Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot"

Transkriptio

1 TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskenta ja puudiagrammit iite: Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskenta ja puudiagrammit: Mitä opimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa, operaatiotutkimuksessa, peli- ja päätösteoriassa sekä todennäköisyyslaskennassa. Tässä liitteessä tarkastelemme miten puumaisia verkkoja voidaan käyttää todennäköisyyslaskennan laskusääntöjen havainnollistamiseen. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot Esitiedot: ks. seuraavia lukuja: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Kokonaistodennäköisyys ja ayesin kaava iite: Verkot TKK (c) Ilkka Mellin (2004) 3 TKK (c) Ilkka Mellin (2004) 4 Todennäköisyyslaskenta ja puudiagrammit >> vainsanat lkutila Juuri oppupiste opputila Piste Puu Puudiagrammi Puutodennäköisyys Reitti Särmä Tapahtumajono Tapahtumavaihtoehto Tulosääntö puutodennäköisyyksille Verkko Verkkodiagrammi Yhteenlaskusääntö puutodennäköisyyksille TKK (c) Ilkka Mellin (2004) 5 TKK (c) Ilkka Mellin (2004) 6

2 TKK (c) Ilkka Mellin (2004) 7 Puudiagrammien käyttö todennäköisyyslaskennassa Periaatteessa jokainen alkeistodennäköisyyslaskennan tehtävä voidaan ratkaista käyttämällä apuna ns. puudiagrammeja. Tällöin tehtävään liittyvä satunnaisilmiö on ensin osattava kuvata puudiagrammilla. Jos tehtävän satunnaisilmiötä osataan kuvata puudiagrammilla, tehtävän ratkaisemisessa tarvittavat puutodennäköisyydet saadaan määrätyksi käyttämällä kahta yksinkertaista laskusääntöä, tulosääntöä ja yhteenlaskusääntöä. Puudiagrammin konstruointi 1/2 Satunnaisilmiö voidaan kuvata puudiagrammilla, jos ilmiö osataan esittää seuraavassa muodossa: (i) Ilmiöllä on yksi alkutila ja yksi tai useampia lopputiloja. (ii) Ilmiö koostuu vaihtoehtoisista tapahtumajonoista. (iii) Tapahtumajonoissa edetään vaiheittain tapahtumasta toiseen lähtien ilmiön alkutilasta ja päätyen johonkin ilmiön lopputiloista. (iv) Jokaisessa vaiheessa kohdataan yksi tai useampia tapahtumavaihtoehtoja, joista yksi realisoituu ja johtaa uusin tapahtumavaihtoehtoihin. TKK (c) Ilkka Mellin (2004) 8 Puudiagrammin konstruointi 2/2 Puudiagrammin konstruointi: Esimerkki 1/3 Satunnaisilmiötä vastaavan puudiagrammin konstruointi: (i) setetaan puun juuri vastaamaan ilmiön alkutilaa. (ii) setetaan puun loppupisteet ( oksien kärjet ) vastaamaan ilmiön lopputiloja. (iii) setetaan puun pisteet ( oksien haarautumiskohdat ) vastaamaan ilmiön tapahtumia. (iv) Viedään puun jokaisesta pisteestä särmä ( oksa ) kaikkiin sellaisiin pisteisiin, joita vastaavat tapahtumavaihtoehdot ovat ilmiön siinä vaiheessa mahdollisia. (v) iitetään jokaiseen pisteestä lähtevään särmään siinä vaiheessa mahdollisten tapahtumavaihtoehtojen todennäköisyydet. Puudiagrammin konstruointia voidaan havainnollistaa viereisellä kaaviolla. Tarkastellaan satunnaisilmiötä vaiheessa, jossa tapahtuma on sattunut. Olkoot :n sattumisen jälkeen mahdolliset tapahtumavaihtoehdot i, i = 1, 2,, m 1 k m TKK (c) Ilkka Mellin (2004) 9 TKK (c) Ilkka Mellin (2004) 10 Puudiagrammin konstruointi: Esimerkki 2/3 Puudiagrammin konstruointi: Esimerkki 3/3 Viedään pisteestä särmä jokaiseen pisteistä i, i = 1, 2,, m iitetään jokaiseen särmään (, i ), i = 1, 2,, m ehdollinen todennäköisyys pi = Pr( i ) jossa p 1 p k on tapahtumajono, 1 k joka on tuonut pisteeseen. p m m Koska :n sattumisen jälkeen ei ole muita mahdollisia tapahtumavaihtoehtoja kuin i, i = 1, 2,, m, pitää todennäköisyyksien p i, i = 1, 2,, m toteuttaa ehto m m p = Pr( ) = 1 i i= 1 i= 1 i 1 p 1 k p k p m m TKK (c) Ilkka Mellin (2004) 11 TKK (c) Ilkka Mellin (2004) 12

3 TKK (c) Ilkka Mellin (2004) 13 Puudiagrammin konstruointi: Kommentteja Puudiagrammi piirretään tavallisesti joko niin, että sen alkupiste on ylhäällä ja loppupisteet ovat alhaalla tai niin, että sen alkupiste on vasemmalla ja loppupisteet ovat oikealla. Useat puun pisteet voivat vastata samaa tapahtumaa. Mistä tahansa puun pisteestä lähtevien särmien todennäköisyyksien summa on 1. Puutodennäköisyydellä tarkoitetaan todennäköisyyttä päästä puun alkupisteestä yhden tai useamman muun puun pisteen määräämään yhdistettyyn tapahtumaan. Pisteen todennäköisyys saadaan määräämällä alkupisteestä ko. pisteeseen vievän reitin todennäköisyys. Reitin todennäköisyys saadaan soveltamalla reittiin kuuluvien särmien todennäköisyyksiin tulosääntöä. Usean pisteen määräämän yhdistetyn tapahtuman todennäköisyys saadaan soveltamalla ko. pisteisiin vievien reittien todennäköisyyksiin yhteenlaskusääntöä. TKK (c) Ilkka Mellin (2004) 14 : Tulosääntö 1/4 Reitin todennäköisyys saadaan määräämällä reittiin kuuluvien särmien todennäköisyyksien tulo. Sääntöä kutsutaan tulosäännöksi. Tulosäännön perustelu: (1) Reitti on tapahtumajono, jonka muodostavat reitin pisteet. (2) Reitin muodostava tapahtumajono sattuu, jos jokainen jonon tapahtumista sattuu. (3) Todennäköisyyslaskennan yleisen tulosäännön mukaan reitin todennäköisyys saadaan määräämällä reittiin kuuluvien särmien todennäköisyyksien tulo. : Tulosääntö 2/4 Olkoon, 1, 2, 3,, k yksi niistä vaihtoehtoisista tapahtumajonoista, joista satunnaisilmiö muodostuu. Tällöin parit (, 1 ), ( 1, 2 ), ( 2, 3 ),, ( k 1, k ) muodostavat satunnaisilmiön alkutilasta satunnaisilmiön (loppu-) tilaan k vievän reitin särmät. TKK (c) Ilkka Mellin (2004) 15 TKK (c) Ilkka Mellin (2004) 16 : Tulosääntö 3/4 iitetään reitin (, 1 ), ( 1, 2 ), ( 2, 3 ),, ( k 1, k ) särmiin todennäköisyydet seuraavalla tavalla: (, 1 ) Pr( 1 ) = p 1 ( 1, 2 ) Pr( 2 1 ) = p 2 ( 2, 3 ) Pr( ) = p 3 ( k 1, k ) Pr( k k 1 ) = p k : Tulosääntö 4/4 Reitin (, 1 ), ( 1, 2 ), ( 2, 3 ),, ( k 1, k ) todennäköisyys on yleisen tulosäännön nojalla: Pr( k ) = Pr( 1 ) Pr( 2 1 ) Pr( ) Pr( k k 1 ) = p 1 p 2 p 3 p k TKK (c) Ilkka Mellin (2004) 17 TKK (c) Ilkka Mellin (2004) 18

4 TKK (c) Ilkka Mellin (2004) 19 : Tulosäännön havainnollistus Puutodennäköisyyksien tulosääntöä voidaan havainnollistaa viereisellä puudiagrammilla. Reitin k todennäköisyys on tulosäännön mukaan Pr(Reitti k) = p 1 p 2 p 3 p k p 1 p p 3 3 p k 1 k k Reitti k : Yhteenlaskusääntö 1/2 Jos useita (loppu-) tiloja yhdistetään yhdeksi tapahtumaksi, näin saadun yhdistetyn tapahtuman todennäköisyys saadaan määräämällä ko. tiloihin vievien reittien todennäköisyyksien summa. Sääntöä kutsutaan yhteenlaskusäännöksi. Yhteenlaskusäännön perustelu: (1) Puun eri pisteisiin vievät reitit ovat toisensa poissulkevia. (2) Toisensa poissulkevien tapahtumien yhteenlaskusäännön mukaan useista (loppu-) pisteistä yhdistämällä saatavan tapahtuman todennäköisyys saadaan määräämällä ko. pisteisiin vievien reittien todennäköisyyksien summa. TKK (c) Ilkka Mellin (2004) 20 : Yhteenlaskusääntö 2/2 : Yhteenlaskusäännön havainnollistus Yhdistetään satunnaisilmiön (loppu-) tilat 1, 2,, k yhdeksi tapahtumaksi C = 1 2 k Olkoot tiloja 1, 2,, k vastaavat reitit Reitti 1, Reitti 2,, Reitti k Koska puun eri pisteisiin vievät reitit ovat toisensa poissulkevia, tapahtuman C todennäköisyys on toisensa poissulkevien tapahtumien yhteenlaskusäännön nojalla: Pr(C) = Pr(Reitti 1 tai Reitti 2 tai tai Reitti k) = Pr(Reitti 1) + Pr(Reitti 2) + + Pr(Reitti k) Puutodennäköisyyksien yhteenlaskusääntöä voidaan havainnollistaa viereisellä puudiagrammilla: Pr(C) = Pr(Reitti 1) + Pr(Reitti 2) + Pr(Reitti k) k Reitti: k C TKK (c) Ilkka Mellin (2004) 21 TKK (c) Ilkka Mellin (2004) 22 Todennäköisyyslaskenta ja puudiagrammit Todennäköisyyslaskennan laskusääntöjen havainnollistaminen >> vainsanat Puudiagrammi Puutodennäköisyyksien tulosääntö Puutodennäköisyyksien yhteenlaskusääntö Todennäköisyyslaskennan laskusäännöt erotustapahtuman todennäköisyys kokonaistodennäköisyyden kaava komplementtitapahtuman todennäköisyys tulosääntö riippumattomille tapahtumille yhteenlaskusääntö toisensa poissulkeville tapahtumille yleinen tulosääntö yleinen yhteenlaskusääntö TKK (c) Ilkka Mellin (2004) 23 TKK (c) Ilkka Mellin (2004) 24

5 TKK (c) Ilkka Mellin (2004) 25 Todennäköisyyslaskennan laskusääntöjen havainnollistaminen puudiagrammilla Komplementtitapahtuman todennäköisyys 1/2 Tarkastellaan seuraavien todennäköisyyslaskennan laskusääntöjen havainnollistamista puudiagrammilla: (i) Komplementtitapahtuman todennäköisyys. (ii) Yleinen tulosääntö ja tulosääntö riippumattomille tapahtumille. (iii) Yleinen yhteenlaskusääntö ja yhteenlaskusääntö toisensa poissulkeville tapahtumille. (iv) Erotustapahtuman todennäköisyys. (v) Kokonaistodennäköisyyden kaava. Puun juurta eli alkupistettä on merkitty diagrammeissa kirjaimella ( satunnaisilmiön lähtötila). Olkoon S jokin otosavaruuden S tapahtuma. Olkoon tapahtuman komplementtitapahtuma c = eisatu Tällöin c = S, c = Pr() + Pr( c ) = Pr(S) = 1 viereisellä Venndiagrammilla. c S TKK (c) Ilkka Mellin (2004) 26 Komplementtitapahtuman todennäköisyys 2/2 Yleinen tulosääntö 1/2 myös viereisellä puudiagrammilla. Yhdistetyn tapahtuman c = S todennäköisyys on yhteenlaskusäännön nojalla Pr(S) = Pr() + Pr( c ) = 1 Pr() Pr( c ) c Olkoot S ja S otosavaruuden S tapahtumia. Yleisen tulosäännön mukaan Pr( ) = Pr()Pr( ) viereisellä Venndiagrammilla. TKK (c) Ilkka Mellin (2004) 27 TKK (c) Ilkka Mellin (2004) 28 Yleinen tulosääntö 2/2 Tulosääntö riippumattomille tapahtumille myös viereisellä puudiagrammilla. Yhdistetyn tapahtuman = jasattuu todennäköisyys on tulosäännön nojalla Pr( ) = Pr()Pr( ) Pr() Pr( ) Olkoot S ja S otosavaruuden S riippumattomia tapahtumia. Koska tällöin Pr( )= Pr() yhdistetyn tapahtuman = jasattuu todennäköisyys on tulosäännön nojalla Pr( ) = Pr()Pr() Pr() Pr() TKK (c) Ilkka Mellin (2004) 29 TKK (c) Ilkka Mellin (2004) 30

6 TKK (c) Ilkka Mellin (2004) 31 Yleinen yhteenlaskusääntö 1/8 Yleinen yhteenlaskusääntö 2/8 Olkoot S ja S otosavaruuden S tapahtumia. Yleisen yhteenlaskusäännön mukaan Pr( ) = Pr() + Pr() Pr( ) viereisellä Venndiagrammilla. Yleisen yhteenlaskusäännön todistus voidaan perustaa siihen, että joukot \ = c \ = c muodostavat joukon osituksen, sekä yhtälöihin (\) ( ) = (\) ( ) = (\) ( ) = (\) ( ) = TKK (c) Ilkka Mellin (2004) 32 Yleinen yhteenlaskusääntö 3/8 Yleinen yhteenlaskusääntö 4/8 Toisensa poissulkevien tapahtumien yhteenlaskusäännön nojalla Pr()= Pr(\) + Pr( ) Pr() = Pr(\) + Pr( ) Edellisen kalvon yhtälöiden ja toisensa poissulkevien tapahtumien yhteenlaskusäännön nojalla Pr( ) = Pr(\) + Pr(\) + Pr( ) = Pr(\) + Pr( ) + Pr(\) + Pr( ) Pr( ) = Pr() + Pr() Pr( ) TKK (c) Ilkka Mellin (2004) 33 TKK (c) Ilkka Mellin (2004) 34 Yleinen yhteenlaskusääntö 5/8 Yleinen yhteenlaskusääntö 6/8 Yleistä yhteenlaskusääntöä voidaan havainnollistaa myös viereisellä puudiagrammilla. Yhdistettyä tapahtumaa = taisattuu vastaa reitit 1, 2 ja 3 yhdistämällä saatava tapahtuma, koska niissä sattuu tai sattuu tai molemmat sattuvat. Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) Reittien 1, 2 ja 3 todennäköisyyksiksi saadaan tulosääntöä soveltamalla: Pr(Reitti 1) = Pr()Pr( ) Pr(Reitti 2) = Pr()Pr( c ) Pr(Reitti 3) = Pr( c )Pr( c ) Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) TKK (c) Ilkka Mellin (2004) 35 TKK (c) Ilkka Mellin (2004) 36

7 TKK (c) Ilkka Mellin (2004) 37 Yleinen yhteenlaskusääntö 7/8 Yleinen yhteenlaskusääntö 8/8 Soveltamalla yhteenlaskusääntöä saadaan: Pr( ) = Pr(Reitti 1 tai Reitti 2 tai Reitti 3) = Pr()Pr( ) + Pr()Pr( c ) + Pr( c )Pr( c ) Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) Ehdollisen todennäköisyyden määritelmästä ja kalvon 3/8 kaavoista seuraa: Pr( ) = Pr()Pr( ) + Pr()Pr( c ) + Pr( c )Pr( c ) = Pr( ) + Pr( c ) + Pr( c ) = Pr() + Pr() Pr( ) Pr( ) Pr() Pr( c ) c c Pr( c ) Pr( c ) Pr( c c ) c TKK (c) Ilkka Mellin (2004) 38 tapahtumille 1/6 tapahtumille 2/6 Olkoot S ja S otosavaruuden S toisensa poissulkevia tapahtumia. Tällöin = ja Pr( ) = 0 Siten Pr( ) = Pr() + Pr() viereisellä Venndiagrammilla. S Toisensa poissulkevien tapahtumien yhteenlaskusääntöä voidaan havainnollistaa myös viereisellä puudiagrammilla. Yhdistettyä tapahtumaa = taisattuu vastaa reitit 2 ja 3 yhdistämällä saatava tapahtuma, koska niissä sattuu tai sattuu, mutta eivät molemmat. Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) TKK (c) Ilkka Mellin (2004) 39 TKK (c) Ilkka Mellin (2004) 40 tapahtumille 3/6 tapahtumille 4/6 Reittien 2 ja 3 todennäköisyyksiksi saadaan tulosääntöä soveltamalla: Pr(Reitti 2) = Pr()Pr( c ) Pr(Reitti 3) = Pr( c )Pr( c ) Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) Soveltamalla yhteenlaskusääntöä saadaan: Pr( ) = Pr(Reitti 2 tai Reitti 3) = Pr()Pr( c ) + Pr( c )Pr( c ) Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) TKK (c) Ilkka Mellin (2004) 41 TKK (c) Ilkka Mellin (2004) 42

8 TKK (c) Ilkka Mellin (2004) 43 tapahtumille 5/6 tapahtumille 6/6 Koska ja ovat toisensa poissulkevia tapahtumia, ehdollisen todennäköisyyden määritelmästä ja aikaisemmin esitetyistä kaavoista seuraa: Pr( ) = Pr()Pr( c ) + Pr( c )Pr( c ) = Pr( c ) + Pr( c ) = Pr() + Pr() Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) Koska ja ovat toisensa poissulkevia, Pr( ) = 0 Siten Pr( ) = Pr( )/Pr() = 0 Reitin 1 todennäköisyydeksi saadaan siis Pr(Reitti 1) = Pr()Pr( ) = 0 kuten pitääkin. Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) TKK (c) Ilkka Mellin (2004) 44 Erotustapahtuman todennäköisyys 1/4 Erotustapahtuman todennäköisyys 2/4 Olkoot S ja S otosavaruuden S tapahtumia. Erotustapahtuman \ = c todennäköisyys on Pr(\) = Pr( c ) = Pr() Pr( ) viereisellä Venndiagrammilla. myös viereisellä puudiagrammilla. Erotustapahtumaa \ = sattuu, mutta ei vastaa reitti 2. Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) TKK (c) Ilkka Mellin (2004) 45 TKK (c) Ilkka Mellin (2004) 46 Erotustapahtuman todennäköisyys 3/4 Erotustapahtuman todennäköisyys 4/4 Reitin 2 todennäköisyys on tulosäännön ja ehdollisen todennäköisyyden määritelmän perusteella Pr()Pr( c ) = Pr( c ) Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) c c Koska ( c ) ( ) = ( c ) ( ) = saadaan Pr() = Pr( c ) + Pr( ) Siten Pr(\) = Pr( c ) = Pr()Pr( c ) = Pr() Pr( ) Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) TKK (c) Ilkka Mellin (2004) 47 TKK (c) Ilkka Mellin (2004) 48

9 TKK (c) Ilkka Mellin (2004) 49 Kokonaistodennäköisyyden kaava 1/7 Kokonaistodennäköisyyden kaava 2/7 Olkoot S ja S otosavaruuden S tapahtumia. Olkoot lisäksi joukko ja sen komplementti c epätyhjiä. Kokonaistodennäköisyyden kaavan mukaan: Pr() = Pr()Pr( ) + Pr( c )Pr( c ) Kaava on hyödyllinen tilanteessa, jossa todennäköisyys Pr() ja ehdolliset todennäköisyydet Pr( ) ja Pr( c ) tunnetaan. Kokonaistodennäköisyyden kaavan todistus perustuu siihen, että tapahtuma ja sen komplementtitapahtuma c muodostavat otosavaruuden S osituksen: (i) ja c (ii) c = (iii) S = c Otosavaruuden S ositus {, c } indusoi osituksen {, c } tapahtumaan : (i) tai c (ii) ( ) ( c ) = (iii) = ( ) ( c ) TKK (c) Ilkka Mellin (2004) 50 Kokonaistodennäköisyyden kaava 3/7 Kokonaistodennäköisyyden kaava 4/7 Toisensa poissulkevien tapahtumien yhteenlaskusäännön mukaan: Pr() = Pr( ) + Pr( c ) (1) Yleisen tulosäännön mukaan: Pr( ) = Pr()Pr( ) (2) Pr( c )= Pr( c )Pr( c ) (3) Sijoittamalla lausekkeet (2) ja (3) kaavaan (1) saadaan kokonaistodennäköisyyden kaava Pr() = Pr()Pr( ) + Pr( c )Pr( c ) Kaavaa voidaan havainnollistaa seuraavan kalvon Venndiagrammilla. c c S TKK (c) Ilkka Mellin (2004) 51 TKK (c) Ilkka Mellin (2004) 52 Kokonaistodennäköisyyden kaava 5/7 Kokonaistodennäköisyyden kaava 6/7 Kokonaistodennäköisyyden kaavaa voidaan havainnollistaa myös viereisellä puudiagrammilla. Tapahtumaa = sattuu vastaa reitit 1 ja 3 yhdistämällä saatava tapahtuma. Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) Reittien 1 ja 3 todennäköisyyksiksi saadaan tulosääntöä soveltamalla: Pr(Reitti 1) = Pr()Pr( ) Pr(Reitti 3) = Pr( c )Pr( c ) Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c ) TKK (c) Ilkka Mellin (2004) 53 TKK (c) Ilkka Mellin (2004) 54

10 TKK (c) Ilkka Mellin (2004) 55 Kokonaistodennäköisyyden kaava 7/7 Soveltamalla yhteenlaskusääntöä saadaan: Pr() = Pr(Reitti 1 tai Reitti 3) = Pr()Pr( ) + Pr( c )Pr( c ) Pr() Pr( c ) c Pr( ) Pr( c ) Pr( c ) Pr( c c )

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyslaskenta ja puudiagrammit Puutodennäköisyydet Todennäköisyyslaskennan laskusääntöjen

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyslaskenta ja puudiagrammit >> Puutodennäköisyydet

Lisätiedot

Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2004) 1 Verkot ja todennäköisyyslaskenta Puudiagrammit todennäköisyyslaskennassa: Johdatteleva esimerkki Todennäköisyyslaskenta

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2005) 1 Verkot ja todennäköisyyslaskenta >> Puudiagrammit todennäköisyyslaskennassa:

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden

Lisätiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot T (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan T (c) Ilkka Mellin (2004) 2 : Mitä oimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa,

Lisätiedot

Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1

Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1 Liite: Verkot TKK (c) Ilkka Mellin (2004) 1 : Mitä opimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa, operaatiotutkimuksessa, peli-ja päätösteoriassa

Lisätiedot

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden

Lisätiedot

Todennäköisyyslaskenta: Liitteet. Liite 1. Joukko oppi Liite 2. Todennäköisyyslaskenta ja puudiagrammit. Ilkka Mellin (2006) 449

Todennäköisyyslaskenta: Liitteet. Liite 1. Joukko oppi Liite 2. Todennäköisyyslaskenta ja puudiagrammit. Ilkka Mellin (2006) 449 Liitteet Todennäköisyyslaskenta: Liitteet Liite 1. Joukko oppi Liite 2. Todennäköisyyslaskenta ja puudiagrammit TKK @ Ilkka Mellin (2006) 449 Liitteet TKK @ Ilkka Mellin (2006) 450 Liitteet Sisällys 1.

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot

Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt: Esitiedot

Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt. Todennäköisyyslaskennan peruslaskusäännöt: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskennan peruslaskusäännöt Johdatus todennäköisyyslaskentaan Todennäköisyyslaskennan peruslaskusäännöt TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskennan

Lisätiedot

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta

Liite 2: Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Verkot TKK (c) Ilkka Mellin (2007) 1 Verkko eli graafi: Määritelmä 1/2 Verkko eli graafi muodostuu pisteiden joukosta V, särmien

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden peruslaskusäännöt >> Uusien tapahtumien muodostaminen

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden peruslaskusäännöt Tapahtumat Peruslaskusäännöt todennäköisyydelle Ehdollinen todennäköisyys

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi M-0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 1: Todennäköisyyslaskennan peruskäsitteet; Todennäköisyyden aksioomat; Todennäköisyyslaskennan peruslaskusäännöt; Kokonaistodennäköisyyden

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt - Satunnaiskokeet, otosavaruudet ja tapahtumat - Todennäköisyyden määritteleminen KE (2014) 1 Satunnaiskokeet, otosavaruudet ja tapahtumat

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden aksioomat Todennäköisyyden määritteleminen Todennäköisyyden aksioomat äärellisissä otosavaruuksissa

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden aksioomat >> Todennäköisyyden määritteleminen Todennäköisyyden

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 Aiheet: Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Klassinen

Lisätiedot

A. Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme

A. Jos A on niiden perusjoukon S alkioiden x joukko, jotka toteuttavat ehdon P(x) eli joille lause P(x) on tosi, niin merkitsemme Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 1 Aiheet: Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Klassinen todennäköisyys

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

Todennäköisyyslaskenta. β versio. Todennäköisyyslaskenta. Ilkka Mellin. Teknillinen korkeakoulu, Matematiikan laboratorio. Ilkka Mellin (2006) I

Todennäköisyyslaskenta. β versio. Todennäköisyyslaskenta. Ilkka Mellin. Teknillinen korkeakoulu, Matematiikan laboratorio. Ilkka Mellin (2006) I β versio Todennäköisyyslaskenta Ilkka Mellin Teknillinen korkeakoulu, Matematiikan laboratorio TKK @ Ilkka Mellin (2006) I TKK @ Ilkka Mellin (2006) II Esipuhe Tämä moniste antaa perustiedot todennäköisyyslaskennasta.

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku Harjoitus 2 (vko 39/2003) (ihe: tapahtumien todennäköisyys, Laininen luvut 1.6 2.4) 1. Tarkastellaan rinnan- ja sarjaankytketyistä

Lisätiedot

1. laskuharjoituskierros, vko 4, ratkaisut

1. laskuharjoituskierros, vko 4, ratkaisut 1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)

Lisätiedot

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Todennäköisyyslaskenta

Todennäköisyyslaskenta Todennäköisyyslaskenta Ilkka Mellin 1. korjattu painos Ilkka Mellin I Ilkka Mellin II Esipuhe Tämä moniste pyrkii antamaan perustiedot todennäköisyyslaskennasta. Monisteen ensisijaisena tavoitteena on

Lisätiedot

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt Todennäköisyys ja sen laskusäännöt Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt 1. Johdanto 2. Joukko-opin peruskäsitteet 3. Todennäköisyyslaskennan peruskäsitteet 4. Todennäköisyyslaskennan

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma

Lisätiedot

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja. Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Kurssi käsittelee todennäköisyyslaskentaa ja tilastotiedettä. Laaditaan satunnaisilmiöille todennäköisyysmalleja. Miten hyvin mallit kuvaavat todellisuutta?

Lisätiedot

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet TKK () Ilkka Mellin (2004) 1 Joukko-oppi Liite: Joukko-oppi TKK () Ilkka Mellin (2004) 2 Joukko-oppi: Mitä opimme? Tämän liitteen tavoitteena on esitellä joukko-opin peruskäsitteet ja - operaatiot laajuudessa,

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Olkoon S = {s 1,s 2,...,s n } äärellinen otosavaruus. Oletetaan, että Pr(s i ) = 1, kaikille i = 1, 2,...,n n Tällöin alkeistapahtumat

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma

Lisätiedot

Johdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Joukko-oppi TKK (c) Ilkka Mellin (2005) 1 Joukko-oppi Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot ja funktioiden

Lisätiedot

031021P Tilastomatematiikka (5 op)

031021P Tilastomatematiikka (5 op) 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division Yleinen todennäköisyys Kertausmateriaalissa esiteltiin koulusta tuttuja todennäköisyysmalleja. Tällä kurssilla todennäköisyys on

Lisätiedot

Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2005) 1 Klassinen todennäköisyys ja kombinatoriikka Klassinen todennäköisyys Kombinatoriikan perusperiaatteet

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja niiden todennäköisyysjakaumat

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot

Lisätiedot

1. Matkalla todennäköisyyteen

1. Matkalla todennäköisyyteen 1. Matkalla todennäköisyyteen Wovon man nicht sprechen kann, darüber muss man schweigen (Ludwig Wittgenstein, Tractatus Logico-Philosophicus 1921) Miten ihmeessä tämä liittyy tähän kurssiin????!?? 1.1

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyys ja sen määritteleminen TKK (c) Ilkka Mellin (2005) 1 Todennäköisyys ja sen määritteleminen Deterministisyys ja satunnaisuus Todennäköisyyden määritteleminen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

A = B. jos ja vain jos. x A x B

A = B. jos ja vain jos. x A x B Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Klassinen todennäköisyys ja kombinatoriikka Kokonaistodennäköisyys ja Bayesin kaava Avainsanat: Bayesin kaava, Binomikaava, Binomikerroin,

Lisätiedot

Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio

Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio KE (2014) 1 Satunnaismuuttujat ja niiden todennäköisyysjakaumat Satunnaismuuttujat

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Kalle Kytölä, Heikki Seppälä, Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015,

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Johdanto: Deterministisyys ja satunnaisuus Todennäköisyyden määritteleminen Todennäköisyyslaskennan peruskäsitteet TKK (c)

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

Kurssin puoliväli ja osan 2 teemat

Kurssin puoliväli ja osan 2 teemat Kurssin puoliväli ja osan 2 teemat Kurssin osa 1 keskittyi mittaukseen, tiedonkeruuseen ja kuvailevaan tilastotieteeseen. Osassa 2 painottuu tilastollinen päättely, joka puolestaan rakentuu voimakkaasti

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Heikki Seppälä, Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Osaamistavoitteet

Lisätiedot

031021P Tilastomatematiikka (5 op)

031021P Tilastomatematiikka (5 op) 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 11 4 h) ti 12-14 ja to 8-10 (ks. tarkempi opetusohjelma Oodista tms.) Harjoitukset (yht. 11 2 h)

Lisätiedot

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat Johdatus todennäköisyyslaskentaan todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat: Mitä opimme? /5 hden satunnaismuuttujan todennäköisyysjakaumat

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Kevät 2016, periodi III Stochastics and

Lisätiedot

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen

Lisätiedot

9 Yhteenlaskusääntö ja komplementtitapahtuma

9 Yhteenlaskusääntö ja komplementtitapahtuma 9 Yhteenlaskusääntö ja komplementtitapahtuma Kahta joukkoa sanotaan erillisiksi, jos niillä ei ole yhtään yhteistä alkiota. Jos pysytellään edelleen korttipakassa, niin voidaan ilman muuta sanoa, että

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme? TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Prosessialgebra

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Prosessialgebra T-79.179 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Prosessialgebra 19. maaliskuuta 2002 T-79.179: Prosessialgebra 9-1 Petri-verkot vastaan prosessialgebra Petri-verkot esittävät rinnakkaisia

Lisätiedot