Monen elektronin atomit

Koko: px
Aloita esitys sivulta:

Download "Monen elektronin atomit"

Transkriptio

1 Jukka Tulkki Luentoja Randy Harrisin luvuista 8.-9 Monen elektronin atomit Helium atomi Keskimääräisen kentän approksimaatio Aaltofunktion symmetria hiukkasvaihdossa Paulin kieltosääntö Alkuaineiden jaksollinen järjestelmä 1

2 Heliumin emissiospektri Vety Helium Vedyn ja heliumin emissiospektrien erilaisuus viittaa näiden alkuaineiden energiatilojen olevan hyvin erilaisen Heliumin emissiospektrin muodostuminen Heliumin emissiospektri muodostuu esimerkiksi heliumilla täytetyssä lasiputkessa, jonka läpi johdetaan sähkövirta. Kentän kiihdyttämät elektronit virittävät helium atomeja, jotka palaavat alempiin energiatiloihin (lopulta perustilaan) emittoimalla fotoneita.

3 Vedyn ja heliumin energiatilat Eräitä sallittuja sähködipolitransitioita helium atomissa. Sähköiset transitiot tapahtuvat aina samojen spintilojen välillä. (Spinien kytkennän muuttamiseen tarvitaan magneettinen vuorovaikutus) LS-kytkennässä mahdollisia spintiloja ovat singletti (S = 0) ja tripletti (S = 1) Elektronien vaihtosymmetria (ilman spiniä) Todennäköisyystiheys ei saa muuttua vaihdettaessa identtiset elektronit keskenään. Itsenäisten elektronien orbitaalien tulosta on muodostettava symmetrinen tai antisymmetrinen kombinaatio. Antisymmetrinen aaltofunktio ψ A( r1, r) = φa( r1) φb( r) φa( r) φb( r 1) vaihtaa merkkinsä kun elektronit vaihdetaan keskenään. Todennäköisyystiheys on kuitenkin muuttumaton hiukkasvaihdossa ts. 1 = ψ A 1 ψ ( r, r ) ( r, r ) A 3

4 Fermionit ja bosonit Todennäköisyystiheys ei voi muuttua, jos kaksi identtistä hiukkasta (paikka ja spin-muuttujat σ 1, ) vaihdetaan keskenään: ψ rσ, r σ = ψ r σ, rσ (1) ( ) ( ) i e δ Yhtälö (1) voi toteutua vain jos ψ ( rσ, rσ ) = ψ ( r σ, rσ ) Jos i e δ = 1hiukkasia kutsutaan fermioneiksi =+ 1 hiukkasia kutsutaan bosoneiksi Fermionien kokonaiskulmaliikemäärän kvanttiluku on puoliluku J = 1/,3/,.. Bosoneille J = 0,1,,... Spin ja vaihtosymmetria Vaihdettaessa elektronit keskenään on vaihdettava paikkakoordinaattien lisäksi spinkoordinaatit. ( r ) ( r ) ( r ) ( r ) Olkoon avaruusosa symmetrinen φ φ + φ φ, spinosa on tällöin antisymmetrinen a 1 b a b 1 1 χ+ ( 1) χ ( ) χ+ ( ) χ ( 1) tässä lyhennämme + ms =+ 1/ m = 1/ Aaltofunktio vaihtaa merkkinsä vain, jos vaihdamme sekä paikka koordinaatit, r, r avaruusosassa että 1, spinkoordinaatit (indeksit) 1! spinosassa s 4

5 Kahden elektronin kokonaispin Kahden elektronin spinit kytkeytyvät kokonaispiniksi jos elektronien spinmagneettisten momenttien vuorovaikutus on voimakkaampi kuin elektronin spi- ja ratamagneettisten momenttien kytkentä Kokonaispin määritellään: 1 S = S1 + S + S1 S S = S + S, tästä seuraa S = S1 + S Operaattoreiden S ja S z ominaisfunktiot ovat 1 χ A = χ+ ( 1) χ ( ) χ+ ( ) χ ( 1) S = 0, M S = 0, χ+ () 1 χ+ ( ) S = 1, M S =+ 1, 1 χs = χ+ ( 1) χ ( ) + χ+ ( ) χ ( 1) S = 1, M S = 0, S = 1, M S = 1, χ () 1 χ ( ) z z z Kokonaisspintilojen visualisointia 5

6 Kokonaisaaltofunktion vaihtosymmetria Aaltofunktion vaihtosymmetria on rataosan ja spiosan symmetrioiden tulo: antisymmetrinen rataosa symmetrinen spinosa symmetrinen rataosa antisymmetrinen spinosa () 1 χ ( ) φa( r1) φb( r) φa( r) φb( r1) x χ+ + 1 χ+ () 1 χ ( ) + χ+ ( ) χ () 1 χ () 1 χ ( ) φa( r1) φb( r) + φa( r) φb( r1) x 1 χ+ ( 1) χ ( ) χ+ ( ) χ ( 1) Determinanttiaaltofunktiot Heliumin tripletti- ja singlettitilat voidaan esittää determinantteina!!! 1 ψ ( r1, σ1, rσ ) = [ φ ( ) ( ) ( ) ( )] () ( ) 1, 1 a r1 φb r φa r φb r1 χ 1 χ S= M S = φa( r1) χ+ ( 1) φa( r) χ+ ( ) = φb( r1) χ+ ( 1) φb( r) χ+ ( ) Vastaavasti ψ 1 σ1 σ 1 1 φ 0, 0 a 1 φb φ M a φ S= = b 1 S χ+ χ χ+ χ ( r,, r ) = [ ( r ) ( r ) + ( r ) ( r )] [ () 1 ( ) ( ) () 1 ] 1 1 φa( r1) χ+ ( 1) φa( r) χ+ ( ) 1 φb( r1) χ+ ( 1) φb( r) χ+ ( ) = + φb( r1) χ ( 1) φb( r) χ ( ) φa( r1) χ ( 1) φa( r) χ ( ) samoin muut tilat! Yleisesti kokonaispinin ominaistilat ovat determinanttiaaltofunktioiden lineaarikombinaatioita. Huom! Jos triplettitilassa a = b (sama ratatila) aaltofunktio = 0! 6

7 Determinanttiaaltofunktiot Monen elektronin aaltofunktion aproksimatiivinen ratkaisu voidaan esittää determinenttimuodossa. (alla a,b,c tarkoittavat kaikkia kvanttilukuja n, lm,, m l s Tällöin antisymmetria hiukkasvaihdossa toteutuu automaattisesti (determinantti vaihtaa merkkinsä jos kaksi sen vaaka- tai pystyriviä vaihdetaan keskenään) ( rσ, r σ,.. r σ ) Ψ abc N N = 1 N! () ( ) ( ) () ( ) ( ) () φ ( ) φa 1 φa φa 3... φb 1 φb φb 3... φc 1 c Näiden determinanttien lineaarikombinaatioina voidaan muodostaa myös kokonaisratakulmaliikemäärän ja kokonaisspinliikemäärän ominaistiloja. Yleisesti monen elektronin aaltofunktio ei jakaudu spin- ja rataosan tuloksi! Paulin kieltosääntö Kaksi elektronia ei voi sijaita samalla spinorbitaalilla muuten aaltofunktio 0 kaikkialla. Monielektronisysteemissä energiatilat täyttyvät alimmalta tilalta alkaen kunnes kaikki elektronit on sijoitettu systeemiin () ( ) ( ) () ( ) ( ) () ( ) ( ) φa 1 φa φa φ ( 1 1,,.. a φa φ Ψ a aac rσ r σ rnσ N ) = 0 N! φc 1 φc φc Wolfgang Pauli ( ) itävaltalainen fyysikko. Nobel palkinto 1945 elektronien kieltosäännön (Paulin kieltosäännön) havaitsemisesta. Ennusti 1930 neutriinon olemassaolon selittääkseen energian säilymisen betahajoamisessa (ytimen hajoaminen protonin muuttuessa neutroniksi elektroniksi (beta hiukkanen) ja neutriinoksi.) 7

8 Helium atomi E p Potentiaalienergia e e e = + 4πε r 4πε r 4πε r r ( 1 ) ψ ( r1, r) Epψ ( r1, r) Eψ ( r1, r) " + + = m e Schrödingerin yhtälö Alkeellinen helium malli 1 Alkeellisin malli unohtaa kokonaan heliumin elektronien keskinäisen vuorovaikutuksen: " + + = me 4πε01 r 4πε0 r e e ( 1 ) ψ( r1, r) ψ( r1, r) Eψ( r1, r) Muuttujat r 1 ja r voidaan separoida: ( r r ) = ( r ) ( r ) ψ φ φ 1, a 1 b (1) " e 1 φa 1 = a a 1 me 4πε01 r ( r ) E φ ( r ) " e φb = b b me 4πε0 r ( r ) E φ ( r ) ( r r ) = ( r ) ( r ) ψ φ φ 1, a 1 b toteuttaa yhtälön (1) E = E + E a b 8

9 Alkeellinen helium malli Lasketaan heliumin perustilan energian odotusarvo φa = φb = φ1s Ψ ( r1, r) = φ1s( r1) φ1s( r) Z Ea = Eb = E1s = 13,6 ev = 54,4 ev 1 Sijoittamalla: ave (, ) ˆΨ (, ) * 1 1 r1 r * e 1s 1s Ψ ( 1, ) Ψ ( 1, ) r1 r 4πε 0 r1 r E = Ψ r r H r r d d = E + E + r r r r d d -54,4 ev -54,4 ev +34,0 ev = -74,8 ev Integraali kuvaa elektronien repulsiota. Integraalin arvo = 34,0 ev Perustilan energian kokeellinen arvo: -78,98 ev Itsenäisten elektronien malli ( r r r ) ( r ) ( r ) ( r ) Voimmeko kirjoittaa ψ 1 N φa 1 φb 1 φx N,,...,? Heliumin perustilalle saatiin järkevä perustilan aaltofunktio kahden yhden elektronin aaltofunktion tulona. Jos yhden elektronin aaltofunktiot laskentaan SCF menetelmällä, niiden tulo on yleensä järkevä alin approksimaatio tarkalle monen elektronin aaltofunktiolle. Yksittäisten elektronien rataliikkeen orbitaaleja ei kuitenkaan voi kertoa suoraan keskenään. Yhden elektronin orbitaaleihin on lisättävä spinfunktiot ja lisäksi orbitaalien tulon täytyy olla antisymmetrinen vaihdettaessa kaksi elektronia keskenään. 9

10 Keskimääräisen kentän (SCF) malli Elektronin todennäköisyystiheys on merkittävä vain punaisella alueella. Elektroni 1 näkee elektronin liikkuvan keltaisella merkityllä alueella. Elektronin 1 näkemä elektronista aiheutuva sähkövaraustiheys on pallon muotoinen. Elektronin varausjakauma on samankeskinen atomin ytimen kanssa. Yhden elektronin näkemä potentiaali Elektroni 1 näkee varaustiheyden, joka saadaan elektronin todennäköisyystiheydestä kertomalla se elektronin varauksella. Potentiaali saadaan laskettua Gaussin lauseen avulla (ydinpotentiaali mukaan lukien saamme): Ze ( r) =+ + V Elektroni ( r) 4πε r 0 Elektronin 1 potentiaalienergia on vastaavasti : Ep ( r) = ev( r) 10

11 Elektronin osuus potentiaalista Elektronin aiheuttama potentiaali lasketaan sähköstatiikan Poissonin yhtälöstä: Elektroni missä ( r) ρ ( r) V = ρ ( r) e φ ( r) = Elektroni / ε 0 Atomeissa elektronin todennäköisyystiheyden keskiarvo on (usein) pallosymmetrinen ja potentiaali voidaan laskea Gaussin lauseen avulla: Elektroni r e r r r dr ε ( ) φ ( ) = Elektroni 0 0 Aloita käyttämällä vedynkaltaisia orbitaaleja φ ( r ), φ ( r ) 0 0 a 1 b Laske elektronin 1 potentiaalienergia E 1 p ( r 1 ) Ratkaise elektronin 1 Schrödingerin yhtälöstä i 1 φ + a ( r ) 1 Laske elektronin potentiaalienergia E p ( r ) Ratkaise elektronin Schrödingerin yhtälöstä i 1 φ + b ( r ) SCF- algoritmi Elektronien 1 ja Schrödingerin yhtälöt ratkaistaan vuorotellen, kunnes muutokset ovat pieniä. Muuttuivatko orbitaalit: i i+ 1 Kyllä φ φ > ε? i = i + 1 Ei Itseiskonsistentit orbitaalit SCF = Self Consistent Field method 11

12 Kertausta: vedyn Schrödingerin yhtälö Muuttujien separointi: l ( r,, ) = R ( r) Y (, ) ψ θφ θφ nlm nl lm ( ) ( + 1) " d d l l e + R( r) R( r) ER( r) m = e dr r dr r 4πε 0r LY ˆ l l 1 Y lm = + " lm l LY ˆ = m" Y z lm l lm l l l l Side - ehdot kvanttiluvuille : l = 0,..., n 1; m = l,..., + l l Muuttujien separointi keskeiskentässä Monen elektronin atomissa elektronien aiheuttama keskimääräinen varjostuspotentiaali on pallosymmetrinen. Schrödingerin yhtälö monielektroniatomin yksielektronitilalle a (potentiaalienergia isotrooppinen!!) on siis " + E p ( r) φa( r) = Eaφa( r) (1) me. missä Ze Ep = evvar ( r) 4πε r 0 sisältää muiden elektronien aiheuttaman pallosymmetrisen varjostuspotentiaalin ev Var 1

13 Spinorbitaalit keskeiskentässä 1/ Yhtälö (1) separoituu erillisiksi radiaali ja kulmayhtälöiksi samalla periaatteella kuin vedynkin Schrödingerin yhtälö Kulmaosa on sama kuin vedylle - ts. ratkaisut ovat palloharmoneja Y θ, φ ; m = l,..., l. lm l ( ) l Radiaalinen ominaisarvoyhtälö on sekin vedyn vastaavan yhtälön kaltainen ( + 1) " d d l l + Rr ( ) E ( ) ( ) ( ) + p r Rr = ERr me dr r dr r Potentiaalienergiaan E tulee kuitenkin mukaan varjostusosuus ev ( r) p Var Spinorbitaalit keskeiskentässä / Kiinteällä sivukvanttiluvun l arvolla yhtälölle " d d l( l + 1) + Rr ( ) E ( ) ( ) ( ) + p r Rr = ERr me dr r dr r saadaan useita numeerisia ratkaisuja Rnl ( r ), jotka indeksoidaan n = 1,,3,.. kun l = 0, n =,3,4,5,.. kun l = 1 jne. Elektronitilat voidaan siis luokitella samoilla kvanttiluvuilla n, lm,. Radiaaliyhtälön ratkaisut tunnetaan vain numeerisesti - ts ne eivät ole esitettävissä Legenren liittopolymonien avulla kuten vedyn tapauksessa. l Kun spin-osa vielä lisätään yhden elektronin aaltofunktioon saadaan spinorbitaalit: ( ) ( ) φn,, lm,., l m = R s nl r Ylm θ φ χ l ms 13

14 Litiumin perustilan Slaterdeterminantti Litium (elektronikonfiguraatio s s ) on yksinkertainen esimerkki monielektronisysteemistä Litiumin kaksi 1s elektronia muodostavat suljetun kuoren, jonka kokonaisspin ja kokonaisratakulmaliikemäärä = 0. Litiumin kokonaisspin, kokonaisratakulmaliikemäärä ja kokonaiskulmaliikemäärä aiheutuvat suljetun 1s kuoren ulkopuolella olevasta s elektronista. Litiumin perustilan Slater determinantti on () 1 ( ) ( 3) () ( ) ( ) () 1 ( ) ( 3) φ φ φ 1s 1s 1s 1 Ψ ( r1σ1, rσ, r 3σ3) = φ 1 φ φ 3 3! 1s 1s 1s φ φ φ Tässä aaltofunktiossa 0 sm s sm s sm s L = M L = ja S = 1/, M S = m s =± 1/. Elektronikuorten täyttyminen Kuori = tilat, joilla sama pääkvanttiluku. Alikuori = sama n ja l. Yleensä alikuoren energia kasvaa l:n funktiona. Raskaissa atomeissa ei ole tarkkaa täyttymisjärjestystä. Atomien rakentumisperiaate: Kun atomin järjestysluku kasvaa elektronikuoret täyttyvät alhaalta ylöspäin. 14

15 Elektronikonfiguraatiot vedystä neoniin Atomien Z = 1-10 perustilan elektronikonfiguraatiot s-symmetrisissä tiloissa kvanttiluku l =0 (punainen) p-symmetrisissä tiloissa l = 1 (sininen) spin ylös (alas) kuvattu nuolilla Elektronikonfiguraation merkitseminen kirjaimin: Fluori (Z = 9): 1s s p Argon (Z = 18): 1s s p 3s 3p Keveiden atomien viritettyjä tiloja 15

16 Elektronikuorten sidosenergiat Järjestysluvun kasvaessa tietyn elektronikuoren sidosenergia kasvaa kuten ( Z δ ) missä δ on kullekin kuorelle ominainen varjostusta kuvaava ns kvanttidefekti. Aloittelijoiden kiusaksi alan kirjallisuudessa kutsutaan 1s elektronikuorta myös K-kuoreksi, s ja p kuoria L-kuoreksi jne. Ionisaation energiakynnys Ylimääräinen suljetun kuoren ulkopuolinen elektroni irtoaa helposti atomista Jalokaasuilla on suuri ionisaatioenergia, sillä suljetun uloimman elektronikuoren rikkomiseen tarvitaan paljon energiaa. Halogeeneilta puuttuu yksi elektroni suljetusta elektronikonfiguraatiosta. Alkalimetalleilla on yksi elektroni suljetun kuoren ulkopuolella. Jalokaasut ovat kemiallisesti passiivisia, halogeenit ja alkalimetallit hyvin reaktiivisia. 16

17 Atomin koko järjestysluvun funktiona Kaikki atomit, erityisesti ne joilla on sama uloimman kuoren konfiguraatio, ovat likimain samansuuruisia. Alkalimetalliatomit ovat suurempia, koska löyhästi sidotun uloimman elekt-ronin todennäköisyystiheys ulottuu kauemmaksi. Se että kaikki atomit ovat (likimain) samansuuruisia johtuu siitä, että kaikissa atomeissa uloin elektroni näkee yhden positiivisen alkeisvarauksen kentän. Periodic table Katso myös www-sivua : 17

18 Alkuainetaulukko: Rauta Elektronikonfiguraatio esitetään usein lyhennetysti siten, että mainitaan vain ne elektronit jotka ovat lähimmän jalokaasun konfiguraation yläpuolella olevilla elektronikuorilla ts Ar 3d 4s tarkoittaa 1s s p 3s 3p 3d 4s Dmitri Mendeleev Russian chemist ( ) Arranged the 63 known elements into a periodic table, which he published in Principles of Chemistry in 1869 Organized elements by chemical properties and their atomic mass Mendeléev left space for new elements, and predicted three yetto-be-discovered elements Element number 101, the radioactive mendelevium, is named after him Dmitri Mendeleev 18

19 Mendeleevin taulukko Osa Mendeleevin alkuperäisestä alkuainetaulukosta Protoneja ja neutroneja kutsutaan nukleoneiksi Isotoopit Alkuaineen, jonka järjestysluku on Z, ytimessä neutronien lukumäärä N voi vaihdella. Neutroneilla ei ole varausta ja niiden massa on likimain protonin massa. Ne eivät vaikuta alkuaineen kemiallisiin ominaisuuksiin. Saman alkuaineen atomeja, joissa on eri määrä neutroneja sanotaan isotoopeiksi. Suuretta A=Z+N (= nukleonien lukumäärä ytimessä) kutsutaan massaluvuksi. Alkuaineen, jonka järjesteysluku on Z ja kemiallinen symboli Q isotooppia, jossa on N neutronia merkitään: A Z Q N 56 esim. 6 Fe 30 19

20 Isotooppitaulukko Stabiileissa isotoopeissa on yleensä enemmän neutroneja kuin protoneja Tässä kuvassa on keveiden alkuaineiden havaitut isotoopit K-röntgenspektrien muodostuminen 1 Röntgenputkessa muodostuu fotoneita joiden energia on suurempi kuin tutkittavan aineen K-ionisaatioenergia. Röntgenfotonit irroittavat K- kuorelta elektroneita, jolloin jäljelle jää tyhjä 1selektronitila. Kaupallinen pyörivällä anodilla varustettu röntgenputki (pyörivä anodi jakaa elektroni suihkun lämpökuorman laajemmalle alueelle). 0

21 Röntgenputken emissiospektri Karakteristisia viivoja esiintyy myös röntgenputken emissiospektrissä. Ne muodostuvat elektronisuihkun osuessa anodiin ja ionisoidessa anodiatomien sisäkuoria. Siksi näiden viivojen energiat ovat ominaisia käytetylle anodimateri-aalille (yleensä metalli). Suurin osa fotonituotosta johtuu jarrutussäteilystä. K-röntgenspektrien muodostuminen Muodostunut ioni pyrkii alimpaan energiatilaan, joten K-kuorelle muodostuneen aukon täyttää jokin ylemmän kuoren elektroni. Jos aukon täyttävä elektroni tulee M-kuorelta emittoituu K β säteilyä. Ks. 1

22 K- ja L-röntgenspektrit Röntgenemissiossa alimmilla elektronikuorilla oleva tyhjä elektronitila täyttyy ylemmältä kuorelta tulevalla elektronilla. Vapautuva energia siirtyy emittoidulle fotonille. Elektronisiirtymät noudattavat varsin tarkkaan E1-valintasääntöjä Atomien sisäkuorilla spinratavuorovaikutus on hyvin voimakas. Siksi näihin spinorbitaaleihin liitetään kvanttiluvut nljm j vaikka saman atomin ylimmillä kuorilla usein pätee LS kytkentä. Synkrotronisäteily Aineen elektronirakenteen tutkimukseen käytetään nykyään synkrotronisäteilyä, joka muodostuu lähes valon nopeuteen kiihdytettyjen elektronien (positronien) kulkiessa kaarevaa rataa ALS-synchrotron, Berkeley, CA

23 Fotoelektronispektrin mittaaminen Fotonilähteenä käytetään usein elekronivarastorenkaista saatavaa synchrotronisäteilyä ks. hν undulator SGM monochromator slits _ + e - Scienta SES-00 hemispherical analyzer energia analysaattori electron lens target gas Beamline at the ALS photons in ev range >10 1 photons at E/ E =10000 max E/ E=64000 HiRAMES End station Angle-resolved measurements max resolution E=5 mev high transmission designed for gas-phase studies Courtesy Edwin Kukk, ALS K-, L-, ja M- fotoelektronispektrit K-fotoelektronispektri muodostuu viritettäessä tutkittavaa ainetta monokromaattisilla fotoneilla joiden energia on suurempi kuin K- kuoren ionisaatioenergia. Samalla elektroneita irtoaa myös ulommilta L- ja M- elektronikuorilta. Fotoelektronien energia on fotonin energian ja ao. elektronikuoren ionisaatioenergian erotus. 3

24 Mitattu fotoelektronispektri Sn atomin PES Tämä fotoelektroniviiva aiheutuu s fotoionisaatiosta jota seuraa p elektronin virittyminen 3p orbitaalille Kun kokeellisesti mitattu fotoelektronin liike-energia vähennetään fotonin energiasta saadaan elektronin sidosenergia atomissa (vertaa irroitustyö valosähköisessä ilmiössä). Neon atomin PES Pinnan kemiallinen analyysi x 1 x 10 Qualitative Element Analysis Example 1 Intensität Znp Cup O1s Cu Auger Zn Auger C1s Zn3p 3s Cu 3p 3s 3d Bindungsenergie (ev) Kiinteästä aineesta emittoituvat fotoelektronit irtoavat aivan aineen pinnalta, sillä syvemmällä muodostuneet fotoelektronit siroavat ja menettävät nopeasti kaiken energiansa. Fotoemissio tulee siis muutamasta uloimmasta atomikerroksesta 4

25 Spin-rata vuorovaikutus Randy Harris Huomaa ero magneettisten momenttien merkinnöissä Harris Luennot µ M S µ M L S L Elektronin magneettinen momentti Ympyräradan pinta - ala on S = π r joten klassisen sähkömagnetismin mukaan e M = IS = e( ω π) πr = rmeωr me e e M = rmev= L Vektorimuodossa me me e e e" ML = L; ML = L z z = ml = µ Bml me me me e" missä Bohrin magnetoni µ = B m e Elektronin rataliikkeestä aiheutuu virta jonka suuruus on I = e ( ω π) 5

26 Atomi ulkoisessa magneettikentässä Jo vuonna 1890 hollantilainen fyysikko Pieter Zeeman ( ) oli havainnut kaasuatomien spektriviivojen hajoavan kolmeen osaan kun kaasu oli ulkoisessa magneettikentässä. Zeeman sai työstään fysiikan Nobelin 190. Arnold Sommerfeld ( ) selitti Zeemanin havainnon 1916 sillä, että rataliikkeen magneettinen momentti ja ulkoisen kentän keskinäinen suunta vaikutti magneettisen momentin ja ulkoisen kentän välisen vuorovaikutusenergian suuruuteen. Myöhemmin spektriviivojen muutoksissa ulkoisessa magneettikentässä havaittiin lisää yksityiskohtia. Jos elektronin spinmagneettinen momentti on hyvin heikko puhutaan normaalista muutoin anomaalisesta Zeeman efektistä. l Normaali Zeemanin ilmiö (ilman spiniä!!) Energia magneettikentässä EBL = ML B = e = L B me Valitaan B # z - akseli e e EBL = L B= LzB me me = µ BBml, missä m = l. l+ 1,..., l 1, l Valintasäännöt sähködipolitransitioissa = 0, ± 1 m l 6

27 Zeeman efekti d-orbitaaleille (ilman spiniä!!) Klassisen teorian mukaan spektriviiva tulisi levenemään hieman enemmän kuin äärimmäisten magneettisten alitilojen energia ero. Tämä aiheuttaisi optiseen spektriin yhden hyvin leveän viivan kolmen erillisen viivan (muista valintasääntö!) sijaan. Elektronin spin Spin on elektronin sisäinen kulmaliikemäärä. Spin on ominaisuus, joka voidaan johtaa kvanttisähködynamiikasta. Kokeellisesti on havaittu, että elektronin spinvektorin pituus on aina sama ja spinillä on kaksi mahdollista suuntaa. Analogia rataliikkeeseen ehdottaa: Kaksi suuntaa ms = s, + s yhden välein s= 1 s= 1/ Yksinkertaisin mahdollisuus: ˆ 3 S χm = s( s+ 1 )" χ ; 1/ s m = " χ s 4 m s= s Sˆ χ = m " χ ; m =± 1/ z ms s ms s 7

28 Spinmagneettinen momentti Spinin voidaan ajatella muodostuvan varaustiheyden kiertyessä elektronin akselin ympäri (Samuel Goudsmit ja George Uhlenbeck 195) Elektronin magneettisen momentin ja spinin suhde on e M = g S S me missä gyromagneettinen suhde gs,004. Tasaisesti varatulle pallolle g =. Spinmagneettisen momentin ja ulkoisen kentän vuorovaikutus on e" EBS = MB i = gsmsb = µ B gsmsb me missä m =± 1/. s S Spinin suuntakvantittuminen Vasemmalla efektiivinen virta on vastapäivään ja magneettinen momentti alaspäin, oikealla virtaa myötäpäivään ja magneettinen momentti ylöspäin 8

29 Zeeman hajonta (ilman spin-rata efektiä!) Jos spinratavuorovaikutus on hyvin heikko rata- ja spinmagneettinen momentti vuorovaikuttavat riippumattomasti ulkoisen kentän kanssa. Vasemmassa laidassa B=0. Keskellä B on nollasta poikkeava mutta spinmagneettinen momentti = 0. Oikealla B ja molemmat magneettiset momentit ovat nollasta poikkeavat. Tilat leikkaavat koska g S > Harrisin kirjassa tämä on Pashen-Back ilmiö s. 330 Kulmaliikemäärän ja spinin summa Koska spinin suunta on kvantittunut mielivaltaisen referenssiakselin suhteen on luonnollista ajatella, että myös L ja S vektorit voivat olla vain kahdessa kulmassa toisiinsa nähden. Kulmaliikemäärien summavektorilla voi siis olla vain kaksi eri pituutta. ( 1) ( 1) L= l l+ " S = s s+ " L = m " S = m " z l z s m = l,.. + l m =± 1/ J = j j+ " Jz = m" m=± j ± j l Kokonaiskulmaliikemäärä toteuttaa samat yhtälöt 1,,, 1,... ( ) ( ) s 9

30 Kulmaliikemäärän ja spinin summa Kuvan perusteella J :n pituudella voi olla vain kaksi arvoa. Lisäksi: J < L + S J > L S Koska kulmaliikemäärä ja spin ovat vain viistosti yhdentai vastakkaisuuntaiset. Jos oletamme, että j = puoliluku tai kokonaisluku, ehdot j( j+ 1) < l( l+ 1) + 3/ j( j+ 1) > l( l+ 1) 3/ toteuttaa ainoastaan j = l+ 1/ ja j = l 1/ muilla valinnoilla toinen ehdoista ei toteudu. Magneettisten dipolien vuorovaikutus Atomin elektroneilla on (s-tiloja lukuunottamatta) kaksi magneettista momenttia M L ja M S, jotka vuorovaikuttavat keskenään. Klassisen SM-teorian mukaan magneettinen dipoli m magneettikentän, joka kaukana dipolista on µ 0 B= 3( 1 ˆ) ˆ 3 m r r m1 4π r missä r on vektori dipolista kenttäpisteeseen rˆ = r/ r. 1 luo Kahden dipolin vuorovaikutus on siis klassisesti µ 0 = m B= 3( 1 ˆ)( ˆ) 3 m r m r m1 m 4π r 30

31 Kvanttimekaaninen malli Edelläolevaa klassista kuvaa ei kuitenkaan voi soveltaa sellaisenaan. Jos magneettiset momentit ovat kohtisuorassa ratatasoon nähden MS r = 0 ja klassisesti olisi µ 0 = M 3 L MS 4π r Tämä ei kuitenkaan toimi sellaisenaan kvanttifysiikassa Tilanne elektronin lepokoordinaatistossa Tässä havainnollistetaan spin-rata vuorovaikutusta siirtymällä elektronin lepokoordinaatistoon. Positiivinen ydin varaus (+Ze) kiertää elektronia ja luo ympärilleen magneettikentän, jonka keskipisteessä spinmagneettinen momentti sijaitsee. Tässä - jälleen klassisessa - mallissa ytimen muodostama virta luo silmukan keskipisteeseen magneettikentän 0I 0 e 0e B = µ = µ L B = µ L r r 3 πmr 4πmr e Vuorovaikutusenergia olisi vastaavasti ( g S ) M B S L S L eg S µ 0e µ 0e U = S = m 3 3 e 4πmr e 4πmr e e Tämäkin tulos on vain approksimatiivinen. 31

32 Kvanttimekaaninen spin-rata efekti Elektronin rata- ja spin magneettiset momentit vuorovaikuttavat keskenään magneettien tavoin. Kvanttimekaaninen Spin-rata vuorovaikutus on ( gs = ) m e ESL = as L= ams M L e Voidaan osoittaa että a on odotusarvo : 1 1 de p 1 e Z a= E missä p = mc r dr 4πε e 0 r Vektorisumman perusteella J = L + S 1 + L S L S = ( 1 ) ( 1) 3/4 j j+ l l+ " joten a E SL = j( j+ 1) l( l+ 1) 3/4 " Klassinen vs kvanttimekaaninen Klassisesti µ 0e e S L 3 S L 3 4πmr e 4πε0mcr e gs = 1 1 de p SL = as L= S L= mc r dr e 1 e Z E p = ( Z=1 vedylle) 4πε 0 r = = sillä c = 1/ ε µ Kvanttimekaniikan mukaan ( ) E missä E SL 1 e 1 µ 0e 1 = as L= 4 3 S L= S L mc πε 3 e 0 r 8π me r 0 0 Klassinen ja kvanttimekaaninen tulos ovat samat tekijää 1/ lukuunottamatta. Tämä tekijä tulee suhteellisuusteoriasta!! 3

33 Hyvät kvanttiluvut Spin-rata vuorovaikutukseen liittyy vääntömomentti joka pyrkii kääntämään magneettimomentit vastakkaissuuntaisiksi (energia pienenee!). Tästä syystä S ja L vektorien suunta muuttuu. Ne siis eivät ole liikevakioita. Kokonaiskulmaliikemäärä on liikevakio, koska oletimme, että atomi on eristetty ympäristöstä. Jos jokin suure on liikevakio, siihen liittyvät kvanttiluvut ovat hyviä kvanttilukuja. Kun spin-rata efekti otetaan huomioon ls,, jm, j ovat "hyviä kvanttilukuja" Toisaalta ml, mseivät ole hyviä kvanttilukuja koska Lz ja Sz eivät ole liikevakioita. Spin-rata efekti vedyn p-tilalle Vedyn p tilassa l = 1 mahdollisia j:n arvoja ovat j = l 1/= 1/ ja j = l + 1/ = 3/ Kun j = 1/ 1 L S = j( j+ 1) l( l+ 1) 3/4 " = 1" Kun j = 3/ a E SL = j( j+ 1) l( l + 1) 3/4 " = 1/" e 1 de a r ( ) p = φ p φ p mc e r dr Vasemmalla spin-rata vv = 0. Oikealla puolella nähdään p tilan hajoaminen. E p= Coulombin potentiaali energia j=3/ alitila nousee korkeammalle ja j=1/ tila painuu alemmas. Huomaa kuinka pieni spin-rata vv on verrattaessa dipolitransition p 1s energiaan!! missä 33

34 Landen g-tekijä (Weak field Zeeman effect) Jos ulkoinen kenttä = 0, elektronin kokonaiskulmaliikemäärä J on liikevakio. Ms ja M L kiertävät J:n suunnan ympäri ja niiden summavektori on keskimäärin vastakkainen J:n suuntaan nähden. e e 1+ S J Mave = ( M J/ J) J/ J = ( J + S) JJ / J = m e m J e J e S J 3j( j+ 1) + s( s+ 1) l( l+ 1) Mave = gj; g = 1+ = m e J j( j+ 1) Anomaalinen Zeemanin efekti (p 1s transitio) Z Kokonaisenergia = EH + anl L S Mave B = n Z a E nl e" H + [ j( j+ 1) l( l + 1) s( s+ 1) ] + gmb n me Lande - tekijä S J g = 1+ = J j( j+ 1) + 3/4+ l( l + 1) + j j+ 1 ( ) 34

35 Harris Luku 8.9 LS-kytkentämalli Jos spin-rata vuorovaikutus on heikko elektronien spinit kytkeytyvät kokonaisspiniksi ja ratakulmaliikemäärät kokonaisratakulmaliikemääräksi Kokonaisspin ja kokonaisratakulmaliikemäärä kytkeytyvät kokonaiskulmaliikemääräksi J = L + S T T T J%L = S,... L + S M = J,..., J J 35

36 Hundin säännöt 1/ Monen elektronin tiloissa eri kokonaiskulmaliikemäärätilojen energiat eivät ole samat. Kokonaiskulmaliikemäärä vaikuttaa aaltofunktion rataosan vaihtosymmetriaan. Vaihtosymmetria vaikuttaa todennäköisyyteen, jolla samassa spintilassa olevat elektronit ovat lähellä toisiaan, ja siten myös sähköstaattiseen energiaan. Kahden ekvivalentin elektronin (np elektronikonfiguraatio) spektritermit Hundin säännöt / Alin monielektroniatomin energiatila saadaan seuraavasti: I Sääntö Suurin Paulin kieltosäännön sallima kokonaisspinkvanttiluku S. II Sääntö Suurin (kokonaisspinkvanttiluvun ja Paulin kieltosäännön sallima) rataliikkeen kokonaiskulmaliikemäärän kvanttiluku L. III Sääntö a) Ylin vajaa elektronikuori vähemmän kuin puoliksi täynnä: Valitse pienin kokonaiskulmaliikemäärän kvanttiluku ts. J = L S. (soveltuu np konfiguraatioon ed. sivu) III Sääntö b) Ylin vajaa elektronikuori enemmän kuin puoliksi täynnä: Valitse suurin kokonaiskulmaliikemäärän kvanttiluku 4 ts. J = L+ S. (soveltuu esim np konfiguraatioon) 36

Monen elektronin atomit

Monen elektronin atomit Monen elektronin atomit Helium atomi Keskimääräisen kentän approksimaatio Aaltofunktion symmetria hiukkasvaihdossa Paulin kieltosääntö Alkuaineiden jaksollinen järjestelmä Heliumin emissiospektri Vety

Lisätiedot

Monen elektronin atomit

Monen elektronin atomit Monen elektronin atomit Helium atomi Keskimääräisen kentän approksimaatio Aaltofunktion symmetria hiukkasvaihdossa Paulin kieltosääntö Alkuaineiden jaksollinen järjestelmä Heliumin emissiospektri Vety

Lisätiedot

Oppikirja (kertauksen vuoksi)

Oppikirja (kertauksen vuoksi) Oppikirja (kertauksen vuoksi) Luento seuraa suoraan oppikirjaa: Malcolm H. Levitt: Spin Dynamics Basics of Nuclear Magnetic Resonance Wiley 2008 Oppikirja on välttämätön sillä verkkoluento sisältää vain

Lisätiedot

8. MONIELEKTRONISET ATOMIT

8. MONIELEKTRONISET ATOMIT 8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä

Lisätiedot

Monen elektronin atomit

Monen elektronin atomit Monen eektronin atomit Heium atomi Keskimääräisen kentän approksimaatio Aatofunktion symmetria hiukkasvaihdossa Pauin kietosääntö Akuaineiden jaksoinen järjestemä Heiumin emissiospektri Vety Heium Vedyn

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

Demo: Kahden elektronin spintilojen muodostaminen

Demo: Kahden elektronin spintilojen muodostaminen Demo: Kahden elektronin spintilojen muodostaminen Tämän demonstraation tarkoituksena on havainnollistaa kvanttimekaniikan operaattoriformalismin soveltamista kahden elektronin systeemin spintilojen muodostamiseen.

Lisätiedot

5.1 Johdanto 185. 5.2 Helium-atomi 186. 5.3 Keskeiskenttämalli 201. 5.4 Paulin kieltosääntö 206. 5.5 Atomien elektronirakenne 208

5.1 Johdanto 185. 5.2 Helium-atomi 186. 5.3 Keskeiskenttämalli 201. 5.4 Paulin kieltosääntö 206. 5.5 Atomien elektronirakenne 208 MONIELEKTRONIATOMIT 5. Johdanto 85 5. Helium-atomi 86 5.3 Keskeiskenttämalli 0 5.4 Paulin kieltosääntö 06 5.5 Atomien elektronirakenne 08 5.6 L--kytkentä monen elektronin atomeissa 3 5.7 Röntgenspektrien

Lisätiedot

9. JAKSOLLINEN JÄRJESTELMÄ

9. JAKSOLLINEN JÄRJESTELMÄ 9. JAKSOLLINEN JÄRJESTELMÄ Jo vuonna 1869 venäläinen kemisti Dmitri Mendeleev muotoili ajatuksen alkuaineiden jaksollisesta laista: Jos alkuaineet laitetaan järjestykseen atomiluvun mukaan, alkuaineet,

Lisätiedot

Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit

Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit Luku 10: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit 1 n 1 = 3 n 1 = 4 n 1 = 2 n 1 =1 Vetyatomin spektri koostuu viivoista Viivojen sijainti

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

Spin ja atomifysiikka

Spin ja atomifysiikka Spin ja atomifysiikka Harris luku 8 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Lämmittelykysymys Pohdi parin kanssa 5 min Kysymys Atomin säde on epämääräinen käsite. Miksi?

Lisätiedot

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1 10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Ch2 Magnetism. Ydinmagnetismin perusominaisuuksia.

Ch2 Magnetism. Ydinmagnetismin perusominaisuuksia. Ch2 Magnetism Ydinmagnetismin perusominaisuuksia. Sähkömagneettinen kenttä NMR-spectroskopia perustuu ulkoisten SM-kenttien ja ytimen magneettisen momentin väliseen vuorovaikutukseen. Sähkökenttä E ja

Lisätiedot

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Lisätiedot

3.1 Varhaiset atomimallit (1/3)

3.1 Varhaiset atomimallit (1/3) + 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti

Lisätiedot

S Fysiikka III (EST) Tentti ja välikoeuusinta

S Fysiikka III (EST) Tentti ja välikoeuusinta S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,

Lisätiedot

Luento Atomin rakenne

Luento Atomin rakenne Luento 10 5. Atomin rakenne Vetatomi Ulkoisten kenttien aiheuttama energiatasojen hajoaminen Zeemanin ilmiö Elektronin spin Monen elektronin atomit Röntgensäteiln spektri 1 Schrödingerin htälö kolmessa

Lisätiedot

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n, S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion

Lisätiedot

S Fysiikka III (Est) 2 VK

S Fysiikka III (Est) 2 VK S-37 Fysiikka III (Est) VK 500 Tarkastellaan vedyn p energiatasoa a) Mikä on tämän tason energia Bohrin mallissa? b) Oletetaan että spinratavuorovaikutus voidaan jättää huomiotta Kirjoita kaikki tähän

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta

Lisätiedot

Atomien rakenteesta. Tapio Hansson

Atomien rakenteesta. Tapio Hansson Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli

Lisätiedot

Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien

Lisätiedot

Atomimallit. Tapio Hansson

Atomimallit. Tapio Hansson Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

Molekyylit. Atomien välisten sidosten muodostuminen

Molekyylit. Atomien välisten sidosten muodostuminen Molekyylit. Johdanto. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit 6. Orgaaniset

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2 S 437 Fysiikka III Kevät 8 Jukka Tulkki 8 askuharjoitus (ratkaisut) Palautus torstaihin 34 klo : mennessä Assistentit: Jaakko Timonen Ville Pale Pyry Kivisaari auri Salmia (jaakkotimonen@tkkfi) (villepale@tkkfi)

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli

KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli Aineen rakenteen teoria alkoi hahmottua, kun 1800-luvun alkupuolella John Dalton kehitteli teoriaa atomeista jakamattomina aineen perusosasina. Toki

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

J 2 = J 2 x + J 2 y + J 2 z.

J 2 = J 2 x + J 2 y + J 2 z. FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,

Lisätiedot

Kemian syventävät kurssit

Kemian syventävät kurssit Kemian syventävät kurssit KE2 Kemian mikromaailma aineen rakenteen ja ominaisuuksien selittäminen KE3 Reaktiot ja energia laskuja ja reaktiotyyppejä KE4 Metallit ja materiaalit sähkökemiaa: esimerkiksi

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 1 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 2011 1 Ytimen rakenne Luentomonisteen sivulla 3 oleva nuklidien N Z-diagrammi

Lisätiedot

Jakso 8: Monielektroniset atomit

Jakso 8: Monielektroniset atomit Jakso 8: Monielektroniset atomit Näytä tai palauta tämän jakson tehtävät viimeistään tiistaina 9.6.2015. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 6 ja 7. Suunnilleen samat asiat ovat

Lisätiedot

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää

Lisätiedot

Atomimallit. Tapio Hansson

Atomimallit. Tapio Hansson Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

Luento 11. Elektronin spin

Luento 11. Elektronin spin Elektronin spin Luento 11 Spektrimittaukset osoittivat, että energiatasot jakautuvat todellisuudessa useampaan kuin normaalin Zeemanin ilmiön ennustamaan kolmeen. Ruvettiin puhumaan anomaalisesta Zeemanin

Lisätiedot

8. MONIELEKTRONISET ATOMIT

8. MONIELEKTRONISET ATOMIT 8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

Ydinfysiikkaa. Tapio Hansson

Ydinfysiikkaa. Tapio Hansson 3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10

Lisätiedot

ULKOELEKTRONIRAKENNE JA METALLILUONNE

ULKOELEKTRONIRAKENNE JA METALLILUONNE ULKOELEKTRONIRAKENNE JA METALLILUONNE Palautetaan mieleen jaksollinen järjestelmä ja mitä siitä saa- Kertausta daan irti. H RYHMÄT OVAT SARAKKEITA Mitä sarakkeen numero kertoo? JAKSOT OVAT RIVEJÄ Mitä

Lisätiedot

11. MOLEKYYLIT. Kvanttimekaniikka on käyttökelpoinen molekyyleille, jos se pystyy selittämään atomien välisten sidosten syntymisen.

11. MOLEKYYLIT. Kvanttimekaniikka on käyttökelpoinen molekyyleille, jos se pystyy selittämään atomien välisten sidosten syntymisen. 11. MOLEKYYLIT Vain harvat alkuaineet esiintyvät luonnossa atomeina (jalokaasut). Useimmiten alkuaineet esiintyvät yhdisteinä: pieninä tai isoina molekyyleinä, klustereina, nesteinä, kiinteänä aineena.

Lisätiedot

Luento5 8. Atomifysiikka

Luento5 8. Atomifysiikka Atomifysiikka Luento5 8 54 Kvanttimekaniikan avulla ymmärrämme atomin rakenteen ja toiminnan. Laser on yksi esimerkki atomien ja valon kvanttimekaniikasta. Luennon tavoite: Oppia ymmärtämään atomin rakenne

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään

Lisätiedot

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11

S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11 S-114.1327 Fysiikka III (Est, 6,0 op) LUENTOSUUNNITELMA KEVÄT 2007, 2. PUOLILUKUKAUSI Toisen puolilukukauden aikana käydään läpi keskeiset kohdat Kvanttifysiikan opetusmonisteen luvuista 3-7. Laskuharjoituksia

Lisätiedot

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien

Lisätiedot

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni 3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät

Lisätiedot

766326A Atomifysiikka 1 - Syksy 2013

766326A Atomifysiikka 1 - Syksy 2013 766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

Luku 2: Atomisidokset ja ominaisuudet

Luku 2: Atomisidokset ja ominaisuudet Luku 2: Atomisidokset ja ominaisuudet Käsiteltävät aiheet: Mikä aikaansaa sidokset? Mitä eri sidostyyppejä on? Mitkä ominaisuudet määräytyvät sidosten kautta? Chapter 2-1 Atomirakenne Atomi elektroneja

Lisätiedot

Kvanttimekaaninen atomimalli. "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman

Kvanttimekaaninen atomimalli. Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman Kvanttimekaaninen atomimalli "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman Tunnin sisältö 1. 2. 3. 4. 5. 6. 7. Kvanttimekaaninen atomimalli Orbitaalit Kvanttiluvut Täyttymisjärjestys

Lisätiedot

7. Atomien rakenne ja spektrit

7. Atomien rakenne ja spektrit 7. Atomien rakenne ja spektrit Atomien rakenteella tarkoitetaan niiden elektroniverhojen rakennetta, erilaisia jakautumia ja erityisesti elektronien energiatiloja. Atomien spektreillä taas tarkoitetaan

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

Alikuoret eli orbitaalit

Alikuoret eli orbitaalit Alkuaineiden jaksollinen järjestelmä Alkuaineen kemialliset ominaisuudet määräytyvät sen ulkokuoren elektronirakenteesta. Seuraus: Samanlaisen ulkokuorirakenteen omaavat alkuaineen ovat kemiallisesti sukulaisia

Lisätiedot

Aikariippuva Schrödingerin yhtälö

Aikariippuva Schrödingerin yhtälö Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin

Lisätiedot

1. Materiaalien rakenne

1. Materiaalien rakenne 1. Materiaalien rakenne 1.1 Johdanto 1. Luento 2.11.2010 1.1 Johdanto Materiaalit voidaan luokitella useilla eri tavoilla Kemiallisen sidoksen mukaan: metallit, keraamit, polymeerit Käytön mukaan: komposiitit,

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

S Fysiikka III (Est), 2 VK Malliratkaisut (Arvosteluperusteita täydennetään vielä)

S Fysiikka III (Est), 2 VK Malliratkaisut (Arvosteluperusteita täydennetään vielä) S-.7 Fysiikka III (st), VK 8.5.008 Malliratkaisut (Arvosteluperusteita täydennetään vielä). Näytä, että sekä symmetrinen aaltofunktio ψn( x ) ψn ( x) + ψn( x) ψn, että antisymmetrinen aaltofunktioψn( x)

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,

Lisätiedot

Jaksollinen järjestelmä

Jaksollinen järjestelmä Mistä kaikki alkoi? Jaksollinen järjestelmä 1800-luvun alkupuoli: Alkuaineita yritettiin 1800-luvulla järjestää atomipainon mukaan monella eri tavalla. Vuonna 1826 Saksalainen Johann Wolfgang Döbereiner

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi

Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi Harris luku 7 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Yleistetään viidennen luvun sidottujen tilojen

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

MUUTOKSET ELEKTRONI- RAKENTEESSA

MUUTOKSET ELEKTRONI- RAKENTEESSA MUUTOKSET ELEKTRONI- RAKENTEESSA KEMIAA KAIK- KIALLA, KE1 Ulkoelektronit ja oktettisääntö Alkuaineen korkeimmalla energiatasolla olevia elektroneja sanotaan ulkoelektroneiksi eli valenssielektroneiksi.

Lisätiedot

Tilat ja observaabelit

Tilat ja observaabelit Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

Ch10 Spin-1/2 systeemi. Spin-1/2 kvanttimekaniikkaa

Ch10 Spin-1/2 systeemi. Spin-1/2 kvanttimekaniikkaa Ch1 Spin-1/2 systeemi Spin-1/2 kvanttimekaniikkaa Ominaistilat Vain kaksi tilaa sillä kvanttimekaniikan mukaan m = I, I + 1,..., I 1, I siis yhteensä 2I + 1 kpl I JOS I = 1/ 2 niin 2I + 1 = 2! Spinin kantafunktiot

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,

Lisätiedot

Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:

Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Rotaatio eli pyörimisliike Vibraatio eli värähdysliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön

Lisätiedot

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit

Lisätiedot

S Fysiikka III (EST) (6 op) 1. välikoe

S Fysiikka III (EST) (6 op) 1. välikoe S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

Aineaaltodynamiikkaa

Aineaaltodynamiikkaa Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset

Lisätiedot

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko Luento 1: Sisältö Kemialliset sidokset Ionisidos (suolat, NaCl) Kovalenttinen sidos (timantti, pii) Metallisidos (metallit) Van der Waals sidos (jalokaasukiteet) Vetysidos (orgaaniset aineet, jää) Vyörakenteen

Lisätiedot

MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN

MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN PRO GRADU -TUTKIELMA SAKARI MIKKONEN OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS 2005 Sisällysluettelo

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot