1 KAUPALLISIA SOVELLUKSIA Tulovero 8

Koko: px
Aloita esitys sivulta:

Download "1 KAUPALLISIA SOVELLUKSIA 7. 1.1 Tulovero 8"

Transkriptio

1 SISÄLTÖ 1 KAUPALLISIA SOVELLUKSIA Tulovero Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki Indeksit 22 - Indeksin käsite 22 - Indeksit ja rahan arvo Valuutat 32 - Euro 32 - Valuuttakurssit 33 2 KORKO- JA KORONKORKOLASKENTAA Yksinkertainen korkolasku 37 - Käsitteitä 37 - Korkolaskun perustapaukset 42 - Ajan vaikutus rahasuoritukseen 47 - Pankkitilit Koronkorko 57 - Kasvanut ja alkuperäinen pääoma 58 - Jaksolliset suoritukset Luotot 83 - Pankkilainat 83 - Luoton todellinen korkokanta 91 - Tili- ja kulutusluotot 94 3 INVESTOINTILASKELMIA Perusmenetelmiä Nykyarvomenetelmä Annuiteettimenetelmä Sisäisen korkokannan menetelmä Jatkuva koronkorkolasku ja jatkuva maksuvirta Jatkuva koronkorkolasku Jatkuva maksuvirta 118

2 4 ARVOPAPERIT Osakkeet Joukkovelkakirjalainat Sijoitusrahasto-osuudet TALOUSELÄMÄN FUNKTIOITA Funktio talouselämän apuvälineenä Lineaarinen ja paloittain lineaarinen funktio Käyräviivaisia funktioita Kysyntä- ja tarjontafunktio Kustannus- ja tuottofunktioita Rajakustannukset ja rajatuotto Optimaalisen eräkoon määrittäminen Jousto MATRIISILASKENTAA Peruskäsitteitä Laskutoimituksia Yhtälöryhmän ratkaiseminen käänteismatriisin avulla LINEAARINEN OPTIMOINTI Mallin käyttö Mallin rakenne Optimin määrittäminen Pelivara, ylijäämä ja varjohinnat VERKKOMALLEJA Verkko Kuljetusongelma Sijoitteluongelma Lyhin polku Verkon minimointi Maksimivirtaus Kriittinen polku PROSENTTILASKENNAN KERTAUS VASTAUKSIA 281

3 1.2 HINTAAN VAIKUTTAVIA TEKIJÖITÄ MYYNTIHINTA HANKINTAHINTA OSTOHINTA VEROTON OSUUS MYYNTIPALKKIO HANKINTAKULUT ALV ARVONLISÄVERO Valtio perii arvonlisäveroa (alv) liiketoiminnan muodossa tapahtuvasta tavaran ja palvelun myynnistä sekä tavaran maahantuonnista. Käytännössä tämä tarkoittaa sitä, että tuotteiden ja palveluiden lopullisessa hinnassa on mukana tämä arvonlisävero, jonka sitten tuotteen tai palvelun myyjät tilittävät valtiolle. Arvonlisäveroa laskettaessa veron perusteena on veroton myyntihinta. Veroa suoritetaan pääsääntöisesti 22 % veron perusteesta. Elintarvikkeiden verokanta on 17 %. Lääkkeisiin, kirjoihin, elokuvanäytösten pääsylippuihin, liikuntapalveluihin, kaupallisiin viihdetilaisuuksiin, henkilökuljetuksiin, majoitukseen ja yleisradiotoimintaan sovelletaan 8 %:n verokantaa. Arvonlisävero on siis 22 %, 17 % tai 8 % siitä myyntihinnasta, joka ei sisällä arvonlisäveroa, jos tuote on täysin verollinen, kuten useimmat tuotteet ovat. Koska tuotteen tai palvelun myyjä joutuu maksamaan arvonlisäveroa, sen on hintaa määrittäessään huomioitava veron osuus. Verottomaan myyntihintaan lisätään arvonlisäveron suuruinen varaus, joka myöhemmin maksetaan valtiolle arvonlisäverotilityksen yhteydessä. Käytännössä arvonlisävero siirtyy kokonaisuudessaan hintaan ja sitä kautta ostajan maksettavaksi. Seuraavassa arvonlisäveroa tarkastellaan lähinnä yksittäisen tuotteen tai palvelun hintaan vaikuttavana tekijänä. Esim. 1.4 Hiusten leikkauksen hinta ilman arvonlisäveroa on 20 ˆ. Tähän lisätään 22 %:n arvonlisävero seuraavasti: Hinta ilman alv:a 20,00 ˆ Alv 0,22 20 ˆ 4,40 ˆ Hinta veroineen 24,40 ˆ

4 Seuraavassa on edellinen esimerkki laskettu sekä muodostamalla itse kaava loppuarvon laskemiseksi että Excelin Rahoitus-funktiolla TULEVA ARVO. Valmisfunktiota käytettäessä valinnat ovat: Liitä funktio Rahoitus TULEVA ARVO Oletusarvona on, että maksut erääntyvät jakson lopussa (Laji puuttuu tai on 0).

5 Yksikkökustannukset voidaan laskea helpommin rajakustannusfunktiosta, koska yksikkökustannukset ja rajakustannukset ovat samat: K'(4 472) = 0, ,5 9,97 Havainnollistetaan tilannetta vielä graafisesti piirtämällä samaan kuvioon yksikkökustannusten ja rajakustannusten kuvaajat. x K' K/x ,5 16, ,5 11, ,5 10, ,5 10, ,5 10, ,5 10, ,5 10, ,5 10,8 Kuviosta nähdään, että yksikkökustannukset ovat pienimmillään samassa kohdassa kuin yksikkökustannusfunktio ja rajakustannusfunktio leikkaavat toisensa. Tässä kohdassa suoritemäärä on kuvion mukaan n ja yksikkö- ja rajakustannukset hieman alle 10.

1.2 Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki 17

1.2 Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki 17 SISÄLTÖ 1 KAUPALLISIA SOVELLUKSIA 7 1.1 Tulovero 8 1.2 Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki 17 1.3 Indeksit 22 - Indeksin käsite 22

Lisätiedot

1.1 Suhteisjako 8. Euro 14 Valuuttakurssit 15 Kurssimuutokset ja rahan arvo 18. Tulovero 21 Ansiotulon vero 21 Pääomatulon vero 23

1.1 Suhteisjako 8. Euro 14 Valuuttakurssit 15 Kurssimuutokset ja rahan arvo 18. Tulovero 21 Ansiotulon vero 21 Pääomatulon vero 23 SISÄLTÖ 1 KAUPALLISIA SOVELLUKSIA 7 1.1 Suhteisjako 8 1.2 Valuutat 14 Euro 14 Valuuttakurssit 15 Kurssimuutokset ja rahan arvo 18 1.3 Verotus 21 Tulovero 21 Ansiotulon vero 21 Pääomatulon vero 23 Varallisuusvero

Lisätiedot

1 PERUSTEIDEN KERTAUSTA... 7

1 PERUSTEIDEN KERTAUSTA... 7 SISÄLTÖ 1 PERUSTEIDEN KERTAUSTA... 7 1.1 PERUSLASKUTOIMITUKSIA... 7 LUKUJEN PYÖRISTÄMINEN... 7 LASKEMISJÄRJESTYS... 10 MURTOLUVUT... 15 NEGATIIVISET LUVUT... 22 1.2 ALGEBRAN PERUSTEITA... 28 POTENSSIT...

Lisätiedot

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100

Lisätiedot

Käytettyjen tavaroiden tuontihuojennus Ahvenanmaan verorajaa ylitettäessä

Käytettyjen tavaroiden tuontihuojennus Ahvenanmaan verorajaa ylitettäessä Käytettyjen tavaroiden tuontihuojennus Ahvenanmaan verorajaa ylitettäessä Asiakasohje tulli.fi 8.12.2016 Käytettyjen tavaroiden tuontihuojennus Ahvenanmaan verorajaa ylitettäessä Sisällys 1 Käytettyjen

Lisätiedot

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100

Lisätiedot

YRITYS JA VEROT. Yritystoiminta Pia Niuta

YRITYS JA VEROT. Yritystoiminta Pia Niuta YRITYS JA VEROT Verohallinto Yritystoimintaan liittyvät rekisteröintitoimenpiteet (verohallinto) Toiminnan aloittaminen Muutokset toiminnassa Toiminnan lopettaminen Ennakkoperintärekisteri Ennakkoverotus

Lisätiedot

1 Prosenttilaskenta ja verotus 3. 2 Hinnat ja rahan arvo 21. Indeksit 21 Euro ja muut valuutat 36 Kertaustehtäviä 43. 3 Lainat ja talletukset 48

1 Prosenttilaskenta ja verotus 3. 2 Hinnat ja rahan arvo 21. Indeksit 21 Euro ja muut valuutat 36 Kertaustehtäviä 43. 3 Lainat ja talletukset 48 Sisällysluettelo 1 Prosenttilaskenta ja verotus 3 Prosenttilaskenta 3 Verotus 12 Kertaustehtäviä 19 2 Hinnat ja rahan arvo 21 Indeksit 21 Euro ja muut valuutat 36 Kertaustehtäviä 43 3 Lainat ja talletukset

Lisätiedot

Luento 7. Arvonlisävero: Ulkomaan rahanmääräiset erät: Veron yleispiirteet Alv kirjanpidossa. Kirjanpidossa Tilinpäätöksessä.

Luento 7. Arvonlisävero: Ulkomaan rahanmääräiset erät: Veron yleispiirteet Alv kirjanpidossa. Kirjanpidossa Tilinpäätöksessä. Luento 7 Arvonlisävero: Veron yleispiirteet Alv kirjanpidossa. Ulkomaan rahanmääräiset erät: Kirjanpidossa Tilinpäätöksessä. 1 KIRJANPITO 22C00100 Luento 7a: Arvonlisävero VEROTUKSEN RAKENNE Verotuksen

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kevät 20 Talousmatematiikan perusteet, ORMS030 4. harjoitus, viikko 6 6.2. 0.2.20) R ma 2 4 F249 R5 ti 4 6 F453 R2 ma 4 6 F453 R6 to 2 4 F40 R3 ti 08 0 F425 R to 08 0 F425 R4 ti 2 4 F453

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24

1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24 SISÄLTÖ 1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN 7 1.1 Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24 1.2 Yhtälöitä 29 Epäyhtälö 30 Yhtälöpari 32 Toisen

Lisätiedot

Rajatuotto ja -kustannus, L7

Rajatuotto ja -kustannus, L7 ja -kustannus, L7 1 Kun yritys valmistaa tuotetta jaksossa määrän q (kpl/jakso), niin kassaan kertyvä tuotto on R(q) = p q = p(q) q. Esimerkki. Jos kysyntäfunktio on p = 20 0.1q, niin tuotto funktio on

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä Diskonttaus Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava K t 1 + it. (3) missä pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson

Lisätiedot

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % 6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...

Lisätiedot

Aki Taanila EXCELIN RAHOITUSFUNKTIOITA

Aki Taanila EXCELIN RAHOITUSFUNKTIOITA Aki Taanila EXCELIN RAHOITUSFUNKTIOITA 4.12.2012 Sisällys Johdanto... 1 Aikaan liittyviä laskelmia... 1 Excelin rahoitusfunktioita... 2 Koronkorkolaskenta... 2 Jaksolliset suoritukset... 4 Luotot... 7

Lisätiedot

1 Prosenttilaskua 3. 2 Yksinkertainen korkolasku 4. 3 Diskonttaus 6. 4 Koronkorko 8. 5 Korkokannat 9. 6 Jatkuva korko 10. 7 Jaksolliset suoritukset 11

1 Prosenttilaskua 3. 2 Yksinkertainen korkolasku 4. 3 Diskonttaus 6. 4 Koronkorko 8. 5 Korkokannat 9. 6 Jatkuva korko 10. 7 Jaksolliset suoritukset 11 Sisältö Prosenttilaskua 3 2 Yksinkertainen korkolasku 4 3 Diskonttaus 6 4 Koronkorko 8 5 Korkokannat 9 6 Jatkuva korko 0 7 Jaksolliset suoritukset 8 Luotot ja korkolasku 2 8. Annuiteettiperiaate........................

Lisätiedot

Voitonmaksimointi esimerkkejä, L9

Voitonmaksimointi esimerkkejä, L9 Voitonmaksimointi esimerkkejä, L9 (1) Yritys Valmistaa kuukaudessa q tuotetta. Kysyntäfunktio on p = 15 0, 05q ja kustannusfunktio on C(q) = 350 + 2q + 0, 05q 2. a) Yritys valmistaa nyt tuotteita kuukaudessa

Lisätiedot

Uusi yritys Arvonlisäverotus

Uusi yritys Arvonlisäverotus Uusi yritys Arvonlisäverotus Sanna Koivisto Pirkanmaan verotoimisto Arvonlisävero kulutusvero, joka on tarkoitettu hyödykkeen lopullisen kuluttajan maksettavaksi yritykset toimivat veron kantajina yritysten

Lisätiedot

(1) Katetuottolaskelma

(1) Katetuottolaskelma (1) Katetuottolaskelma Katetuottolaskelmalla tarkastellaan yrityksen kannattavuutta myyntituotto - muuttuvat kustannukset (mukut) = katetuotto katetuotto - kiinteät kustannukset (kikut) = tulos (voitto

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

LAATUA RAAKA-AINEIDEN JALOSTAMISEEN Elintarvike- ja poroalan koulutushanke ARVONLISÄVERO. Merja Mattila

LAATUA RAAKA-AINEIDEN JALOSTAMISEEN Elintarvike- ja poroalan koulutushanke ARVONLISÄVERO. Merja Mattila LAATUA RAAKA-AINEIDEN JALOSTAMISEEN Elintarvike- ja poroalan koulutushanke ARVONLISÄVERO Merja Mattila ALV ALV tavaroissa ja palveluissa Välillinen voi olla - lain mukaan - hakeutumalla itse (vapaaehtoinen

Lisätiedot

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t )

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t ) Annuiteettimenetelmä Investoinnin hankintahinnan ja jäännösarvon erotus jaetaan pitoaikaa vastaaville vuosille yhtä suuriksi pääomakustannuksiksi eli annuiteeteiksi, jotka sisältävät poistot ja käytettävän

Lisätiedot

Ostot toisesta EU-maasta Liite 2

Ostot toisesta EU-maasta Liite 2 Esimerkki Liite1 Jälleenmyyjä ostaa verotta käytetyn auton (6 000 euroa), jonka hän puhdistaa ja kunnostaa sekä asentaa korjaustyön yhteydessä autoon verollisena ostamiaan uusia osia (1 220 euroa) ja verottomasti

Lisätiedot

Jaksolliset suoritukset, L13

Jaksolliset suoritukset, L13 , L13 1 Jaksollinen talletus Tarkastellaan tilannetta, jossa asiakas tallettaa pankkitilille toistuvasti yhtäsuuren rahasumman k aina korkojakson lopussa. Asiakas suorittaa talletuksen n kertaa. Lasketaan

Lisätiedot

Pääsykoe 2001/Ratkaisut Hallinto

Pääsykoe 2001/Ratkaisut Hallinto Pääsykoe 2001/Ratkaisut Hallinto 1. Osio 3/Tosi; Organisaatiokenttää ei mainita (s.35). 2. Osiot 1 ja 2/Epätosia; Puppua. Osio 3/Lähellä oikeata kuvion 2.1 mukaan (s.30). Osio 4/Tosi (sivun 30 tekstin

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kevät 2017 Talousmatematiikan perusteet, ORMS1030 6. harjoitus, viikko 6 (27.2. 3.3.2017) R1 ma 12 14 F249 R5 ti 14 16 F453 R2 ma 14 16 F453 R6 to 12 14 F104 R3 ti 08 10 F140 R7 pe 08

Lisätiedot

diskonttaus ja summamerkintä, L6

diskonttaus ja summamerkintä, L6 diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson

Lisätiedot

Laskutussääntöjen muutokset ja muuta ALV:n ajankohtaista. Tilitoimistoinfot 2012

Laskutussääntöjen muutokset ja muuta ALV:n ajankohtaista. Tilitoimistoinfot 2012 Laskutussääntöjen muutokset ja muuta ALV:n ajankohtaista Tilitoimistoinfot 2012 Laskuja koskeviin vaatimuksiin muutoksia 1.1.2013 alkaen Muutosten tausta Neuvoston direktiivi 2010/45/EU direktiivin 2006/112/EY

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

Minna Borg. 2014 Prosenttitaide OTM Janita Korva

Minna Borg. 2014 Prosenttitaide OTM Janita Korva Minna Borg 2014 Prosenttitaide OTM Janita Korva Sopimus mikä ja miksi? Tarjous-vastausmekanismilla syntyvä tahdonilmaus Keino kirjata ylös osapuolten yhteinen tahto ja vastuunjako Keino ennaltaehkäistä

Lisätiedot

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % 6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...

Lisätiedot

(1) Desimaaliluvut ja lukujen pyöristäminen

(1) Desimaaliluvut ja lukujen pyöristäminen (1) Desimaaliluvut ja lukujen pyöristäminen Luvun pyöristäminen Mikäli ensimmäinen pois jäävä numero on 5 tai suurempi, korotetaan sen vasemmalla puolella olevan numeron arvoa yhdellä. Luku 123, 3476 yhden

Lisätiedot

LAATUA RAAKA-AINEIDEN JALOSTAMISEEN

LAATUA RAAKA-AINEIDEN JALOSTAMISEEN LAATUA RAAKA-AINEIDEN JALOSTAMISEEN Elintarvike- ja poroalan koulutushanke PORONLIHAN SUORAMYYNTI KOULUTUS HINNOITTELU Erkki Viero HINNOITTELU TAVOITTEET SISÄLTÖ OPETTAA KUSTANNUS- VASTAAVAA HINNOITTELUA

Lisätiedot

Taloudelliset laskelmat

Taloudelliset laskelmat Taloudelliset laskelmat Pielisen Tietoverkko Juuka 31.3.214 LUONNOS LASKENTAOLETUKSET 31.3.214 2 Laskentaoletukset Investoinnit Ominaisuus Kuvaus Rakentamisaikataulu Runkoverkon rakentaminen tapahtuu vuonna

Lisätiedot

Prosentti- ja korkolaskut 1

Prosentti- ja korkolaskut 1 Prosentti- ja korkolaskut 1 Prosentti on sadasosa jostakin, kuten sentti eurosta ja senttimetri metristä. Yksi ruutu on 1 prosentti koko neliöstä, eli 1% Kuinka monta prosenttia on vihreitä ruutuja neliöstä?

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Tamprn ksäyliopisto, 2015-2016 Talousmatmatiikan prustt, ORMS1030 1. väliko, (ti 15.12.2015) Ratkais 3 thtävää. Kokssa saa olla mukana laskin (myös graafinn laskin on sallittu) ja taulukkokirja (MAOL tai

Lisätiedot

Voitonmaksimointi, L5

Voitonmaksimointi, L5 , L5 Seuraavassa tullaan systemaattisesti käyttämään seuraavia merkintöjä q = tuotannon määrä (quantity) (kpl/kk) p = tuotteen hinta (price) (e/kpl) R(q) = tuotto (revenue) R(q) = pq MR(q) = rajatuotto

Lisätiedot

ALV:n verokantamuutokset ja kv. kaupan uudet säännökset 24.3.2010. Mika Jokinen Veroasiantuntija

ALV:n verokantamuutokset ja kv. kaupan uudet säännökset 24.3.2010. Mika Jokinen Veroasiantuntija ALV:n verokantamuutokset ja kv. kaupan uudet säännökset 24.3.2010 Mika Jokinen Veroasiantuntija ALV:n verokantamuutokset 1.7.2010 lukien Laki AVL:n muuttamisesta 29.12.2009 nro 1780/2009 Yleinen arvonlisäverokanta

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja.

11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja. 113 11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja. Esim. Kun sulatetaan 63 g kuparia ja 37 g sinkkiä, saadaan 100 g messinkiä. 63 100 = 114

Lisätiedot

Mab7_Osa2_Verotus.notebook. April 16, 2015. Suvi Ilvonen 1. huhti 21 10:42

Mab7_Osa2_Verotus.notebook. April 16, 2015. Suvi Ilvonen 1. huhti 21 10:42 huhti 21 10:42 Suvi Ilvonen 1 huhti 21 10:42 Suvi Ilvonen 2 huhti 21 10:42 Suvi Ilvonen 3 huhti 21 10:43 Suvi Ilvonen 4 Valtion tulovero vuonna 2015 Verotettava ansiotulo, euroa Vero alarajan kohdalla,

Lisätiedot

HZZ10100 Liiketoimintaosaamisen lähtökohdat: Kauppamatematiikka Versio 1.2 / 16.8.2009

HZZ10100 Liiketoimintaosaamisen lähtökohdat: Kauppamatematiikka Versio 1.2 / 16.8.2009 HZZ10100 Liiketoimintaosaamisen lähtökohdat: Kauppamatematiikka Versio 1.2 / 16.8.2009 Vesa Korhonen vesa.korhonen@jamk.fi 0400 451 752 Sisältö 0. Johdanto... 2 1. Prosenttilaskun soveltamista... 3 1.1

Lisätiedot

1,085 64,5 12,00 = 839,79 (mk) Vastaus: 839,79 mk

1,085 64,5 12,00 = 839,79 (mk) Vastaus: 839,79 mk K00 1. Asunto-osakeyhtiö nosti asuntojen yhtiövastikkeita 8,5 %. Kuinka suureksi muodostui 64,5 neliömetrin suuruisen asunnon kuukauden yhtiövastike, kun neliömetriltä oli aiemmin maksettu 12,00 mk kuukaudessa?

