Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Arkkitehtimatematiikan koe , Ratkaisut (Sarja A)

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Arkkitehtimatematiikan koe , Ratkaisut (Sarja A)"

Transkriptio

1 Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Arkkitehtimatematiikan koe..017, Ratkaisut (Sarja A) 1. a) Mitkä reaaliluvut x toteuttavat yhtälön x =? (1 p.) b) Mitkä reaaliluvut x toteuttavat yhtälön x =? (1 p.) c) Mitkä reaaliluvut x toteuttavat yhtälön 1+x+ =? (1 p.) d) Mitkä reaaliluvut x toteuttavat yhtälön x 4x 16 =? (1 p.) e) Mitkä reaaliluvut x toteuttavat epäyhtälön x >? (1 p.) f) Mitkä reaaliluvut x toteuttavat epäyhtälön x + 1 <? (1 p.) Ratkaisu: a) Yhtälö x = toteutuu jos ja vain jos x on tai x on -. Vastaus: Reaaliluvut ja -. Sarja B: x =, Vastaus: ja -. Sarja C: x =, Vastaus: ja -. Sarja D: x = 7, Vastaus: 7 ja -7. b) Yhtälö x = toteutuu jos ja vain jos x on tai x on. Vastaus: Reaaliluvut ja. Sarja B: x =, Vastaus: ja. Sarja C: x =, Vastaus: ja. Sarja D: x = 7, Vastaus: 7 ja 7. c) Huomataan, että Vastaus: Reaaliluku. Sarja B: 1+x+ =, Vastaus:. Sarja C: 1+x+9 =, Vastaus:. Sarja D: 1+x+1 = 7, Vastaus: x + = 1 + x + = 1 + x + = 6 x + 4 = 6 x = 6 4 x =. 1

2 d) Huomataan, että Paraabelin y = x 4x 18 nollakohdat ovat x 4x 16 = x 4x 18 = 0. x = ( 4) ± ( 4) 4 1 ( 18) 1 = 4 ± = 4 ± 4 (4 + 18) = 4 ± = ±. Vastaus: Reaaliluvut + ja. Sarja B: x 4x 1 =, Vastaus: + ja. Sarja C: x 4x 1 =, Vastaus: + ja. Sarja D: x 4x 11 = 7, Vastaus: + ja. e) Epäyhtälö x > toteutuu jos ja vain jos x > tai x <. Vastaus: Lukua aidosti suuremmat ja lukua aidosti pienemmät reaaliluvut. Sarja B: x >, Vastaus: Lukua aidosti suuremmat ja lukua aidosti pienemmät reaaliluvut. Sarja C: x >, Vastaus: Lukua aidosti suuremmat ja lukua aidosti pienemmät reaaliluvut. Sarja D: x > 7, Vastaus: Lukua 7 aidosti suuremmat ja lukua 7 aidosti pienemmät reaaliluvut. f) Huomataan, että x + 1 < x < 1 x < 1. Vastaus: Lukua 1 aidosti pienemmät reaaliluvut. Sarja B: x + 1 <, Vastaus: Lukua aidosti pienemmät reaaliluvut. Sarja C: x + 1 <, Vastaus: Lukua 4 aidosti pienemmät reaaliluvut. Sarja D: x + 1 < 7, Vastaus: Lukua 6 aidosti pienemmät reaaliluvut.. Neliön muotoisesta levystä leikataan jokaisesta kulmasta pois kolmio niin, että syntyy säännöllinen kahdeksankulmio. a) Piirrä kuva neliön sisään syntyvästä kahdeksankulmiosta. (1 p.) b) Olkoon neliön sivun pituus 7 metriä. Mikä on kahdeksankulmion sivun pituus? Anna vastauksen tarkka arvo ja kaksidesimaalinen likiarvo. ( p.)

3 Ratkaisu: a) Kuva: b) Olkoon kahdeksankulmion sivun pituus b ja olkoon poisleikatun kolmion sivujen pituudet b, c ja c.

