätiedot

Korkeusjärjestelmän muutos ja niiden sijoittuminen tulevaisuuteen

Korkeusjärjestelmän muutos ja niiden sijoittuminen tulevaisuuteen Rakennusvalvontamittaus 15.02.2010-> Korkeusjärjestelmän muutos ja niiden sijoittuminen tulevaisuuteen Ongelmat suurimmillaan parin vuoden kuluttua, kun maastossa on yhtä paljon uuden korkeusjärjestelmän

Lisätiedot

Luento 4: Kiertomatriisi

Luento 4: Kiertomatriisi Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 28.9.2004) Luento 4: Kiertomatriisi Mitä pitäisi oppia? ymmärtää, että kiertomatriisilla voidaan kiertää koordinaatistoa ymmärtää, että

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2 8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason

Lisätiedot

Ellipsit, hyperbelit ja paraabelit vinossa

Ellipsit, hyperbelit ja paraabelit vinossa Ellipsit, hyperbelit ja paraabelit vinossa Matti Lehtinen 1 Ellipsi, hyperbeli ja paraabeli suorassa Opimme lukion analyyttisen geometrian kurssilla ainakin, jos kävimme lukiota vielä muutama vuosi sitten

Lisätiedot

TURKU. http://fi.wikipedia.org/wiki/turku

TURKU. http://fi.wikipedia.org/wiki/turku Turun kaupungin maastomittauspalvelut ja koordinaaattijärjestelmän vaihto käytännössä Tampereen seutukunnan maanmittauspäivät Ikaalisten kylpylässä 17.-18.3.2010, Harri Kottonen Kuka Harri Kottonen, Mittaustyöpäällikkö

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

EUREF-Teemapäivä II 04.09.2012, Tieteiden talo

EUREF-Teemapäivä II 04.09.2012, Tieteiden talo EUREF-Teemapäivä II 04.09.2012, Tieteiden talo KOORDINAATTI- JA KORKEUSJÄRJESTELMIEN VAIHTO Porissa ja Porin seudulla Kalervo Salonen / Seppo Mäkeläinen 04.09.2012 Miksi juuri nyt ( v. 2008 / syksy 2010

Lisätiedot

Tietoa tiensuunnitteluun nro 84A

Tietoa tiensuunnitteluun nro 84A Tietoa tiensuunnitteluun nro 84A Julkaisija: Tiehallinto, tietekniikka Luonnos 12.01.2007 PAIKAN MÄÄRITTÄMINEN GPS:N AVULLA Laatuvaatimus Tätä ohjejulkaisua käytetään laatuvaatimuksena, kun rakennus- tai

Lisätiedot

ETRS89:n ja N2000:n käyttöönotosta

ETRS89:n ja N2000:n käyttöönotosta ETRS89:n ja N2000:n käyttöönotosta Esitelmän sisältö: Miksi pitäisi vaihtaa? Mihin vaihtaa? ETRS89 - koordinaattijärjestelmä N2000- korkeusjärjestelmä Uuden järjestelmän käyttöönotto Käyttöönottoprosessi

Lisätiedot

VRT Finland Oy SAKKA-ALTAAN POHJATOPOGRAFIAN MÄÄRITTÄMINEN KAIKULUOTAAMALLA

VRT Finland Oy SAKKA-ALTAAN POHJATOPOGRAFIAN MÄÄRITTÄMINEN KAIKULUOTAAMALLA VRT Finland Oy SAKKA-ALTAAN POHJATOPOGRAFIAN MÄÄRITTÄMINEN KAIKULUOTAAMALLA TARKASTUSRAPORTTI 1 (7) Sisällys 1. Kohde... 2 1.1 Kohteen kuvaus... 2 1.2 Tarkastusajankohta... 2 1.3 Työn kuvaus... 2 2. Havainnot...

Lisätiedot

VLBI. JUKKA TOLONEN Teknillinen korkeakoulu Maanmittaustieteiden laitos jotolone@cc.hut.fi

VLBI. JUKKA TOLONEN Teknillinen korkeakoulu Maanmittaustieteiden laitos jotolone@cc.hut.fi VLBI JUKKA TOLONEN Teknillinen korkeakoulu Maanmittaustieteiden laitos jotolone@cc.hut.fi 1. Johdanto VLBI (Very long baseline interferometry) tarjoaa ainutlaatuisen ja Maan painovoimasta riippumattoman

Lisätiedot

JHS 196 EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa

JHS 196 EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa JHS 196 EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa JHS 197 EUREF-FIN - koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako MARKKU POUTANEN Paikkatietokeskus FGI Taustaa

Lisätiedot

JHS XXX EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa

JHS XXX EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa JHS XXX EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa Versio: 29.9.2014 (luonnos palautekierrosta varten) Julkaistu: Voimassaoloaika: toistaiseksi Sisällys 1 Johdanto...

Lisätiedot

Varjoliidon ja Riippuliidon Suomen ennätysten suorittaminen

Varjoliidon ja Riippuliidon Suomen ennätysten suorittaminen 1 Varjoliidon ja Riippuliidon Suomen ennätysten suorittaminen Suomen Ilmailuliiton Liidintoimikunta on hyväksynyt nämä säännöt 14.4.2015. Säännöt astuvat voimaan välittömästi ja ovat voimassa toistaiseksi.

Lisätiedot

Tähtitieteelliset koordinaattijärjestelemät

Tähtitieteelliset koordinaattijärjestelemät Tähtitieteelliset Huom! Tämä materiaali sisältää symbolifontteja, eli mm. kreikkalaisia kirjaimia. Jos selaimesi ei näytä niitä oikein, ole tarkkana! (Tällä sivulla esiintyy esim. sekä "a" että "alpha"-kirjaimia,

Lisätiedot

PIKAOPAS 1. Kellotaulun kulma säädetään sijainnin leveys- asteen mukaiseksi.

PIKAOPAS 1. Kellotaulun kulma säädetään sijainnin leveys- asteen mukaiseksi. Käyttöohje PIKAOPAS 1. Kellotaulun kulma säädetään sijainnin leveysasteen mukaiseksi. Kellossa olevat kaupungit auttavat alkuun, tarkempi leveysasteluku löytyy sijaintisi koordinaateista. 2. Kello asetetaan

Lisätiedot

Luento 7: 3D katselu. Sisältö

Luento 7: 3D katselu. Sisältö Tietokonegrafiikka / perusteet Tik-.3/3 4 ov / 2 ov Luento 7: 3D katselu Lauri Savioja /4 3D katselu / Sisältö Koorinaattimuunnokset Kameran ja maailmankoorinaatiston yhteys Perspektiivi 3D katselu / 2

Lisätiedot

Geotrim TAMPEREEN SEUTUKUNNAN MITTAUSPÄIVÄT 29.3.2006

Geotrim TAMPEREEN SEUTUKUNNAN MITTAUSPÄIVÄT 29.3.2006 Geotrim TAMPEREEN SEUTUKUNNAN MITTAUSPÄIVÄT 29.3.2006 Satelliittimittauksen tulevaisuus GPS:n modernisointi, L2C, L5 GALILEO GLONASS GNSS GPS:n modernisointi L2C uusi siviilikoodi L5 uusi taajuus Block

Lisätiedot

EUREF UUDISTUS MERIKARTOITUKSESSA

EUREF UUDISTUS MERIKARTOITUKSESSA EUREF UUDISTUS MERIKARTOITUKSESSA Juha Tiihonen 04. syyskuuta 2012 MERIKARTOITUKSEN MISSIO: MERENKULUN JA MUUN VESILIIKENTEEN SUJUVUUS JA TURVALLISUUS SEKÄ MERIYMPÄ- RISTÖN SUOJAAMINEN 4.9.2012 2 MERIYMPÄRISTÖ

Lisätiedot

Käytännön geodesia Maa-6.2222

Käytännön geodesia Maa-6.2222 Käytännön geodesia Maa-62222 9902 9950 9951 9953 9952 9954 IV luokan takymetrijono mittaus Jyväskylä 521 506 1337 131 5 9968 9907 9965 9967 516 9910 9908 9966 9969 525 113 522 II luokan verkko IV luokka

Lisätiedot

Sipoon kunnan EUREF-hanke. Aalto-yliopiston insinööritieteiden korkeakoulun maankäyttötieteiden laitoksella tehty diplomityö. Espoo, syyskuu 2012

Sipoon kunnan EUREF-hanke. Aalto-yliopiston insinööritieteiden korkeakoulun maankäyttötieteiden laitoksella tehty diplomityö. Espoo, syyskuu 2012 Sipoon kunnan EUREF-hanke Aalto-yliopiston insinööritieteiden korkeakoulun maankäyttötieteiden laitoksella tehty diplomityö Espoo, syyskuu 2012 Insinööri (AMK) Ville Jussila Valvoja: Professori Martin

Lisätiedot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot 5. Grafiikkaliukuhihna: () geometriset operaatiot Johdanto Grafiikkaliukuhihnan tarkoitus on kuvata kolmiulotteisen kohdeavaruuden kuva kaksiulotteiseen kuva eli nättöavaruuteen. aikka kolmiulotteisiakin

Lisätiedot

JHS 197 EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako

JHS 197 EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako JHS 197 EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako Versio: 1.1 / 9.12.2016 Julkaistu: 5.4.2016 Voimassaoloaika: toistaiseksi Sisällys 1 Johdanto...2 2 Soveltamisala...3

Lisätiedot

VIRTAIN KAUPUNGIN MUUNNOSVAIHTOEHDOT EUREF-FIN- JA N2000-JÄRJESTELMIIN SIIRTYMISEKSI

VIRTAIN KAUPUNGIN MUUNNOSVAIHTOEHDOT EUREF-FIN- JA N2000-JÄRJESTELMIIN SIIRTYMISEKSI OPINNÄYTETYÖ ANTTI VÄÄTÄINEN 2010 VIRTAIN KAUPUNGIN MUUNNOSVAIHTOEHDOT EUREF-FIN- JA N2000-JÄRJESTELMIIN SIIRTYMISEKSI MAANMITTAUSTEKNIIKKA ROVANIEMEN AMMATTIKORKEAKOULU TEKNIIKAN JA LIIKENTEEN ALA Maanmittaustekniikka

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Konformigeometriaa. 5. maaliskuuta 2006

Konformigeometriaa. 5. maaliskuuta 2006 Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset

Lisätiedot

Luento 11: Stereomallin ulkoinen orientointi

Luento 11: Stereomallin ulkoinen orientointi Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 17.2.2003, Päivityksiä: Katri Koistinen, 23.2.2004 ) Luento 11: Stereomallin ulkoinen

Lisätiedot

JHS 154 ETRS89-järjestelmään liittyvät karttaprojektiot, tasokoordinaatistot ja karttalehtijako, Liite 1: Projektiokaavat

JHS 154 ETRS89-järjestelmään liittyvät karttaprojektiot, tasokoordinaatistot ja karttalehtijako, Liite 1: Projektiokaavat LUONNOS 008-09-0 JHS 15 ETRS89-järjestelmään liittyvät karttaprojektiot, tasokoordinaatistot ja karttalehtijako, Liite 1: Projektiokaavat Versio: Julkaistu: Voimassaoloaika: Toistaiseksi Transverse Mercator-projektiolle

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

Luonnontieteellisten aineistojen georeferointi. 1. Georefrointi paikannimien mukaan 2. Koordinaattimuunnokset

Luonnontieteellisten aineistojen georeferointi. 1. Georefrointi paikannimien mukaan 2. Koordinaattimuunnokset Luonnontieteellisten aineistojen georeferointi 1. Georefrointi paikannimien mukaan 2. Koordinaattimuunnokset Johdanto Näytteiden paikkatiedot ovat keräilijöiden merkitsemiä Verbaalisia paikannimiä Ykj-

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

KOORDINAATTEJA KARTTAPALVELUIHIN Koordinaattien ohjelmallinen muuntaminen

KOORDINAATTEJA KARTTAPALVELUIHIN Koordinaattien ohjelmallinen muuntaminen Heli Manninen KOORDINAATTEJA KARTTAPALVELUIHIN Koordinaattien ohjelmallinen muuntaminen Opinnäytetyö Tietojenkäsittelyn koulutusohjelma Maaliskuu 2011 KUVAILULEHTI Opinnäytetyön päivämäärä 11.3.2011 Tekijä(t)

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan

Lisätiedot

Luonto-Liiton metsäryhmän GIS-kurssi

Luonto-Liiton metsäryhmän GIS-kurssi Luonto-Liiton metsäryhmän GIS-kurssi Markku Koskinen 10.12.2010 1 Johdanto 1.1 GIS GIS on lyhenne sanoista Geographic Information System. Suomeksi GISjärjestelmiä kutsutaan paikkatietojärjestelmiksi. Nimensä

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

JHS 197 EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako Liite 2: Projektiokaavat

JHS 197 EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako Liite 2: Projektiokaavat JHS 197 EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako Liite 2: Projektiokaavat Versio: 1.0 / 5.2.2016 Julkaistu: 5.4.2016 Voimassaoloaika: toistaiseksi Sisällys 1

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 4 Suora ja taso Ennakkotehtävät 1. a) Kappale kulkee yhdessä sekunnissa vektorin s, joten kahdessa sekunnissa kappale kulkee vektorin 2 s. Pisteestä A = ( 3, 5) päästään pisteeseen P, jossa kappale sijaitsee,

Lisätiedot

Matematiikan ilmiöiden tutkiminen GeoGebran avulla

Matematiikan ilmiöiden tutkiminen GeoGebran avulla Johdatus GeoGebraan Matematiikan ilmiöiden tutkiminen GeoGebran avulla Harjoitus 1B. Konstruoi tasakylkinen kolmio ABC, jonka kyljen pituus on 5. Vihje: käytä Kiinteä jana työvälinettä kahdesti. Ota kolmion

Lisätiedot

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1 Luento 4 Georeferointi 2007 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)

Lisätiedot

KORJAUSVELAN LASKENTAMALLI KÄYTTÖÖN

KORJAUSVELAN LASKENTAMALLI KÄYTTÖÖN KORJAUSVELAN LASKENTAMALLI KÄYTTÖÖN KEHTO-foorumi Seinäjoki 23.10.2014 TAUSTAA Korjausvelan määrityshanke vuonna 2012-2013 Katujen ja viheralueiden korjausvelan periaatteita ei ollut aiemmin määritelty

Lisätiedot

JHS 196 EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa

JHS 196 EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa JHS 1 EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa Versio: 1.0 / 7..016 Julkaistu: 5.4.016 Voimassaoloaika: toistaiseksi Sisällys 1 Johdanto... 1 Soveltamisala... 3 Viittaukset... 4 Termit ja

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

Marko Nieminen. Jämsän kaupungin EUREF-FIN- ja N2000-järjestelmien muunnosprojektin tarkastusmittaukset

Marko Nieminen. Jämsän kaupungin EUREF-FIN- ja N2000-järjestelmien muunnosprojektin tarkastusmittaukset Marko Nieminen Jämsän kaupungin EUREF-FIN- ja N2000-järjestelmien muunnosprojektin tarkastusmittaukset Metropolia Ammattikorkeakoulu Insinööri (AMK) Maanmittaustekniikan tutkinto-ohjelma Insinöörityö 21.5.2015

Lisätiedot

JHS-suositus 184: Kiintopistemittaus EUREF-FINkoordinaattijärjestelmässä. Pasi Häkli Geodeettinen laitos

JHS-suositus 184: Kiintopistemittaus EUREF-FINkoordinaattijärjestelmässä. Pasi Häkli Geodeettinen laitos JHS-suositus 184: Kiintopistemittaus EUREF-FINkoordinaattijärjestelmässä Pasi Häkli Geodeettinen laitos Geodesian teemapäivä, Tieteiden talo, 10.9.2014 Taustaa Kiintopistemittaukset on perinteisesti tehty

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Kartografian historiaa ja perusteita. Taru Tiainen

Kartografian historiaa ja perusteita. Taru Tiainen Kartografian historiaa ja perusteita Taru Tiainen 18.4.2016 Alkutehtävä Piirrä Joensuun kartta Aikaa n. 5 minuuttia Alkutehtävä Mikä vaikuttaa karttasi tekoon? Miksi kartta on näköisensä? Mitä tämän tehtävän

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

2) Kaksi lentokonetta lähestyy toisiaan samalla korkeudella kuvan osoittamalla tavalla. Millä korkeudella ja kuinka kaukana toisistaan ne ovat?

2) Kaksi lentokonetta lähestyy toisiaan samalla korkeudella kuvan osoittamalla tavalla. Millä korkeudella ja kuinka kaukana toisistaan ne ovat? 2..207 Määritelmä, (terävän kulman) trigonometriset funktiot: Suorakulmaisessa kolmiossa terävän kulman trigonometriset funktiot ovat: kulman sini hpotenuusa sin a c kulman kosini hpotenuusa kulman tangentti

Lisätiedot

PAINOVOIMAMITTAUKSET JA KALLIONPINNAN SYVYYSTULKINNAT

PAINOVOIMAMITTAUKSET JA KALLIONPINNAN SYVYYSTULKINNAT 1 (24) PAINOVOIMAMITTAUKSET JA KALLIONPINNAN SYVYYSTULKINNAT Tuire Valjus Menetelmän perusteista Painovoimamittausten avulla voidaan tutkia tiheydeltään ympäristöstä poikkeavien muodostumien paksuutta

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 3. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

Valkeakosken kaupungin mittaustoimi. 17.3.2010 Jani Kiiskilä

Valkeakosken kaupungin mittaustoimi. 17.3.2010 Jani Kiiskilä Valkeakosken kaupungin mittaustoimi 17.3.2010 Jani Kiiskilä Esityksen sisältö Yleistä Valkeakoskesta Maankäytön ja maa- ja mittaustoimen esittely Mittaustoimessa ajankohtaista Valkeakoski Asukasluku 1.1.2010

Lisätiedot

Paikkatiedon JHS-seminaari. Paikkatietomarkkinat 2016

Paikkatiedon JHS-seminaari. Paikkatietomarkkinat 2016 Paikkatiedon JHS-seminaari Paikkatietomarkkinat 2016 Ohjelma 9:00 Tervetuloa JHS-seminaarin Katsaus Paikkatiedon JHS:iin Pekka Sarkola, paikkatiedon JHS ohjausryhmä Paikkatiedot JUHTAn toiminnassa Jari

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Palautekooste: JHS 153 / JHS XXX EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa

Palautekooste: JHS 153 / JHS XXX EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa Palautekooste: JHS 153 / JHS XXX EUREF-FIN -järjestelmän mukaiset koordinaatit Suomessa 1. Organisaatio - Yksityishenkilö - Yksityishenkilö - Puolustusvoimat - Joensuun kaupunki - Sosiaali- ja terveysministeriö

Lisätiedot

OKMElOutokumpu 1 kpl OKMElRovaniemi 2 kpl AHMAVAARAN ALUEEN KIINTOPISTEET JA KAIRAREIKIEN KOORDINAATIT KKJ-KOORDINAATISTOSSA

OKMElOutokumpu 1 kpl OKMElRovaniemi 2 kpl AHMAVAARAN ALUEEN KIINTOPISTEET JA KAIRAREIKIEN KOORDINAATIT KKJ-KOORDINAATISTOSSA RAPORTTI 013522 12lUMVl2001 Urpo Vihreapuu Jakelu OKMElOutokumpu 1 kpl OKMElRovaniemi 2 kpl AHMAVAARAN ALUEEN KIINTOPISTEET JA KAIRAREIKIEN KOORDINAATIT KKJ-KOORDINAATISTOSSA Sijainti 1 : 000 Avainsanat:

Lisätiedot