Lisätiedot

4. Nokian osakkeen arvo oli eräänä päivänä 12,70 ja kaksi päivää myöhemmin 11,22. Kuinka monta prosenttia osakkeen arvo oli muuttunut?

4. Nokian osakkeen arvo oli eräänä päivänä 12,70 ja kaksi päivää myöhemmin 11,22. Kuinka monta prosenttia osakkeen arvo oli muuttunut? Perustehtävät 1. Kuinka monta prosenttia a) 5 on luvusta 75 b) 13 cm on 2,2 metristä? 2. Laske a) 15 % luvusta 2340 b) 0,3 % 12000 km:stä. 3. Tuotteen alkuperäinen hinta on a. Kuinka monta prosenttia hinta

Lisätiedot

Suomen verotus selkokielellä

Suomen verotus selkokielellä Suomen verotus selkokielellä Mitä sanat tarkoittavat? Vero: pakollinen maksu, jonka valtio kerää yhteiskunnan palveluita varten Veroprosentti: osuus, jonka työnantaja ottaa palkasta ja välittää Verohallinnolle

Lisätiedot

MATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin

MATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin HAAGA-HELIA MATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin Katri Währn Kevät 2012 1 FUNKTIOLASKIMEN KÄYTTÖ Funktiolaskimeen on sisäänrakennettuna laskujärjestelmä eli se osaa laskea kerto-

Lisätiedot

Talousmatematiikka (4 op)

Talousmatematiikka (4 op) Talousmatematiikka (4 op) M. Nuortio, T. Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Talousmatematiikka 2012 Yhteystiedot: Matti Nuortio mnuortio@paju.oulu.fi Työhuone M225 Kurssin

Lisätiedot

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100

Lisätiedot

Ajatuksia hinnoittelusta. Hinta on silloin oikea, kun asiakas itkee ja ostaa, mutta ostaa kuitenkin.

Ajatuksia hinnoittelusta. Hinta on silloin oikea, kun asiakas itkee ja ostaa, mutta ostaa kuitenkin. Ajatuksia hinnoittelusta Hinta on silloin oikea, kun asiakas itkee ja ostaa, mutta ostaa kuitenkin. Hinnoittelu Yritystoiminnan tavoitteena on aina kannattava liiketoiminta ja asiakastyytyväisyys. Hinta

Lisätiedot

Ahlstrom. Tammi-syyskuu 2015. Marco Levi toimitusjohtaja. Sakari Ahdekivi talousjohtaja 28.10.2015

Ahlstrom. Tammi-syyskuu 2015. Marco Levi toimitusjohtaja. Sakari Ahdekivi talousjohtaja 28.10.2015 Ahlstrom Tammi-syyskuu 215 Marco Levi toimitusjohtaja Sakari Ahdekivi talousjohtaja 28.1.215 Sisältö Heinä-syyskuu 215 Liiketoiminta-aluekatsaus Taloudelliset luvut Tulevaisuuden näkymät Sivu 2 Heinä-syyskuu

Lisätiedot

ARVONLISÄVEROJEN KÄSITTELY SOVELLUKSESSA, KUN OSTAJA ON HANKINNASTA ARVONLISÄVEROVELVOLLINEN

ARVONLISÄVEROJEN KÄSITTELY SOVELLUKSESSA, KUN OSTAJA ON HANKINNASTA ARVONLISÄVEROVELVOLLINEN ARVONLISÄVEROJEN KÄSITTELY SOVELLUKSESSA, KUN OSTAJA ON HANKINNASTA ARVONLISÄVEROVELVOLLINEN Sisällysluettelo: 1 Yleistä... 2 2 Verokannat... 2 2.1 Eu-tavaraoston verokannat... 2 2.2 Eu-palvelujen ostojen

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =

Lisätiedot

Pidätyksen alaisen palkan määrä (sis. luontoisedut) Perusprosentti Lisäprosentti Palkkakauden tuloraja perusprosentille

Pidätyksen alaisen palkan määrä (sis. luontoisedut) Perusprosentti Lisäprosentti Palkkakauden tuloraja perusprosentille TULOVEROTUS 1 Ongelma Ennakonpidätys Kesällä 2012 Satu on kesätöissä. Hän on työnantajansa kanssa sopinut kuukausipalkakseen 1600 euroa. Palkanmaksupäivänä hänen tililleen on maksettu 1159,00 euroa. Satu

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kvät 206 Talousmatmatiikan prustt, ORMS030 3. harjoitus, viio 5. 5.2.206 Malliratkaisut. Yrityksn rään tuotlinjan kysyntäfunktio on p 20 0.030 ja vastaava kustannusfunktio on C 0.02 2

Lisätiedot

2.1 Kertaus prosenttilaskennasta

2.1 Kertaus prosenttilaskennasta Verotus 2.1 Kertaus prosenttilaskennasta 1. Alennukset yhteensä 1500 + 800 = 2300 Alennusprosentti 2300 0,184 18,4% 12500 Vastaus: Alennus 18,4 % 2. Reetun alennusprosentti: 99,90 0,8649... 115,50 alennusprosentti100%

Lisätiedot

Talousmatematiikan tehtäviä

Talousmatematiikan tehtäviä Koonnut: Joonas JoonasD6 Mäkinen versio 2015-02-28 Talousmatematiikan tehtäviä Luvut ja laskutoimitukset 1. Jaa luvut 15, 40, 90 ja 140 alkutekijöihin. 2. Laske kokonaan erikseen paperilla ja laskimella:

Lisätiedot

Korkolasku ja diskonttaus, L6

Korkolasku ja diskonttaus, L6 Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

Vuosi I I I I I I. Käyttö arvonlisäverolliseen liiketoimintaan 100% 100% 100% 100% 4/12 50% 50% 8/12 = 57%

Vuosi I I I I I I. Käyttö arvonlisäverolliseen liiketoimintaan 100% 100% 100% 100% 4/12 50% 50% 8/12 = 57% Esimerkki 1/ Siirtymäsäännökset/ Kiinteistöinvestointi valmistunut 2004 tai sen jälkeen, mutta ennen 1.1.2008/ Arvonlisäverollisen käytön osuus pienenee Vuosi 2005 2006 2007 2008 2009 I I I I I I Käyttö

Lisätiedot

1.3 Prosenttilaskuja. pa b = 100

1.3 Prosenttilaskuja. pa b = 100 1.3 Prosenttilaskuja Yksi prosentti jostakin luvusta tai suureesta on tämän sadasosa ja saadaan siis jakamalla ao. luku tai suure luvulla. Jos luku b on p % luvusta a, toisin sanoen jos luku b on p kpl

Lisätiedot

Koulutusviennin arvonlisäverotus Ammattikorkeakoulujen taloushallinnon seminaari

Koulutusviennin arvonlisäverotus Ammattikorkeakoulujen taloushallinnon seminaari Koulutusviennin arvonlisäverotus Ammattikorkeakoulujen taloushallinnon seminaari 30.8.2017 Executive Director Maritta Virtanen Kansainvälinen palvelukauppa arvonlisäverotuksessa Myyntimaasäännökset määrittävät,

Lisätiedot

BL20A0500 Sähkönjakelutekniikka

BL20A0500 Sähkönjakelutekniikka BL20A0500 Sähkönjakelutekniikka Talouslaskelmat Jarmo Partanen Taloudellisuuslaskelmat Jakeluverkon kustannuksista osa on luonteeltaan kiinteitä ja kertaluonteisia ja osa puolestaan jaksollisia ja mahdollisesti

Lisätiedot

Tämä. Tili-ja kulutusluotot. -aineisto on tarkoitettu täydentämään. Liiketalouden matematiikka 2. kirjan sisältöä.

Tämä. Tili-ja kulutusluotot. -aineisto on tarkoitettu täydentämään. Liiketalouden matematiikka 2. kirjan sisältöä. Tämä Tili-ja kulutusluotot -aineisto on tarkoitettu täydentämään Liiketalouden matematiikka 2 kirjan sisältöä. 1 Sisällysluettelo TILI- JA KULUTUSLUOTOT...3 Esim. 1... 4 Esim. 2... 6 Esim. 3... 7 Esim.

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

Seurantakohde: Kirjaa tavanomaiset sekä arvonlisäverolliset liiketapahtumat manuaalisesti. Tulkitsee tuloslaskelmaa ja tasetta.

Seurantakohde: Kirjaa tavanomaiset sekä arvonlisäverolliset liiketapahtumat manuaalisesti. Tulkitsee tuloslaskelmaa ja tasetta. Tutkinnon osa: Talouspalvelut 30 osp osa Seurantakohde: Kirjaa tavanomaiset sekä arvonlisäverolliset liiketapahtumat manuaalisesti. Tulkitsee tuloslaskelmaa ja tasetta. Tavoite: Opiskelija ymmärtää kirjanpidon

Lisätiedot

Investointilaskentamenetelmiä

Investointilaskentamenetelmiä Investointilaskentamenetelmiä Laskentakorkokannan käyttöön perustuvat menetelmät (netto)nykyarvomenetelmä suhteellisen nykyarvon menetelmä eli nykyarvoindeksi annuiteettimenetelmä likimääräinen annuiteettimenetelmä

Lisätiedot

Visma Econet Pro käytetyn tavaran marginaaliveron käsittely

Visma Econet Pro käytetyn tavaran marginaaliveron käsittely Sivu 1/5 Visma Econet Pro käytetyn tavaran marginaaliveron käsittely Visma Econet Pro ohjelmassa on huomioitu marginaaliverollinen käytetyn tavaran kaupankäynti seuraavasti. Tilikarttaan on määritelty

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Tamprn ksäyliopisto, syksy 2016 Talousmatmatiikan prustt, ORMS1030 2. harjoitus, (p 4.11.2016) 1. Yritys valmistaa kappaltavaraa kappaltta viikossa. Yhdn kappaln matriaali- ja palkkakustannus on 7, jotn

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6 A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 6 1. Monopolin kysyntäkäyrä on P = 11-Q (P on hinta per yksikkö ja Q on mitattu tuhansina yksiköinä). Monopolin vakioinen keskikustannus (AC) on 6. a.

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

Tampere 19.-20.5.2015 ASENNE, MENESTYS JA KANSAINVÄLISYYS AMK-PÄIVÄT 2015

Tampere 19.-20.5.2015 ASENNE, MENESTYS JA KANSAINVÄLISYYS AMK-PÄIVÄT 2015 Maritta Virtanen Maritta Virtanen (Executive Director, EY) on työskennellyt arvonlisäveroasiantuntijana Ernst & Youngilla vuodesta 2004 alkaen. Tätä ennen hän toimi arvonlisävero- ja liikevaihtoveroasiantuntijana

Lisätiedot

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin. Rahoitusmuodot HUOM. Tässä esitetään vain teoriaa ja joitakin esimerkkejä. Enemmän esimerkkejä ja laskuja löytyy ratkaistuina EXCEL-tiedostosta "Rahoitusmuodot - laskut ja esimerkit", joka on MOODLESSA

Lisätiedot

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN Katri Währn 2013 JOHDANTO Myyntityön koulutusohjelman matematiikan valintakoe perustuu koulumatematiikkaan riippumatta siitä, onko hakijan

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

SOCIÉTÉ GÉNÉRALE LISTALLEOTTOESITTEEN PERUSOSAN TÄYDENNYSOSA TEKNISET EHDOT WARRANTEILLE, JOIDEN KOHDE-ETUUTENA ON VALUUTTAKURSSI

SOCIÉTÉ GÉNÉRALE LISTALLEOTTOESITTEEN PERUSOSAN TÄYDENNYSOSA TEKNISET EHDOT WARRANTEILLE, JOIDEN KOHDE-ETUUTENA ON VALUUTTAKURSSI SOCIÉTÉ GÉNÉRALE LISTALLEOTTOESITTEEN PERUSOSAN TÄYDENNYSOSA TEKNISET EHDOT WARRANTEILLE, JOIDEN KOHDE-ETUUTENA ON VALUUTTAKURSSI Tämä Listalleottoesitteen perusosan täydennysosa ( Täydennysosa ) täydentää

Lisätiedot

LASKELMIA OSINKOVEROTUKSESTA

LASKELMIA OSINKOVEROTUKSESTA LASKELMIA OSINKOVEROTUKSESTA Oheisissa taulukoissa ja kuvioissa kuvataan osinkoverotuksen muutosta hallituksen korjatun kehyspäätöksen mukaisesti. Nykyisessä osinkoverotuksessa erotetaan toisistaan pörssiyhtiöiden

Lisätiedot

EUROOPAN YHTEISÖ. Lähetys-/Vientimaan 1 ILMOITUS A LÄHETYS-/VIENTITOIMIPAIKKA. 2 Lähettäjä/Viejä Nro. C 3 Lomakenro BIS.

EUROOPAN YHTEISÖ. Lähetys-/Vientimaan 1 ILMOITUS A LÄHETYS-/VIENTITOIMIPAIKKA. 2 Lähettäjä/Viejä Nro. C 3 Lomakenro BIS. Kollit 2 Lähettäjä/Viejä Nro Merkit numerot Konttien numerot Lukumäärä laji 3 Lomake 1 A LÄHETYS-/VIENTITOIMIPAIKKA 33 Tavaran 40 Yleisilmoitus/Edeltävä asiakir Kollit Merkit numerot Konttien numerot Lukumäärä

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Todellinen prosentti

Todellinen prosentti Todellinen prosentti Kaksi ajankohtaista esimerkkiä talousmatematiikasta ja todellisuudesta Tommi Sottinen Vaasan yliopisto 9. lokakuuta 2010 MAOL ry:n syyspäivät 8.-10.10.2010, Vantaa 1 / 16 Tiivistelmä

Lisätiedot

i = prosenttiluku desimaalimuodossa a = perusarvo b = prosenttiarvo Jos vaikka kolmosta ei tiedettäisi, sen saisi ratkaisua jakolaskulla

i = prosenttiluku desimaalimuodossa a = perusarvo b = prosenttiarvo Jos vaikka kolmosta ei tiedettäisi, sen saisi ratkaisua jakolaskulla 1 PROSENTTILASKUN PERUSTAPAUKSET 1. Prosenttilaskun perusyhtälö i a = b, jossa i = prosenttiluku desimaalimuodossa a = perusarvo b = prosenttiarvo Kun kaksi kolmesta tunnetaan, voidaan kolmas aina ratkaista

Lisätiedot

KULULAJIPOHJAISEN TULOSLASKELMAN KAAVA LIITE 1 (Yritystutkimus ry 2011, 12-13)

KULULAJIPOHJAISEN TULOSLASKELMAN KAAVA LIITE 1 (Yritystutkimus ry 2011, 12-13) KULULAJIPOHJAISEN TULOSLASKELMAN KAAVA LIITE 1 (Yritystutkimus ry 2011, 12-13) Valmiiden ja keskeneräisten tuotteiden varastojen lisäys (+) tai vähennys (-) Valmistus omaan käyttöön (+) Liiketoiminnan

Lisätiedot

3. PROSENTTI JA GEOMETRINEN LUKUJONO

3. PROSENTTI JA GEOMETRINEN LUKUJONO . PROSENTTI JA GEOMETRINEN LUKUJONO. Prosenttikerroin LUO PERUSTA 0. a) 56 % = 0,56 b) 0, % = 0,00 c),9 % = 0,09 d) 0 % =, Vastaus: a) 0,56 b) 0,00 c) 0,09 d), 0. A: 00 % + 5 % = 05 % =,05 = 05. Vaihtoehdot

Lisätiedot

Kiinteistöjen arvonlisäverotuksesta. Anne Korkiamäki Ylitarkastaja

Kiinteistöjen arvonlisäverotuksesta. Anne Korkiamäki Ylitarkastaja Kiinteistöjen arvonlisäverotuksesta Anne Korkiamäki Ylitarkastaja Myyntimaan määräytymisestä, yleissäännökset Arvonlisäveroa suoritetaan liiketoiminnan muodossa Suomessa tapahtuvasta tavaran ja palvelun

Lisätiedot

Visma Nova Rakennusalan käännetty arvonlisäverotus

Visma Nova Rakennusalan käännetty arvonlisäverotus Visma Nova Rakennusalan käännetty arvonlisäverotus Vakiovastaus Ohjeen päiväys: 30.3.2011 1 Käännetyn alv:n käsittely...1 1.1 Johdanto... 1 1.2 Tilikartta... 1 1.3 Asiakaskortisto... 2 1.4 Myyntitilaukset...

Lisätiedot

Pilkeyrityksen liiketoimintaosaamisen kehittäminen. Timo Värre Jyväskylän ammattikorkeakoulu

Pilkeyrityksen liiketoimintaosaamisen kehittäminen. Timo Värre Jyväskylän ammattikorkeakoulu Pilkeyrityksen liiketoimintaosaamisen kehittäminen Timo Värre Jyväskylän ammattikorkeakoulu 1 Talouden hallinnan keskeiset osat Tulevaisuus Pitääkö kasvaa? KASVU KANNATTAVUUS Kannattaako liiketoiminta?

Lisätiedot

Arvonlisäverotus kansainvälisissä kolmikantakauppa- ja muissa ketjukauppatilanteissa

Arvonlisäverotus kansainvälisissä kolmikantakauppa- ja muissa ketjukauppatilanteissa Arvonlisäverotus kansainvälisissä kolmikantakauppa- ja muissa ketjukauppatilanteissa Maaliskuu 2013, Varatuomari Joachim Reimers Kansainvälisessä kaupankäynnissä myydään usein useampaan kertaan peräkkäin

Lisätiedot

Visma Fivaldi -käsikirja Marginaaliverollinen kauppa - ohjaustiedot

Visma Fivaldi -käsikirja Marginaaliverollinen kauppa - ohjaustiedot Visma Fivaldi -käsikirja Marginaaliverollinen kauppa - ohjaustiedot 2 Sisällys 1. MARGINAALIVEROLLISEN KAUPAN TILIT... 3 1.1 Taseen tilit... 3 1.2 Tuloslaskelman tilit... 3 2 AUTOMAATTIKIRJAUSPARAMETRIT...

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

Liiketoimintasuunnitelma 01.12.2015 Giganteum. Giganteum 1/11

Liiketoimintasuunnitelma 01.12.2015 Giganteum. Giganteum 1/11 Liiketoimintasuunnitelma 01.12.2015 Giganteum Giganteum 1/11 Giganteum 2/11 Perustiedot ja osaaminen Sukunimi Etunimi Leppiaho Mika Osoite Postinumero ja -toimipaikka Kotikunta Puhelinnumero Sähköpostiosoite

Lisätiedot

Aki Taanila AIKASARJAENNUSTAMINEN

Aki Taanila AIKASARJAENNUSTAMINEN Aki Taanila AIKASARJAENNUSTAMINEN 26.4.2011 SISÄLLYS JOHDANTO... 1 1 AIKASARJA ILMAN SYSTEMAATTISTA VAIHTELUA... 2 1.1 Liukuvan keskiarvon menetelmä... 2 1.2 Eksponentiaalinen tasoitus... 3 2 AIKASARJASSA

Lisätiedot

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä Kuluttajan teoriaa tähän asti Valintojen tekemistä niukkuuden vallitessa - Tavoitteen optimointia rajoitteella Luento 6 Kuluttajan ylijäämä 8.2.2010 Budjettirajoite (, ) hyödykeavaruudessa - Kulutus =

Lisätiedot

CASIO HOSPITALITY ALV MUUTOS OHJE VERSIOON 2

CASIO HOSPITALITY ALV MUUTOS OHJE VERSIOON 2 CASIO HOSPITALITY ALV MUUTOS OHJE VERSIOON 2 Yleinen arvonlisäverokanta on 22 % (1.7.2010 alkaen 23 %). Elintarvikkeista ja rehuista maksetaan 12 prosenttia (1.7.2010 alkaen 13 %) arvonlisäveroa. Kirjat,

Lisätiedot

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV

Lisätiedot

Huippu 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Huippu 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty KERTAUS KERTAUSTEHTÄVIÄ K1. Hank maksaa kunnallisveroa 22 % verotettavasta tulostaan eli 0,22 52 093,84 = 11 460,6448 11 460,64. Hank maksaa kunnallisveroa 11 460,64. Vastaus: 11 460,64 K2. Kimin maksaman

Lisätiedot