4 Pythagoraan lauseen nojalla tiedetään, että b = c + c. Huomataan, että b = c + c b = c b = c c = b. Toisaalta, neliön sivun pituus 7 m = c + b + c. Kun tähän sijoitetaan c = b, saadaan Näin ollen b = 7 m + 1 = 7 m + 1 = 7 m = b + b + b = b ( ) + b = + 1 b. ( 1) 7 m ( 1) ( + 1) = ( 1) 7 m ( = 7 m 7 m,90 m. ) 1 Vastaus: Kahdeksankulmion sivun pituus on 7 7 metriä. Kaksidesimaalinen likiarvo on,90 metriä. Sarja B: Neliön sivun pituus on 11 metriä. Vastaus: Kahdeksankulmion sivun pituus on metriä. Kaksidesimaalinen likiarvo on 4,6 metriä. Sarja C: Neliön sivun pituus on metriä. Vastaus: Kahdeksankulmion sivun pituus on metriä. Kaksidesimaalinen likiarvo on,07 metriä. Sarja D: Neliön sivun pituus on metriä. Vastaus: Kahdeksankulmion sivun pituus on metriä. Kaksidesimaalinen likiarvo on 1,4 metriä.. Todennäköisyys sille, että tulostettava kappale vioittuu D-tulostimen tulostusprosessissa on 1 6. Tulostettaessa useita kappaleita vioittumistodennäköisyydet ovat toisistaan riippumattomia. a) Mikä on todennäköisyys sille, että kolmesta tulostettavasta kappaleesta kaikki ovat ehjiä? Anna vastauksen tarkka arvo. ( p.) b) Mikä on todennäköisyys sille, että kolmesta tulostettavasta kappaleesta ainakin yksi on ehjä? Anna vastauksen tarkka arvo. ( p.) c) Tulostusprosessin jälkeen kappale (viallinen tai ehjä) menee jälkikäsittelyyn, missä todennäköisyys kappaleen vioittumiselle on 1 riippumatta siitä, onko kappale vioittunut jo tulostusprosessissa. Mikä on todennäköisyys sille, että valmiista kappaleesta tulee ehjä? Anna vastauksen tarkka arvo. ( p.) Ratkaisu: a) Todennäköisyys sille, että tulostettava kappale vioittuu tulostusprosessissa on 1 6. Tämän vuoksi todennäköisyys sille, että kappale ei vioitu tulostusprosessissa on = = 6. 4

5 Tulostettaessa useita kappaleita vioittumistodennäköisyydet ovat toisistaan riippumattomia. Tämän vuoksi todennäköisyys sille, että kolmesta tulostetusta kappaleesta kaikki ovat ehjiä on = = Vastaus: Todennäköisyys sille, että kolmesta tulostetusta kappaleesta kaikki ovat ehjiä on Sarja B: Tulostettavan kappaleen vioittumistodennäköisyys on Vastaus:. 7 4 Sarja C: Tulostettavan kappaleen vioittumistodennäköisyys on 1. Vastaus: Sarja D: Tulostettavan kappaleen vioittumistodennäköisyys on 1 7. Vastaus: b) Todennäköisyys sille, että tulostettava kappale vioittuu tulostusprosessissa on 1 6. Tulostettaessa useita kappaleita vioittumistodennäköisyydet ovat toisistaan riippumattomia. Tämän vuoksi todennäköisyys sille, että kolmesta tulostetusta kappaleesta kaikki vioittuvat on = = Näin ollen todennäköisyys sille, että kolmesta tulostetusta kappaleesta ainakin yksi on ehjä on = = = Vastaus: Todennäköisyys sille, että kolmesta tulostetusta kappaleesta ainakin yksi on ehjä on Sarja B: Tulostettavan kappaleen vioittumistodennäköisyys on 1 4. Vastaus:. 7 4 Sarja C: Tulostettavan kappaleen vioittumistodennäköisyys on Vastaus:. 1 Sarja D: Tulostettavan kappaleen vioittumistodennäköisyys on 1 6. Vastaus: c) Todennäköisyys sille, että tulostettava kappale vioittuu tulostusprosessissa on 1 6. Tämän vuoksi todennäköisyys sille, että kappale ei vioitu tulostusprosessissa on = = 6. Todennäköisyys kappaleen vioittumiselle jälkikäsittelyssä on 1 riippumatta siitä, onko kappale vioittunut jo tulostusprosessissa. Tämän vuoksi todennäköisyys sille, että kappale ei vioitu jälkikäsittelyssä on 1 1 = 1 = 1 = 4 riippumatta siitä, onko kappale vioittunut jo tulostusprosessissa. Näin ollen todennäköisyys sille, että kappale ei vioitu tulostusprosessissa eikä jälkikäsittelyssä (toisin sanoen, todennäköisyys sille, että valmiista kappaleesta tulee ehjä) on 6 4 = 4 6 = 4 6 =. Vastaus: Todennäköisyys sille, että valmiista kappaleesta tulee ehjä on.

6 Sarja B: Tulostettavan kappaleen vioittumistodennäköisyys on 1, vioittumistodennäköisyys jälkikäsittelyssä on 1. Vastaus: Sarja C: Tulostettavan kappaleen vioittumistodennäköisyys on 1, vioittumistodennäköisyys jälkikäsittelyssä on 1. Vastaus:. 4 Sarja D: Tulostettavan kappaleen vioittumistodennäköisyys on 1, vioittumistodennäköisyys jälkikäsittelyssä on 1. Vastaus: Arkkitehti K. Kansalainen omistaa hienon omakotitalon. Omakotitalon lämmittäminen suoralla sähkölämmityksellä maksaa 000 euroa vuodessa. Arkkitehti K. Kansalainen harkitsee ilmalämpöpumppua, jonka asentaminen maksaisi 000 euroa. Vaihtoehtona ilmalämpöpumpulle K. Kansalainen harkitsee maalämpöä, jonka asentaminen maksaisi euroa. Ilmalämpöpumppu tuottaisi % säästön vuotuisiin lämmityskustannuksiin. Maalämpö puolestaan tuottaisi % säästön vuotuisiin lämmityskustannuksiin. Oletetaan, että yleinen kustannustaso pysyy muuttumattomana. a) Laske jokaisen kolmen lämmitysvaihtoehdon kokonaiskustannus 10 vuoden aikana. ( p.) b) Arkkitehti K. Kansalainen päätyy ilmalämpöpumppuun. Kuinka pitkän ajan kuluttua tämän lämmitysvaihtoehdon kokonaiskustannus alittaa pelkän suoran sähkölämmitysvaihtoehdon kokonaiskustannuksen? Entäpä, jos K. Kansalainen päätyykin maalämpöön? Kuinka pitkän ajan kuluttua tämän lämmitysvaihtoehdon kokonaiskustannus alittaa pelkän suoran sähkölämmitysvaihtoehdon kokonaiskustannuksen? (4 p.) Ratkaisu: a) Suora sähkölämmitys: Yhden vuoden aikana suora sähkölämmitys maksaa 000 euroa, joten kokonaiskustannus 10 vuoden aikana on euroa = 0000 euroa. Ilmalämpöpumppu: Ilmalämpöpumpun asennus maksaa 000 euroa. Toisaalta ilmalämpöpumppu tuo vuotuisiin lämmityskustannuksiin % säästön. Näin ollen vuotuiset kustannukset ovat 000 euroa 0, 000 euroa = 000 euroa 70 euroa = 0 euroa. Näin ollen kokonaiskustannus 10 vuoden aikana on 000 euroa euroa = 700 euroa. Maalämpö: Maalämmön asennus maksaa 0000 euroa. Toisaalta ilmalämpöpumppu tuo vuotuisiin lämmityskustannuksiin % säästön. Näin ollen vuotuiset kustannukset ovat 000 euroa 0, 000 euroa = 000 euroa 160 euroa = 10 euroa. 6

7 Näin ollen kokonaiskustannus 10 vuoden aikana on 0000 euroa euroa = 00 euroa. Vastaus: Suoran sähkölämmityksen kokonaiskustannus 10 vuoden aikana on euroa, Ilmalämpöpumpulla lämmityksen kokonaiskustannus 10 vuoden aikana on 7 00 euroa ja maalämmöllä kokonaiskustannus 10 vuoden aikana on 00 euroa. Sarja B: Suora sähkölämmitys maksaa 00 euroa vuodessa. Ilmalämpöpumpun asennus maksaa euroa ja tuo % säästöä vuotuisiin lämmityskustannuksiin. Maalämmön asennus maksaa euroa ja tuo % säästöä vuotuisiin lämmityskustannuksiin. Vastaus: Suoran sähkölämmityksen kokonaiskustannus 10 vuoden aikana on 000 euroa, ilmalämpöpumpulla lämmityksen kokonaiskustannus 10 vuoden aikana on 70 euroa ja maalämmöllä kokonaiskustannus 10 vuoden aikana on 9 0 euroa. Sarja C: Suora sähkölämmitys maksaa 00 euroa vuodessa. Ilmalämpöpumpun asennus maksaa euroa ja tuo % säästöä vuotuisiin lämmityskustannuksiin. Maalämmön asennus maksaa euroa ja tuo 60% säästöä vuotuisiin lämmityskustannuksiin. Vastaus: Suoran sähkölämmityksen kokonaiskustannus 10 vuoden aikana on 000 euroa, ilmalämpöpumpulla lämmityksen kokonaiskustannus 10 vuoden aikana on 0 euroa ja maalämmöllä kokonaiskustannus 10 vuoden aikana on 000 euroa. Sarja D: Suora sähkölämmitys maksaa 000 euroa vuodessa. Ilmalämpöpumpun asennus maksaa euroa ja tuo 0% säästöä vuotuisiin lämmityskustannuksiin. Maalämmön asennus maksaa euroa ja tuo 60% säästöä vuotuisiin lämmityskustannuksiin. Vastaus: Suoran sähkölämmityksen kokonaiskustannus 10 vuoden aikana on euroa, ilmalämpöpumpulla lämmityksen kokonaiskustannus 10 vuoden aikana on euroa ja maalämmöllä kokonaiskustannus 10 vuoden aikana on 000 euroa. b) Ilmalämpöpumppu: Suora sähkölämmitys maksaa 000 euroa vuodessa. Ilmalämpöpumpun asennus maksaa 000 euroa ja vuotuiset kustannukset ovat 000 euroa 0, 000 euroa = 000 euroa 70 euroa = 0 euroa. Olkoon x vuosien lukumäärä. Kokonaiskustannukset ovat samat, kun 000 euroa x = 000 euroa+ 0 euroa x. Koska 000x = x 70x = 000 x = , 000 = 0 = 6 + ja koska = 8, niin kokonaiskustannukset ovat samat kun aikaa kuluu vuotta ja 8 kuukautta. Maalämpö: Suora sähkölämmitys maksaa 000 euroa vuodessa. Maalämmön asennus maksaa 0000 euroa ja vuotuiset kustannukset ovat 000 euroa 0, 000 euroa = 000 euroa 160 euroa = 10 euroa. 7

8 Olkoon x vuosien lukumäärä. Kokonaiskustannukset ovat samat, kun 000 euroa x = 0000 euroa+ 10 euroa x. Koska 000x = x 160x = 0000 x = , 0000 = 400 = ja koska = 1 4, niin kokonaiskustannukset ovat samat kun aikaa kuluu noin 1 vuotta ja 1,4 kuukautta. = (1 4)/ 1, Vastaus: Ilmalämpöpumpulla lämmityksen kokonaiskustannus alittaa pelkän suoran sähkölämmitysvaihtoehdon kokonaiskustannuksen kun aikaa kuluu noin 6 vuotta ja 8 kuukautta. Maalämmöllä lämmityksen kokonaiskustannus alittaa pelkän suoran sähkölämmitysvaihtoehdon kokonaiskustannuksen kun aikaa kuluu noin 1 vuotta ja yksi kuukausi. Sarja B: Vastaus: Ilmalämpöpumpulla lämmityksen kokonaiskustannus alittaa pelkän suoran sähkölämmitysvaihtoehdon kokonaiskustannuksen kun aikaa kuluu noin 11 vuotta ja kuukautta. Maalämmöllä lämmityksen kokonaiskustannus alittaa pelkän suoran sähkölämmitysvaihtoehdon kokonaiskustannuksen kun aikaa kuluu noin 1 vuotta ja yksi kuukausi. Sarja C: Vastaus: Ilmalämpöpumpulla lämmityksen kokonaiskustannus alittaa pelkän suoran sähkölämmitysvaihtoehdon kokonaiskustannuksen kun aikaa kuluu noin 8 vuotta. Maalämmöllä lämmityksen kokonaiskustannus alittaa pelkän suoran sähkölämmitysvaihtoehdon kokonaiskustannuksen kun aikaa kuluu noin 8 vuotta ja 7 kuukautta. Sarja D: Vastaus: Ilmalämpöpumpulla lämmityksen kokonaiskustannus alittaa pelkän suoran sähkölämmitysvaihtoehdon kokonaiskustannuksen kun aikaa kuluu noin 7 vuotta ja 9 kuukautta. Maalämmöllä lämmityksen kokonaiskustannus alittaa pelkän suoran sähkölämmitysvaihtoehdon kokonaiskustannuksen kun aikaa kuluu noin 11 vuotta ja yksi kuukausi.. Omakotitalossa ollaan vaihtamassa lämmitysjärjestelmää. Omistaja haluaa asentaa uuden järjestelmän vasta, kun öljysäiliössä oleva öljy on käytetty loppuun. Maan alle vaakasuoraan asennetun suoran ympyrälieriön muotoisen säiliön tilavuus on 000 litraa ja pääty-ympyröiden halkaisija on 100 cm. Öljypinnan korkeus on, säiliön alimmasta kohdasta mitattuna, 0 cm. Kuinka moneksi viikoksi öljy riittää, kun öljyä kuluu 70 litraa viikossa? (6 p.) Ratkaisu: Lasketaan jäljellä olevan öljyn määrä. 8

9 Jäljellä olevan öljyn osuus säiliön kokonaistilavuudesta on sama kuin poikkileikkausympyrän segmentin AB pinta-alan osuus koko ympyrän pinta-alasta. Segmentin AB pinta-ala = sektorin OAB pinta-ala - kolmion OAB pinta-ala. Sektorin pinta-ala: Koska ympyrän halkaisija on 100 cm ja öljypinnan korkeus on 0 cm, niin pituudet OD = OA = 0 cm, OC = (0 0) cm = 0 cm ja CD = 0 cm. Suorakulmaisesta kolmiosta OAC saadaan ratkaistua cos α = OC OA = 0 0 = ja tästä edelleen ( α = arccos =,1 ). Sektorin OAB keskuskulma on α, joten sektorin pinta-ala Kolmion pinta-ala: A sektori = α 60 π (0 cm) = 18,6 cm. Suorakulmaisesta kolmiosta OAC saadaan Pythagoraan lauseen perusteella ratkaistua Nyt kolmion OAB pinta-ala AC = 0 0 cm = 40 cm. A kolmio = 1 AB OC = 1 AC OC = 40 0 cm = 100 cm. Segmentin pinta-ala: Segmentin ala A segmentti = A sektori A kolmio. 9

10 Öljyn määrä = Segmentin ala Säiliön kokonaistilavuus Poikkileikkausympyrän ala = A sektori A kolmio 000 l = 18,6 cm 100 cm 000 l = 47,18 l π OD π (0 cm) Öljyä kuluu viikossa 70 litraa, joten öljyä riittää 47, ,10 viikoksi. Vastaus: Öljyä riittää kuudeksi viikoksi. Sarja B: Viikossa kuluu 60 litraa öljyä. Vastaus: Öljyä riittää seitsemäksi viikoksi. Sarja C: Viikossa kuluu 80 litraa öljyä. Vastaus: Öljyä riittää viideksi viikoksi. Sarja D: Viikossa kuluu 0 litraa öljyä. Vastaus: Öljyä riittää kahdeksaksi viikoksi. 6. Pallon P säde on 6, cm. Pallon P sisään asetetaan suora ympyräkartio K (pohjaympyrän säde r, korkeus h) siten, että kartion K kärki ja pohjaympyrän kehä ovat pallon P sisäpinnalla. Piirrä kuva. Mikä on suoran ympyräkartion K suurin mahdollinen tilavuus? Anna vastauksen tarkka arvo. (6 p.) Ratkaisu: Kuva (1 p.): Tilavuus ( p.): Olkoon suoran ympyräkartion K pohjaympyrän säde r sekä korkeus h. 10

11 Leikkauskuviosta saadaan Pythagoraan lauseella joten (6, cm) = (h 6, cm) + r, r = (6, cm) (h 6, cm) = (6, cm) h + 6, cm h (6, cm) = 1, cm h h. Suoran ympyräkartion tilavuudelle pätee 1 πr h = π (1, cm h h ) h = π (1, cm h h ) = V (h). Tilavuus on suurin joko suljetun välin päätepisteissä h = 0 cm, h = 1, cm tai derivaatan nollakohdassa. Koska V (0 cm) = V (1, cm) = 0 cm, suurin arvo saavutetaan derivaatan nollakohdassa. Tilavuuden derivaatta on Tarkastellaan derivaatan nollakohtia: V (h) = π ( cm h h ). π ( cm h h ) = 0 cm ( cm h h ) = 0 cm h( cm h) = 0 cm h = 0 cm tai cm h = 0 h = 0 cm tai h = cm. Näin ollen suoran ympyräkartion K tilavuuden suurin mahdollinen arvo on ( V )= cm π ( ( ) ( ) ) 1, cm cm cm = 16π cm. 16 Vastaus: Ympyräkartion K suurin mahdollinen tilavuus on 16π 16 cm. Sarjat B, C ja D: Sama kuin sarja A. c 017 Aalto-yliopisto, Lappeenrannan teknillinen yliopisto, Oulun yliopisto, Tampereen teknillinen yliopisto, Turun yliopisto, Vaasan yliopisto, Åbo Akademi 11

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 % 1. Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden

Lisätiedot

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu. RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion

Lisätiedot

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 % 1. 4Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 17.10.016 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ 1. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 180. Kolmannen kulman

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on

Lisätiedot

Kartio ja pyramidi

Kartio ja pyramidi Kartio ja pyramidi Kun avaruuden suora s liikkuu pitkin itseään leikkaamatonta tason T suljettua käyrää ja lisäksi kulkee tason T ulkopuolisen pisteen P kautta, suora s piirtää avaruuteen pinnan, jota

Lisätiedot

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

Ratkaisuja, Tehtävät

Ratkaisuja, Tehtävät ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. B-OSA 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. 1.1 Mitä voidaan sanoa funktion f raja-arvosta, kun x a? I Raja-arvo on f(a), jos f on määritelty kohdassa a. II Raja-arvo on f(a),

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

4 Polynomifunktion kulku

4 Polynomifunktion kulku 4 Polynomifunktion kulku. a) Funktio on kasvava jollakin välillä, jos sen arvo kasvaa tällä välillä. Kuvaajan nousemisen ja laskemisen perusteella funktio on kasvava kohtien x,4 ja x 0, välissä. b) Funktion

Lisätiedot

2 Kuvioita ja kappaleita

2 Kuvioita ja kappaleita Kuvioita ja kappaleita.1 Suorakulmaisen kolmion geometriaa 97. a) Kolmion kateettien pituudet ovat 5 ja 39. Hypotenuusan pituutta on merkitty kirjaimella. Sijoitetaan arvot Pythagoraan lauseeseen. 5 (

Lisätiedot

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

MAA03.3 Geometria Annu

MAA03.3 Geometria Annu 1 / 8 2.2.2018 klo 11.49 MAA03.3 Geometria Annu Kokeessa on kolme (3) osaa; Monivalinnat 1 ja 2 ovat pakollisia (6 p /tehtävä, yht. 12 p) B1 osa Valitse kuusi (6) mieleisintä tehtävää tehtävistä 3-10.

Lisätiedot

MAA3 HARJOITUSTEHTÄVIÄ

MAA3 HARJOITUSTEHTÄVIÄ MAA3 HARJOITUSTEHTÄVIÄ 1. Selosta, miten puolitat (jaat kahtia) annetun koveran kulman pelkästään harppia ja viivoitinta käyttäen. 2. Piirrä kolmio, kun tunnetaan sen kaksi kulmaa (α ja β) sekä näiden

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

1 Kertausta geometriasta

1 Kertausta geometriasta 1 Kertausta geometriasta 1.1 Monikulmiota 1. a) Kolmion kulmien summa on 180. Koska tiedetään kaksi kulmaa, kulma x voidaan laskea. 180 x 35 80 x 180 35 80 x 65 b) Suunnikkaan vastakkaiset kulmat ovat

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v + 9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset 4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste

Lisätiedot

M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset

M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset Yhdenmuotoisuus ja mittakaava Tasokuvioiden yhdenmuotoisuus tarkoittaa havainnollisesti sitä, että kuviot ovat samanmuotoiset mutta eivät välttämättä samankokoiset. Kahdella yhdenmuotoisella kuviolla täytyy

Lisätiedot

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 9.a) Funktio f ( ) = + 6 Nollakohta f bg= + 6= = 6 :( ) = 6 = y 5 6 y = + 6 b) Funktio g ( ) = 5 Nollakohta g bg= = 5 = : 5 5 5 5 = : = = = 5 5 5 9 9

Lisätiedot

Läpäisyehto: Kokeesta saatava 5. Uusintakoe: Arvosana määräytyy yksin uusintakokeen perusteella.

Läpäisyehto: Kokeesta saatava 5. Uusintakoe: Arvosana määräytyy yksin uusintakokeen perusteella. MAA7 Trigonometriset funktiot Arvosanan perusteet: koe 70 %, harjoitustehtävä 10 %, tuntitestit 20 %, lisäksi oppimisen ja työskentelyn havainnointi opettajan harkinnan mukaan (ks. OPS 6.2). Muu arviointi:

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

5 Kertaus: Geometria. 5.1 Kurssin keskeiset asiat. 1. a) Merkitään suorakulmion sivuja 3x ja 4x. Piirretään mallikuva.

5 Kertaus: Geometria. 5.1 Kurssin keskeiset asiat. 1. a) Merkitään suorakulmion sivuja 3x ja 4x. Piirretään mallikuva. 5 Kertaus: Geometria 5.1 Kurssin keskeiset asiat 1. a) Merkitään suorakulmion sivuja 3x ja 4x. Piirretään mallikuva. 4x 3x 10 cm Muodostetaan Pythagoraan lause ja ratkaistaan sen avulla x. (3 x) (4 x)

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Ympyrän yhtälö

Ympyrän yhtälö Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

a b c d

a b c d 1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

2 Raja-arvo ja jatkuvuus

2 Raja-arvo ja jatkuvuus Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti

Lisätiedot

Tekijä Pitkä matematiikka a) p = 2πr r = 4,5 = 2π 4,5 = 28, piiri on 28 cm. A = πr 2 r = 4,5

Tekijä Pitkä matematiikka a) p = 2πr r = 4,5 = 2π 4,5 = 28, piiri on 28 cm. A = πr 2 r = 4,5 Tekijä Pitkä matematiikka 3 1.10.016 176 a) p = πr r = 4,5 = π 4,5 = 8,7... 8 piiri on 8 cm A = πr r = 4,5 b) = π 4,5 = 63,617... 64 Ala on 64 cm p = πd d = 5,0 = π 5,0 = 15,7... 16 piiri on 16 cm r =

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,

Lisätiedot

PYÖRÄHDYSKAPPALEEN PINTA-ALA

PYÖRÄHDYSKAPPALEEN PINTA-ALA PYÖRÄHDYSKAPPALEEN PINTA-ALA PYÖRÄHDYSKAPPALEEN PINTA-ALA Pyörädyskappaleen pinta syntyy, kun funktion kuvaaja pyörätää suoran ympäri., suomennos Matti Pauna LIERIÖ JA KARTIO Lieriöt ja kartiot ovat yksinkertiaisimpia

Lisätiedot

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268. KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2 Mb8 Koe 0.11.015 Kuopion Lyseon lukio (KK) sivu 1/ Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

YMPYRÄ. Ympyrä opetus.tv:ssä. Määritelmä Kehän pituus Pinta-ala Sektori, kaari, keskuskulma, segmentti ja jänne

YMPYRÄ. Ympyrä opetus.tv:ssä. Määritelmä Kehän pituus Pinta-ala Sektori, kaari, keskuskulma, segmentti ja jänne YMPYRÄ Ympyrä opetus.tv:ssä Määritelmä Kehän pituus Pinta-ala Sektori, kaari, keskuskulma, segmentti ja jänne KAPPALEEN TERMEJÄ 1. Ympyrä Ympyrä on niiden tason pisteiden joukko, jotka ovat yhtä kaukana

Lisätiedot

Avaruusgeometrian perusteita

Avaruusgeometrian perusteita Avaruusgeometrian perusteita Määritelmä: Kolmiulotteisen avaruuden taso on sellainen pinta, joka sisältää kokonaan jokaisen sellaisen suoran, jonka kanssa sillä on kaksi yhteistä pistettä. Ts. taso on

Lisätiedot

5 Rationaalifunktion kulku

5 Rationaalifunktion kulku Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 5 Rationaalifunktion kulku. Funktion f määrittelyehto on. Muodostetaan symbolisen laskennan ohjelman avulla derivaattafunktio f ja

Lisätiedot

Laudatur 2 MAA2 ratkaisut kertausharjoituksiin. 1. Polynomit 332.

Laudatur 2 MAA2 ratkaisut kertausharjoituksiin. 1. Polynomit 332. Laudatur MAA ratkaisut kertausharjoituksiin. Polynomit. Vakiotermi 8 Kolmannen asteen termin kerroin, 5 8 = 9, Neljännen asteen termi n kerroin, 8 9, = 7,6 Kysytty polynomi P(a) = 7,6a + 9,a +a + ya +

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

KORJAUSMATIIKKA 3, TEHTÄVÄT

KORJAUSMATIIKKA 3, TEHTÄVÄT 1 SISÄLTÖ KORJAUSMATIIKKA, TEHTÄVÄT 1) Potenssi 2) Juuri ) Polynomit ) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa ja toisen asteen yhtälön ratkaisukaava TEHTÄVÄT: Käythän

Lisätiedot

4 Avaruusgeometria. Ennakkotehtävät. 1. a) Pisin mahdollinen jana on jana AC. Pisin mahdollinen jana on jana AG. c) Kulma on 90.

4 Avaruusgeometria. Ennakkotehtävät. 1. a) Pisin mahdollinen jana on jana AC. Pisin mahdollinen jana on jana AG. c) Kulma on 90. Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.10.016 4 Avaruusgeometria Ennakkotehtävät 1. a) b) Pisin mahdollinen jana on jana AC. Pisin mahdollinen jana on jana AG. c) Kulma on 90.

Lisätiedot

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille! 5.4.013 Jussi Tyni 1. Selitä ja piirrä seuraavat lyhyesti: a) Kehäkulma ja keskikulma b) Todista, että kolmion kulmien summa on 180 astetta. Selitä päätelmiesi perustelut.. a) Suorakulmaisen kolmion kateetit

Lisätiedot

MATEMATIIKKA PAOJ2 Harjoitustehtävät

MATEMATIIKKA PAOJ2 Harjoitustehtävät MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )

Lisätiedot

Huippu 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Huippu 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 4 AVARUUSGEOMETRIAA POHDITTAVAA 1. Muovinappulan tilavuus on V = 1 cm cm 4 cm = 8 cm 3 = 8000 mm 3. Tulostus kestää 3 8000 mm 3 800 s 10 mm / s =. Muutetaan aika minuuteiksi ja sekunneiksi. 800 s 13,333...

Lisätiedot

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! MAA Koe 4.4.011 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! 1 Selitä ja piirrä seuraavat lyhyesti: a) Vieruskulmat b) Tangentti kulmasta Katsottuna.

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä

Lisätiedot

Tästä saadaan (määrittelyehdon täyttävät) yhtälön ratkaisut x 3 tai x 3.

Tästä saadaan (määrittelyehdon täyttävät) yhtälön ratkaisut x 3 tai x 3. 998 Yhtälö on määritelty, kun x 0, joten on oltava x. Yhtälö voidaan kirjoittaa yhtäpitävään muotoon x x x x x x 0, ja edelleen x x 0. x Tästä saadaan (määrittelyehdon täyttävät) yhtälön ratkaisut x tai

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Numeerisia ja algebrallisia menetelmiä

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Numeerisia ja algebrallisia menetelmiä Calculus Lukion 7 MAA Numeerisia ja algebrallisia menetelmiä Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Numeerisia ja algebrallisia menetelmiä

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55. RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta)

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta) MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 3.3.06. ( piste/kohta) Sivu / 8 Kohta Vaihtoehdon numero A B C D E F 3. a) Ainakin yhdet sulut kerrottu oikein auki 6x 4x x( 3x) Ratkaistu nollakohdat sieventämisen lisäksi

Lisätiedot

Apua esimerkeistä Kolmio teoriakirja. nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio

Apua esimerkeistä Kolmio teoriakirja.  nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)

Lisätiedot

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä. Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja

Lisätiedot

4. Kertausosa. 1. a) 12

4. Kertausosa. 1. a) 12 . Kertausosa. a kun, : b kun, tai 8 . Paraabeli y a bc c aukeaa ylöspäin, jos a alaspäin, jos a a Funktion g kuvaaja on paraabeli, jolle a. Se aukeaa ylöspäin. b Funktion g kuvaaja on paraabeli, jolle

Lisätiedot

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 8, MALLIRATKAISUT Tehtävä. Oletetaan että uv on neliö ja (u, v) =. Osoita, että kumpikin luvuista u ja v on neliö. Ratkaisu. Olkoon p i alkuluku, joka jakaa luvun

Lisätiedot

Pythagoraan polku , ratkaisut

Pythagoraan polku , ratkaisut Pythagoraan polku 17.4.21, ratkaisut 1. Junannopeusonvakiov = s.olkoonlkiskon pituus ja x kiskojen määrä, jonka juna t kulkee 27 sekunnissa. Saadaan yhtälö xl 27 [s] = x [km] (6 + 15) 6 [s], josta l =,6

Lisätiedot

Pisteytyssuositus. Matematiikka lyhyt oppimäärä Kevät

Pisteytyssuositus. Matematiikka lyhyt oppimäärä Kevät Lyhyen matematiikan pisteitysohjeet kevät 0 ver..0 Pisteytyssuositus Matematiikka lyhyt oppimäärä Kevät 0..0 Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty. Ratkaisussa on oltava tarvittavat

Lisätiedot

4 TOISEN ASTEEN YHTÄLÖ

4 TOISEN ASTEEN YHTÄLÖ Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot