Luento 4 Vikapuuanalyysit

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Luento 4 Vikapuuanalyysit"

Transkriptio

1 Luento 4 Vikapuuanalyysit Ahti Salo Teknillinen korkeakoulu PL 1100, TKK 1

2 Vikapuuanalyysin vaiheet ❶ Ongelman ja reunaehtojen määrittely ❷ Vikapuun rakentaminen ❸ Minimikatkosjoukkojen tunnistaminen ❹ Kvalitatiivinen analyysi ❺ Kvantitatiivinen analyysi 2

3 ❶ Ongelman ja reunaehtojen määrittely Lähtökohtana huipputapahtuman ja reunaehtojen tunnistaminen Huipputapahtumalle annettava yksikäsitteinen ja selkeä määrittely Tulee vastata täsmällisesti seuraaviin kysymyksiin:» Mitä: tarkasteltavan tapahtuman tyyppi ja luonne (esim. tulipalo, jäähdytysveden syötön menetys, jne.)» Missä: tapahtuman tarkka esiintymispaikka (esim. veden syöttö lauhdutinaltaaseen)» Milloin: tapahtuman esiintymistilanne (esim. vuosihuoltoseisokin aikana) Esim. Tulipalo polttoainesäiliössä vuosihuoltoseisokin aikana 3

4 ❶ Ongelman ja reunaehtojen määrittely Reunaehtoja voivat olla Järjestelmän fyysiset rajat» Mitkä järjestelmän osat otetaan mukaan analyysiin? Alkutilanteet» Mikä on järjestelmän tila, kun huipputapahtuma esiintyessä? (esim. täydellinen toiminta tila, rajoitettu toiminta, huoltoseisokki jne.)» Missä tilassa komponentit ovat? (esim.venttiilien asento, prosessilaitteiden tila jne.) Ulkoisten tekijöiden vaikutus» Mitkä ulkoiset tekijät otetaan mukaan? (esim. poikkeukselliset sääolot, sabotaasi, jne.) Yksityiskohtaisuuden taso» Miten tarkasti eri vikaantumistavat tai järjestelmän osat mallinnetaan? (esim. mitkä järjestelmät mallinnetaan komponenttitasolla, otetaanko inhimilliset virheet mukaan, jne.) Huomioita Pyrittävä riittävän tarkkaan erittelyyn Haettava tarkoituksenmukainen yksityiskohtaisuuden taso Jäsentymätön ongelmankuvaus ja/tai epämääräiset rajaukset vievät pohjaa jatkoanalyyseiltä ja vaikeuttavat näiden tulkintaa 4

5 5

6 ❷ Vikapuun rakentaminen Aloitetaan huipputapahtuman analyysista: Selvitetään huipputapahtuman välittömät, välttämättömät ja riittävät syyt Syyt liitetään huipputapahtumaan vikapuun portilla Edetään hierarkkisesti perustapahtumiin (esim. komponenttivikoihin)» Kukin vikatapahtuma kuvataan ja esitetään porttina» Kaikki porttien sisäänmenot määritellään täydellisesti» Rakennetaan vikapuu tasoittain siten, että kukin taso kuvataan ennen etenemistä seuraavalle tasolle Tehdään deduktiivinen analyysi» Kunkin ylemmän tason kohdalla kysytään, mitkä ovat sen välittömät syyt Vikatapahtumien luokittelu Primäärivika (primary failure)» Vika, jonka aiheuttaa kohteen normaali ikääntyminen tai muu sisäinen vikamekanismi Sekundäärivika (secondary failure)» Vika, jonka aiheuttaa ulkopuolinen, poikkeuksellinen rasitus, toisen komponentin vikaantuminen tai toimintahäiriö, tai inhimillinen virhe Ohjausvika (command fault)» Vika, joka aiheutuu virheellisestä tai puuttuvasta ohjaussignaalista tai muusta puuttuvasta tai virheellisestä tukitoiminnosta 6

7 ❸ Minimikatkosjoukkojen tunnistaminen Vikaantumislogiikan tarkastelu Huipputapahtuma, logiikkaportit ja perustapahtumat ovat vikaantumistapahtumia, jotka esitetään Boolen algebran muuttujien avulla Vikatapahtuma esiintyy <=> sitä vastaava Boolen muuttuja saa arvon tosi, esim. X 1, = 0, komponentti vialla komponentti ehjä Kutakin porttia vastaa Boolen lauseke:» OR = Boolen summa (+), AND = Boolen tulo ( ), jne. 1, G= 0, portin tapahtuma toteutuu portin tapahtuma ei toteudu» Huom! piste vastaa siis leikkausta ja summa unionia Huipputapahtumasta lähtien sovelletaan porttien määritelmiä (ks. seuraavat 2 kalvoa) Saadaan perustapahtumien tulojen summa, jossa kukin summatermi on minimikatkosjoukko Minimikatkosjoukko = Perustapahtumien joukko, joka aiheuttaa huipputapahtuman, mutta josta ei voida poistaa yhtään perustapahtumaa ilman, että jäljelle jäävät vikatapahtumat eivät johda huipputapahtuman toteutumiseen 7

8 8

9 ❸ Minimikatkosjoukkojen tunnistaminen Boolean algebran säännöt X Y = Y X X + Y = Y + X X ( Y Z) = ( X Y) Z X + ( Y + Z) = ( X + Y) + Z X ( Y + Z) = ( X Y) + ( X Z) X X = X, X + X = X X ( X + Y) = X, X + ( X Y) = X X X = φ, X + X =Ω ( so.koko avaruus) X Y = X + Y, X + Y = X Y X = X 9

10 Esimerkki minimikatkosjoukoista (1/3) Vikaa kuvaava huipputapahtuma T toteutuu, kun T = A B ( C+ D) = A B C+ A B D Vennin kaavio Oheistus ohessa Kaavio ei kuitenkaan sikäli hyvä, että esim. A ja D voivat molemmat toteutua vain jos joko B tai C toteutuu (tosin vikapuun perusteella A:n ja B:n voidaan vaatia toteutuvan) 10

11 Esimerkki minimikatkosjoukoista (2/3) Havaintoja Minimikatkosjoukot A B C ja A B D voivat esiintyä yhtä aikaa, koska A B C D on molemmissa Vikalogiikan purkaminen perustapahtumiksi Boolen algebran ei siis välttämättä anna toisensa poissulkevia (engl. mutually exclusive) katkosjoukkoja Esimerkiksi edellisen kalvon esimerkissä tällaisia katkosjoukkoja on kolme 11

12 Esimerkki minimikatkosjoukoista (3/3) Minimikatkosjoukkojen A B C ja A B D todennäköisyyksien summa P( A) P( B) P( C) + P( A) P( B) P( D) = = Toisensa poissulkevien katkosjoukkojen todennäköisyyksien summa P( A) P( B) P( C) P( D) + P( A) P( B) P( C) P( D) + P( A) P( B) P( C) P( D) = =

13 ❹ Kvalitatiivinen tulkinta Minimikatkosjoukkojen (MKJ) tulkinta Minimikatkosjoukot antavat kuvan järjestelmän vikaantumisesta Minimikatkosjoukkolistan perusteella voidaan tunnistaa tärkeimmät parannustoimenpiteet Käyttötapoja Mitkä perustapahtumat esiintyvät minimikatkosjoukoissa useimmin?» Näihin kannattaa kiinnittää huomiota, jos perustapahtumien todennäköisyyksistä ei tarkkaa tietoa Onko perustapahtumista joku sellainen, että se ei kuulu mihinkään minimikatkosjoukkoon?» Tällainen perustapahtuma ei voi aiheuttaa huipputapahtumaa 13

14 ❺ Kvantitatiivinen analyysi Lasketaan järjestelmän vikaantumistodennäköisyys Vikaantuminen = huipputapahtuman toteutuminen Laskenta perustuu minimikatkosjoukkoesitykseen» Huipputapahtuma toteutuu jos ja vain jos joku minimikatkosjoukoista toteutuu» Huipputapahtuman todennäköisyys saadaan siis minimikatkosjoukkojen unionina P( T) = P( MKJ + MKJ ) = P( MKJ ) + P( MKJ ) P( T) = P( MKJ MKJ K MKJ ) = P( MKJ) P( MKJ MKJ ) + i < i i < i < i P( MKJ MKJ ) i 1 2 P( MKJ MKJ MKJ ) n+ 1...( 1) P( MKJ i MKJ ) 1 i K MKJ 2 in i < i < K < i n i i i i MKJ 2 MKJ 1 MKJ 3 i i 14

15 ❺ Kvantitatiivinen analyysi Summalausekkeiden avulla voidaan muodostaa approksimaatiot P( T) P( MKJ) = S i P( T) S P( MKJ MKJ ) = S S i1 i2 1 2 i < i P( T) S S + P( MKJ MKJ MKJ ) 1 2 = S S + S i i < i < i i i i Pätee P( T) S Näistä S 1 on usein riittävä Perustapahtumien tn:t otettava huomioon» Jos nämä pieniä (esim. < 0.1), niin yhden lisätason mukaantuominen tarkoittaa vähintään yhtä kertaluokkaa pienempien kokonaistn:ien laskemista 1 S S P( T) S S S P( T) S S + S S S + S S P( T) S S + S M

16 Katkosjoukkojen määrityksestä Huomioita Minimikatkosjoukkojen tn:ien summa antaa ylärajan huipputapahtuman todennäköisyydelle» Saatu arvo tarkka, jos minimikatkosjoukkojen leikkaus on tyhjä (näin käy vain harvoin) Huipputapahtuman tarkan tn:n laskennassa ollaan kiinnostuneita minikatkosjoukkojen unionin esittämisestä toistensa poissulkevina katkosjoukkoina» Nämä katkosjoukot eivät ole välttämättä minimaalisia Nämä voidaan tuottaa binäärisillä päätöskaavioilla (engl. binary decision diagram, BDD) Kunkin perustuman alla vasemmassa haarassa 0, oikeassa 1, yhdistelyt logiikkasäännöillä 16

17 Binääriset päätöskaaviot BDD:n rakentaminen Rakennetaan tasoittain vikapuun alaosasta ylöspäin Jokainen polku huipputapahtumasta ykköshaaraan vastaa katkosjoukkoa Ko. katkosjoukot ovat toisensa poissulkevia, koska polut ovat yksiselitteisiä (so kukin haara vastaa joko nollaa 0:aa tai 1:tä) 2. vaihe 3. vaihe 17

18 Pumppujärjestelmän riskianalyysi (1/3) Järjestelmän toiminta Pumppu siirtää nestettä lähtöaltaasta kohdealtaaseen, jos kohdealtaan nestemäärä laskee alle vaatimustason Pumppu ei toimi, jos sähkönsaanti pettää Pumppu voi vikaantua komponenttivikojen takia, joista osa vaikuttaa sähkönsaantiin Vikapuut Esiintymistaajuudet (/kk) alkutapahtuman ja komponenttien vikaantumiselle Kohdeallas vajaa I 10 krt/kk A, B, F 0,01 krt/kk C 0,02 krt/kk D 0,05 krt/kk 18

19 Pumppujärjestelmän riskianalyysi (2/3) Pumppujärjestelmän toimintaa kuvaava tapahtumapuu Järjestelmä ei toimi skenaarioissa I ac P ja I ac Vikapuista saadaan ac= G1+ G2 = ( A+ B) + ( C D) = A+ B+ C D ac= A+ B+ C D= A B ( C+ D) = A B C+ A B D P= D F, P= D+ F 19

20 Pumppujärjestelmän riskianalyysi (2/3) Vikaantumisen todennäköisyys I ac P= I ( A B C+ A B D) ( D F) = I A B C D F+ I A B D D F = I A B C D F ( D D= φ) I ac= I A+ I B+ I C D P( T) = P( I ac+ I ac P) = P( I){ P( A+ B+ C D) + A B C D F} = P( I){ P( A) + P( B) + P( C D) P( A B) P( A C D) P( B C D) + P( A B C D) + P( A B C D F)} = P( I){ } = P( I) So. pumppujärjestelmä vikaantuu keskimäärin joka viides 5 kuukausi 20

21 Logiikkakaavioiden käyttö Osajärjestelmien riippuvuuksia voidaan havainnollistaa logiikkakaavioina Engl. master logic diagram, MLD Huipputapahtuma vastaa tällöin tyypillisesti järjestelmän toimimista, ei vikaantumista Kiinnostuksen kohteena se, mihin tilaan järjestelmä joutuu riippumattomien osajärjestelmien pettäessä 21

22 Jäähdytysjärjestelmä (1/3) Tarkasteltavana vetyreaktorijärjestelmää Kriisitilanteessa vetyvirtaukset voidaan pysäyttää kriisitilanteessa ajasajojärjestelmällä (shutdown device, SDD) Jos reaktorin lämpötila on liian korkea, jäähdytys vaatii, että hätäjäähdytysjärjestelmän toimii (emergency cooling system, ECC) Molemmat järjestelmät toimivat säätöjärjestelmän varassa (actuator control system, ACS) Operaattori (operating agent, OA) pystyy kuitenkin yksinään pysäyttämään vetyvirran Vikaantumistaajuudet 22

23 Jäähdytysjärjestelmä (2/3) Riippuvuussuhteet Logiikkakaavio 23

24 Jäähdytysjärjestelmä (3/3) Osajärjestelmien vaikutukset Tärkeimmät riskitekijät 24

25 Influenssarokotus (1/3) Rokotuskampanja Influenssaepidemian vakavuus vaihtelee vuosittain Sairastumistodennäköisyys riippuu siitä, miten vakavasta epidemiasta on kyse Erityisesti nuoret lapset, iäkkäät henkilöt ja kroonisesti sairastavat saattavat kärsiä influenssasta Kannattaako koko väestöä tai sen osia rokottaa, jos rokotus alentaa sairastumisnäköisyyden 8%:iin verrattuna tapaukseen, jossa rokotusta ei annettu? 25

26 26

27 Influenssarokotus (2/3) Rokotuksen vaikutus altistumiseen 27

28 28

Luento 4 Vikapuuanalyysit

Luento 4 Vikapuuanalyysit Luento 4 Vikapuuanalyysit Ahti Salo Teknillinen korkeakoulu PL 1100, 02015 TKK 1 Vikapuuanalyysin vaiheet Ongelman ja reunaehtojen määrittely Vikapuun rakentaminen Minimikatkosjoukkojen tunnistaminen Kvalitatiivinen

Lisätiedot

Luento 5 Vikapuuanalyysit

Luento 5 Vikapuuanalyysit Luento 5 Vikapuuanalyysit Jan-Erik Holmberg Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto jan-erik.holmberg@riskpilot.fi 1 Influenssarokotus (1/3) Rokotuskampanja

Lisätiedot

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta Luento 5 Riippuvuudet vikapuissa Esimerkkejä S:sta hti Salo Teknillinen korkeakoulu L 1100, 0015 TKK 1 Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä

Lisätiedot

Luento 4 Vikapuuanalyysit

Luento 4 Vikapuuanalyysit Luento 4 Vikapuuanalyysit Ahti Salo Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto ahti.salo@aalto.fi 1 Influenssarokotus (1/3) Rokotuskampanja Influenssaepidemian

Lisätiedot

Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia

Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia Jan-Erik Holmberg Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto jan-erik.holmberg@riskpilot.fi 1 Katkosjoukkojen

Lisätiedot

Luento 5 Yhteisvikojen analyysi PSA:n sovelluksia

Luento 5 Yhteisvikojen analyysi PSA:n sovelluksia alto-yliopiston perustieteiden korkeakoulu Luento 5 Yhteisvikojen analyysi S:n sovelluksia hti Salo Systeemianalyysin laboratorio alto-yliopiston perustieteiden korkeakoulu L 11100, 00076 alto ahti.salo@aalto.fi

Lisätiedot

Turvallisuus prosessien suunnittelussa ja käyttöönotossa

Turvallisuus prosessien suunnittelussa ja käyttöönotossa Turvallisuus prosessien suunnittelussa ja käyttöönotossa Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa 1. Yleistä 2. Vikapuuanalyysi 3. Tapahtumapuuanalyysi 4. Onnettomuuksien esiintymistaajuuden

Lisätiedot

Turvallisuus prosessien suunnittelussa ja käyttöönotossa. Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa

Turvallisuus prosessien suunnittelussa ja käyttöönotossa. Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa Turvallisuus prosessien suunnittelussa ja käyttöönotossa Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa Moduuli 2: Turvallisuus prosessilaitoksen suunnittelussa Ryhmätyö 8 Kvantitatiivisten turvallisuus-

Lisätiedot

Luento 10 Riskitekijöiden priorisointi

Luento 10 Riskitekijöiden priorisointi Luento 10 Riskitekijöiden priorisointi Ahti Salo Teknillinen korkeakoulu PL 1100, 02015 TKK 1 Riskien priorisointi Lähtökohtia Riskienhallintatoimenpiteet pyritään kohdistamaan siten, että kokonaisriskiä

Lisätiedot

Teollisuusautomaation standardit. Osio 5:

Teollisuusautomaation standardit. Osio 5: Teollisuusautomaation standardit Osio 5 Osio 1: SESKOn Komitea SK 65: Teollisuusprosessien ohjaus Osio 2: Toiminnallinen turvallisuus: periaatteet Osio 3: Toiminnallinen turvallisuus: standardisarja IEC

Lisätiedot

Ohjelmistojen virheistä

Ohjelmistojen virheistä Ohjelmistojen virheistä Muutama sana ohjelmistojen virheistä mistä niitä syntyy? Matti Vuori, www.mattivuori.net 2013-09-02 1(8) Sisällysluettelo Ohjelmistojen virheitä: varautumattomuus ongelmiin 3 Ohjelmistojen

Lisätiedot

Joukot. Georg Cantor ( )

Joukot. Georg Cantor ( ) Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot

Luento 7 Luotettavuus Koherentit järjestelmät

Luento 7 Luotettavuus Koherentit järjestelmät Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi Määritelmä Tarkasteltava

Lisätiedot

Yhteisviat ja intervallitodennäköisyydet vikapuuanalyysissä

Yhteisviat ja intervallitodennäköisyydet vikapuuanalyysissä Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Yhteisviat ja intervallitodennäköisyydet vikapuuanalyysissä Kandidaatintyö 17.01.2013 Tomi Jussila Työn

Lisätiedot

Kustannustehokkaat riskienhallintatoimenpiteet kuljetusverkostossa (Valmiin työn esittely)

Kustannustehokkaat riskienhallintatoimenpiteet kuljetusverkostossa (Valmiin työn esittely) Kustannustehokkaat riskienhallintatoimenpiteet kuljetusverkostossa (Valmiin työn esittely) Joonas Lanne 23.2.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Luento 3 Riskien kvalitatiivinen arviointi PSA:n pääpiirteet Vikapuuanalyysi

Luento 3 Riskien kvalitatiivinen arviointi PSA:n pääpiirteet Vikapuuanalyysi Luento 3 Riskien kvalitatiivinen arviointi PSA:n pääpiirteet Vikapuuanalyysi Ahti Salo Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto ahti.salo@aalto.fi

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyslaskenta ja puudiagrammit >> Puutodennäköisyydet

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2005) 1 Verkot ja todennäköisyyslaskenta >> Puudiagrammit todennäköisyyslaskennassa:

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyslaskenta ja puudiagrammit Puutodennäköisyydet Todennäköisyyslaskennan laskusääntöjen

Lisätiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskenta ja puudiagrammit iite: Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskenta ja puudiagrammit: Mitä opimme? Verkkoteoria

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

Projektin riskit, mahdollisuudet ja niiden hallinta

Projektin riskit, mahdollisuudet ja niiden hallinta Projektin riskit, mahdollisuudet ja niiden hallinta TU-C3010 Projektien suunnittelu ja ohjaus Aalto-yliopisto, Perustieteiden korkeakoulu, Tuotantotalous 9.8.2017 Jere Lehtinen Agenda Teeman jälkeen opiskelija

Lisätiedot

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Oletetun onnettomuuden laajennus, ryhmä A

Oletetun onnettomuuden laajennus, ryhmä A MUISTIO 1 (4) 06.04.2009 YDINVOIMALAITOKSEN OLETETTUJEN ONNETTOMUUKSIEN LAAJENNUS Ydinvoimalaitoksen turvallisuutta koskevan valtioneuvoston asetuksen (733/2008) 14 kolmannen momentin mukaan onnettomuuksien

Lisätiedot

Dynaaminen SLA-riski. Goodnet-projektin loppuseminaari pe Pirkko Kuusela, Ilkka Norros VTT

Dynaaminen SLA-riski. Goodnet-projektin loppuseminaari pe Pirkko Kuusela, Ilkka Norros VTT Dynaaminen SLA-riski Goodnet-projektin loppuseminaari pe 19.10.2012 Pirkko Kuusela, Ilkka Norros VTT 2 Motivaatio Suunniteltu verkko: No-single-point-of-failure Arki: vähänkin isommassa verkossa on yleensä

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

TIE448 Kääntäjätekniikka, syksy 2009. Antti-Juhani Kaijanaho. 7. joulukuuta 2009

TIE448 Kääntäjätekniikka, syksy 2009. Antti-Juhani Kaijanaho. 7. joulukuuta 2009 TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 7. joulukuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe F maanantai 14.12. klo 12 rekisteriallokaatio Arvostelukappale

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

Digitaalilaitteen signaalit

Digitaalilaitteen signaalit Digitaalitekniikan matematiikka Luku 3 Sivu 3 (9) Digitaalilaitteen signaalit Digitaalilaitteeseen tai -piiriin tulee ja siitä lähtee digitaalisia signaaleita yksittäisen signaalin arvo on kunakin hetkenä

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Mikrotietokone Moderni tietokone Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Sen käyttötarkoitus on yleensä työnteko, kissavideoiden katselu internetistä tai pelien pelaaminen. Tietokoneen

Lisätiedot

Digitaalitekniikan matematiikka Luku 3 Sivu 1 (19) Kytkentäfunktiot ja perusporttipiirit

Digitaalitekniikan matematiikka Luku 3 Sivu 1 (19) Kytkentäfunktiot ja perusporttipiirit Digitaalitekniikan matematiikka Luku 3 Sivu (9) && Digitaalitekniikan matematiikka Luku 3 Sivu 2 (9) Johdanto Tässä luvussa esitetään digitaalilaitteen signaalit ja digitaalipiirien perustyypit esitellään

Lisätiedot

Luento 2 Riskien arvioinnista

Luento 2 Riskien arvioinnista Luento 2 Riskien arvioinnista Ahti Salo Teknillinen korkeakoulu PL 1100, 02015 TKK 1 Termistöä Vaara (engl. hazard) Tarkoittaa ei-toivotun seuraamuksen (tappion, vahingon) toteutumisen mahdollisuutta Ei

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

Luento 3 Riskien kvalitatiivinen arviointi PSA:n pääpiirteet Vikapuuanalyysi

Luento 3 Riskien kvalitatiivinen arviointi PSA:n pääpiirteet Vikapuuanalyysi Luento 3 Riskien kvalitatiivinen arviointi PSA:n pääpiirteet Vikapuuanalyysi Ahti Salo Teknillinen korkeakoulu PL 1100, 02015 TKK 1 Esimerkki Farmerin käyristä (1/2) Lähtökohtia Laitostyyppi hajoaa todennäköisyydellä

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2004) 1 Verkot ja todennäköisyyslaskenta Puudiagrammit todennäköisyyslaskennassa: Johdatteleva esimerkki Todennäköisyyslaskenta

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5 Johdatus diskreettiin matematiikkaan Harjoitus 6, 21.10.2015 1. Ovatko verkot keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 2 b 4 a

Lisätiedot

Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.

Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen

Lisätiedot

Turvallisuus prosessien suunnittelussa ja käyttöönotossa. 1. Luennon aiheesta yleistä 2. Putkisto- ja instrumentointikaavio 3. Poikkeamatarkastelu

Turvallisuus prosessien suunnittelussa ja käyttöönotossa. 1. Luennon aiheesta yleistä 2. Putkisto- ja instrumentointikaavio 3. Poikkeamatarkastelu Turvallisuus prosessien suunnittelussa ja käyttöönotossa Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa 1. Luennon aiheesta yleistä 2. Putkisto- ja instrumentointikaavio 3. Poikkeamatarkastelu

Lisätiedot

Esimerkkejä vaativuusluokista

Esimerkkejä vaativuusluokista Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

jäsentäminen TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 26. marraskuuta 2015 TIETOTEKNIIKAN LAITOS

jäsentäminen TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 26. marraskuuta 2015 TIETOTEKNIIKAN LAITOS TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. marraskuuta 2015 Sisällys Tunnistamis- ja jäsennysongelma Olkoon G = (N, Σ, P, S) kontekstiton kielioppi ja

Lisätiedot

3.6 Su-estimaattorien asymptotiikka

3.6 Su-estimaattorien asymptotiikka 3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

ELMAS 4 Laitteiden kriittisyysluokittelu 8.2.2012 1/10. Ramentor Oy ELMAS 4. Laitteiden kriittisyysluokittelu. Versio 1.0

ELMAS 4 Laitteiden kriittisyysluokittelu 8.2.2012 1/10. Ramentor Oy ELMAS 4. Laitteiden kriittisyysluokittelu. Versio 1.0 1/10 Ramentor Oy ELMAS 4 Laitteiden kriittisyysluokittelu Versio 1.0 2/10 SISÄLTÖ 1 Kuvaus... 3 2 Kriittisyysluokittelu ELMAS-ohjelmistolla... 4 2.1 Kohteen mallinnus... 4 2.2 Kriittisyystekijöiden painoarvojen

Lisätiedot

Turvallisuus prosessien suunnittelussa ja käyttöönotossa. Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa

Turvallisuus prosessien suunnittelussa ja käyttöönotossa. Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa Turvallisuus prosessien suunnittelussa ja käyttöönotossa Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa Moduuli 2: Turvallisuus prosessilaitoksen suunnittelussa PI-kaavio poikkeamatarkastelun

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Vikasietoisuus ja luotettavuus

Vikasietoisuus ja luotettavuus Vikasietoisuus ja luotettavuus Luotettavuussuureet Keskuksen vikasietoisuus Mallinnusmenetelmät Rka/ML -k2000 Tiedonvälitystekniikka I 14-1 Vikasietoisuuden peruskäsitteitä ovat Vikaantuminen (failure,

Lisätiedot

jäsennyksestä TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 29. syyskuuta 2016 TIETOTEKNIIKAN LAITOS Kontekstittomien kielioppien

jäsennyksestä TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 29. syyskuuta 2016 TIETOTEKNIIKAN LAITOS Kontekstittomien kielioppien TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 29.9.2016 klo 8:41 (lähes kaikki kommentoitu) passed

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Vikasietoisuus ja luotettavuus

Vikasietoisuus ja luotettavuus Vikasietoisuus ja luotettavuus Luotettavuussuureet Keskuksen vikasietoisuus Mallinnusmenetelmät Rka/ML -k98 Tiedonvälitystekniikka I 3-1 Vikasietoisuuden peruskäsitteitä ovat Vikaantuminen (failure, malfunction)

Lisätiedot

Käytettävyysanalyysi

Käytettävyysanalyysi Käytettävyysanalyysi Käytettävyyttä ja kunnossapidon ennakoivaa kohdentamista. Lopputuloksena on : Analysoitua dataa laitoksen kriittisistä laitteista Havaintoja ja parannusehdotuksia prosessista. Lausunto

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Monimutkaisten järjestelmien toimintavarmuuden parantaminen Jussi Kangaspunta ja Ahti Salo

Monimutkaisten järjestelmien toimintavarmuuden parantaminen Jussi Kangaspunta ja Ahti Salo Monimutkaisten järjestelmien toimintavarmuuden parantaminen 22..202 Jussi Kangaspunta ja Ahti Salo Taustaa Yhteiskunnan turvallisuusstrategia ja elintärkeiden toimintojen turvaaminen Esim. myrskyjen aiheuttamat

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

Esimerkki: Tietoliikennekytkin

Esimerkki: Tietoliikennekytkin Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen

Lisätiedot

1. laskuharjoituskierros, vko 4, ratkaisut

1. laskuharjoituskierros, vko 4, ratkaisut 1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu. Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos

Lisätiedot

6. laskuharjoitusten vastaukset (viikot 10 11)

6. laskuharjoitusten vastaukset (viikot 10 11) 6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 12.4.2010 T-106.1208 Ohjelmoinnin perusteet Y 12.4.2010 1 / 34 Graafiset käyttöliittymät Tähän asti kirjoitetuissa ohjelmissa on ollut tekstipohjainen käyttöliittymä.

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

3. Laskennan vaativuusteoriaa

3. Laskennan vaativuusteoriaa 3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Eri tietolähteiden käyttö kunnossapidon tukena

Eri tietolähteiden käyttö kunnossapidon tukena Prognos, Vuosiseminaari 2005 Eri tietolähteiden käyttö kunnossapidon tukena Toni Ahonen VTT Tuotteet ja tuotanto Esityksen rakenne 1. Katsaus taustaan ja tavoitteisiin 2. Lähestymistapoja vika- ja kunnossapitodatan

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku. Algebra 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. a) Luku on luonnollinen luku. b) Z c) Luvut 5 6 ja 7 8 ovat rationaalilukuja, mutta luvut ja π eivät. d) sin(45 ) R e)

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot