Rinnakkaistietokoneet luento S

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Rinnakkaistietokoneet luento S"

Transkriptio

1 Rinnakkaistietokoneet luento S

2 Silmukalliset ohjelmat Silmukat joissa ei ole riippuvuussyklejä voidaan vektoroida eli suorittaa silmukan vektorointi Jokainen yksittäinen käsky silmukan rungossa voidaan suorittaa kaikille iteratiolle samanaikaisesti Esim: do i = 1,n S1: a(i) = b(i+1) + c(i) S2: b(i) = a(i) + 5 Silmukassa on datariippuvuus ja epäriippuvuus lauseiden S1 ja S2 välillä (kts. kuva 3.4) Lauseiden välillä ei kuitenkaan ole sykliä, joka estäisi vektoroinnin Esimerkki silmukka voidaankin vektoroida täydellisesti ja se voidaan kirjoittaa vektoroidussa muodossa: a(1:n) = b(2:n+1) + c(1:n) b(1:n) = a(1:n) + 5 nämä kaksi vektoroitua lauseketta voidaan siis suorittaa peräkkäin ja kumpikin niistä suorittaa operaation usealle datalle (kaikille iteraatioille) samanaikaisesti

3 Katsotaan silmukkaa, jossa on datariippuvuussykli, jota ei voida poistaa do i = 1,N S1: d(i) = a(i+1) + 3 S2: a(i) = b(i-1) + c(i) S3: b(i) = a(i) 5 Kuvasta 3.5 nähdään, että lauseiden S3 ja S2 välillä on syklinen riippuvuus: seuraava iteraatio käyttää edellisen laskemaa b:n arvoa (riippuvuusvektori d = 1) Lause S1 voidaan vektoroida, koska se on syklin ulkopuolella: silmukka voidaan vektoroida osittain Osittain vektoroitu silmukka: S1: d(1:n) = a(2:n+1) + 3 do i = 1,N S2: a(i) = b(i-1) + c(i) S3: b(i) = a(i) 5

4 Jotkin vektorioperaatiot muuntavat vektorin skalaariksi, esim. kahden vektorin sisätulo: do i = 1,n S1: a(i) = b(i) * c(i) S2: dot = dot + a(i) Tämä silmukka voidaan vektoroida: S1: a(1,n) = b(1,n) * c(1,n) S2: dot = sum(a(1:n)) missä sum-operaatio laskee argumentin elementit yhteen

5 DOALL on rinnakkais-fortran rakenne jolla ilmaistaan, että silmukan kaikki iteraatiot suoritetaan rinnakkain (edellyttää sopivaa rinnakkaistietokonetta) Jokainen silmukan iteraatio muunnetaan itsenäiseksi prosessiksi DOALL:n käyttö edellyttää, että silmukan iteraatioiden välillä ei ole riippuvuuksia Koska riippumattomat iteraatiot voidaan suorittaa satunnaisessa järjestyksessä, voidaan kukin iteraatio ajaa omalla prosessorillaan Iteraatioiden riippumattomuus testataan käyttäen data riippuvuuksia Jos datariippuvuusmatriisissa on rivi, jonka kaikki elementit ovat nollia, kaikki iteraatiot ovat riippumattomia tästä indeksisä: ts. riippuvuusvektoreilla ei ole kyseisen indeksin määrittelemää ulottuvuutta joten ei voi löytyä riippuvuuksia, jotka yhdistäisivät eri (ko. indeksin) iteraatioita

6 Esim: do i = 1,n S1: a(i) = b(i) + c(i) S2: d(i) = a(i) + 2 Silmukalla ei ole iteraatioiden välisiä riippuvuuksia (yksi riippuvuusvektori ja se on d = 0) Silmukka voidaan muuntaa rinnakkaismuotoon rinnakkaislaskentaa varten: DOALL i = 1,n S1: a(i) = b(i) + c(i) S2: d(i) = a(i) + 2 end DOALL Olettaen, että käytössä on n prosessoria, silmukan evaluointi nopeutuu (luokkaa) n kertaisesti: jokainen iteraatio voidaan osoittaa omalle prosessorilleen (mikä ilmaistaa ohjelmoijan toimesta käyttämällä DOALL rakennetta)

7 DOACROSS on toinen rinnakkaiskielten rakenenne, jota voidaan hyödyntää silmukoiden rinnakkaislaskennassa Jokaisesta silmukan iteraatiosta tulee prosessi mutta prosessit eivät ole täysin riippumattomia toisistaan DOACROSS rakennetta käytetään, kun iteraatioden välillä on riippuvuuksia Nämä riippuvuuden huomioidaan epäsuoran tai suoran synkronoinnin kautta

8 Esim: do i = 1,n S1: a(i) = b(i) + c(i) S2: d(i) = b(i-1) + c(i) S3: e(i) = a(i-1) + d(i-2) Silmukalla on kaksi riippuvuutta (kts. kuva 3.6) d1 = 1 (a:n kautta) ja d2 = 2 (d:n kautta) Silmukka voidaan suorittaa rinnakkain käyttäen DOACROSSrakennetta: DOACROSS i = 1,n S1: a(i) = b(i) + c(i) S2: d(i) = b(i-1) + c(i) syncronization d1 syncronization d2 S3: e(i) = a(i-1) + d(i-2) end DOACROSS

9 Jokainen iteraatio voidaan osoittaa eri prosessorille: synkronointilauseet varmistavat, että lause S3 suoritetaan vasta, kun riippuvuudet (kts. kuva 3.6) on huomioitu DOACROSS silmukoissa rinnakkaisuus saadaan hyödynnettyä niiden lauseiden kautta, jotka voidaan suorittaa yht aikaa Iteraatioiden välillä on kuitenkin osoittain määrätty suoritusjärjestys, koska yhden iteraation täytyy odottaa joidenkin käskyjen suoritusta toisessa iteraatiossa

10 Kuva 3.6 yksi prosessori suorittaa yhden iteraation: lauseet S1-3 suoritetaan peräkkäin d1 d2 synkronointi: d1, d2

11 Silmukan lauseiden uudelleen järjestely on usein tarpeen rinnakkaisuuden kasvattamiseksi Esim: do i = 1,n S1: b(i) = a(i-2) + 2 S2: a(i) = d(i) + c(i) S3: c(i) = a(i-1) + 3 Silmukalla on riippuvuus d1 lauseiden S2 ja S1 välillä (a:n kautta) ja d2 lauseiden S2 ja S3 välillä (myös a:n kautta) Silmukka ei sovi DOACROSS rakenteen kanssa käytettäväksi, koska toinen riippuvuuksista on ylempään lauseeseen, joka estää kahden iteraation päässä olevan lauseen S1 laskenna aloittamisen, ennen S2:n laskennan päättymistä Yksinkertaisesti vaihtamalla S2:n ja S1:n paikkoja saadaan esiin rinnakkaisuutta jota voidaan hyödyntää: riippuvuudet ovat nyt alempiin lauseisiin

12 doacross i = i,n S2: a(i) = d(i) + c(i) synchronization d1 synchronization d2 S1: b(i) = a(i-2) + 2 S3: c(i) = a(i-1) + 3 across Jokaisesta silmukan iteraatiosta tulee nyt oma prosessi omalle prosessorille kasvaneen rinnakkaisuuden ansiosta (kts. kuva 3.7 ja 3.8)

13 Kuva 3.7

14 Kuva 3.8 S prosessori lauseen id

15 Esimerkki DOACROSS rakenteesta sisäkkäisten silmukoiden tapauksessa: do i = 1,n do j = 1,n S1: a(i,j) = b(i,j-1) + 2 S2: b(i,j) = a(i,j) + b(i-1, j-1) Silmukalla on kolme riippuvuutta ja riippuvuusmatriisi on: D 0 = a b b 1 1 i j

16 Tämä ohjelma voidaan suorittaa käyttämällä DOACROSS-rakennetta rinnakkaistamalla uloin silmukka: doacross i = 1,n do j = 1,n S1: a(i,j) = b(i,j-1) + 2 S2: b(i,j) = a(i,j) + b(i-1,j-1) across Kuva 3.9 esittää aika-avaruusdiagrammia silmukalle: jokainen rivi edustaa yhden prosessorin prosessia Yksi synkronointi tapahtuma tarvitaan, koska riippuvuudella d3 on i-komponentti, joka aiheuttaa riippuvuuden eri i:n iteraatioiden välille: sykronointitapahtuma varmistaa, että yksi prosessori on evaluoinut lauseen S2 ennen kuin tämän lauseen tiedosta riippuvainen prosessori voi aloittaa oman S2 lauseen evaluoinnin Jos kaikkien prosessoreiden laskenta aloitetaan samalla ajan hetkellä, synkronointi tapahtuu välillisesti laskennan ajallisen etenemisen kautta (kts. kuva 3.9) ilman tarvetta suoraan (eksplisiittiseen) synkronointiin (ei tarvita synchronization lausetta) Jos eri prosessorit toimivat täysin asynkronisesti ja eivät olisi homogeenisiä, lauseen S2 suoritusta pitäisi edeltää lause: synchronization d3, jolla varmistettaisiin, että riippuvuusvektorin d3 päässä oleva prosessori, ei aloita S2:n evaluointia, ennenkuin b:n arvo on laskettu riippuvuuden alkupäässä

17 Kuva 3.9 (i,j) silmukan runko: lauseet 1 ja 2

18 Liukuhihnoitusmuunnos hajauttaa silmukan itsenäiset osat eri prosessorien laskettavaksi ja ketjuttaa iteraatiot toisiinsa ajan suhteen Esim. do i = 1,n S1;S2;...;Sm Oletetaan, että riippuvuusgraafi tälle silmukalle on kuvan 3.10 kaltainen, eli kaikilla lauseilla on riippuvuus edellisen iteraation vastaavaan lauseeseen Liukuhihnoittamalla lauseiden suoritukset (kts. kuva 3.11 m = 3 ja N = 4) voidaan itsenäiset lausekkeet evaluoida eri prosessoreissa samanaikaisesti käyttämällä m kpl prosessoreita Tähän siis päästää hajauttamalla rakenteellisesti itsenäisesti suoritettavat lauseet eri prosessoreille ja liukuhihnoittamalla iteraatiot ajassa: silmukan suoritusaika on n (jokaisella aikayksiköllä lasketaan yksi iteraatio, jonka suoritus koostuu m:stä lauseesta tai vaiheesta )

19 Kuva 3.10: riippuvuudet esimerkissä 3.10

20 Edellisen esimerkin aika-avaruusdisgrammi käytettäessä DOACROSS muunnosta on esitetty kuvassa 3.11b Silmukan lauseet suoritetaan peräkkäin n:ssä prosessorissa Laskenta-aika tässä tapauksessa on n + m -1 Jos n on pieni ja m suuri liukuhihnoitus on merkittävästi nopeampi tapa kuin DOACROSS: tässä esimerkissä liukuhihnoitus ei myöskään vaadi prosessoreiden välistä kommunikointia

21 Kuva 3.11 riippuvuudet käytettäessä DOACROSS-muunnosta riippuvuudet käytettäessä liukuhihnoitusmuunnosta

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 3 521475S Rinnakkaiset Numeeriset Algoritmit Silmukattomat algoritmit Eivät sisällä silmukka lauseita kuten DO,FOR tai WHILE Nopea suorittaa Yleisimmässä muodossa koostuu peräkkäisistä

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 4 521475S Rinnakkaiset ei-numeeriset algoritmit: transitiivisulkeuma (transitive closure) Oletetaan suunnattu graafi G = (V,E) ja halutaan tietää onko olemassa kahta pistettä

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 2 521475S Tietokonealgoritmien rinnakkaisuuden analysointi Algoritmi on proseduuri, joka koostuu äärellisestä joukosta yksiselitteisiä sääntöjä jotka muodostavat operaatiosekvenssin,

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 6 521475S Silmukkamuunnokset Silmukkamuunnoksilla silmukat muunnetaan joihinkin edellä esitettyihin rinnakkaismuotoihin Jakson kutistaminen (cycle shrinking) tämä muunnos soveltuu

Lisätiedot

Rinnakkaisuuden hyväksikäyttö peleissä. Paula Kemppi

Rinnakkaisuuden hyväksikäyttö peleissä. Paula Kemppi Rinnakkaisuuden hyväksikäyttö peleissä Paula Kemppi 24.4.2008 Esityksen rakenne Johdantoa Rinnakkaisuus Pelimoottorien rinnakkaisuuden mallit Funktionaalisen rinnakkaisuuden malli Rinnakkaisen tiedon malli

Lisätiedot

Numeriikan kirjastoja

Numeriikan kirjastoja Numeriikan kirjastoja + Säästää aikaa, hikeä ja kyyneleitä + Aliohjelmat testattuja ja luotettavia + Tehokkuus optimoitu - Ei aina sovellu kovin hyvin omaan tehtävään - Kaupallisista kirjastoista ei saa

Lisätiedot

Oppimistavoitteet kurssilla Rinnakkaisohjelmointi

Oppimistavoitteet kurssilla Rinnakkaisohjelmointi 17.5.2006 1/5 Oppimistavoitteet kurssilla Rinnakkaisohjelmointi Rinnakkaisuus ja rinnakkaisuuden soveltaminen tietojenkäsittelyjärjestelmissä Kurssin Tietokoneen toiminta perusteella ymmärtää, miten ohjelman

Lisätiedot

Rinnakkaisuus. parallel tietokoneissa rinnakkaisia laskentayksiköitä concurrent asioita tapahtuu yhtaikaa. TTY Ohjelmistotekniikka

Rinnakkaisuus. parallel tietokoneissa rinnakkaisia laskentayksiköitä concurrent asioita tapahtuu yhtaikaa. TTY Ohjelmistotekniikka Rinnakkaisuus parallel tietokoneissa rinnakkaisia laskentayksiköitä concurrent asioita tapahtuu yhtaikaa Rinnakkaisuuden etuja: laskennan nopeutuminen (sarjoittuvat operaatiojonot) ilmaisuvoima (ongelman

Lisätiedot

Concurrency - Rinnakkaisuus. Group: 9 Joni Laine Juho Vähätalo

Concurrency - Rinnakkaisuus. Group: 9 Joni Laine Juho Vähätalo Concurrency - Rinnakkaisuus Group: 9 Joni Laine Juho Vähätalo Sisällysluettelo 1. Johdanto... 3 2. C++ thread... 4 3. Python multiprocessing... 6 4. Java ExecutorService... 8 5. Yhteenveto... 9 6. Lähteet...

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

Käyttöjärjestelmät: poissulkeminen ja synkronointi

Käyttöjärjestelmät: poissulkeminen ja synkronointi Käyttöjärjestelmät: poissulkeminen ja synkronointi Teemu Saarelainen Tietotekniikka teemu.saarelainen@kyamk.fi Lähteet Stallings, W. Operating Systems Haikala, Järvinen, Käyttöjärjestelmät Eri Web-lähteet

Lisätiedot

Tutoriaaliläsnäoloista

Tutoriaaliläsnäoloista Tutoriaaliläsnäoloista Tutoriaaliläsnäolokierroksella voi nyt täyttää anomuksen läsnäolon merkitsemisestä Esim. tagi ei toiminut, korvavaltimon leikkaus, yms. Hyväksyn näitä omaa harkintaa käyttäen Tarkoitus

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 11: Rinnakkaisuus Riku Saikkonen (osa kalvoista on suoraan ei-laajan kurssin luennoista) 25. 4. 2012 Sisältö 1 Rinnakkaisuusmalleja: säie ja prosessi 2

Lisätiedot

Alkuarvot ja tyyppimuunnokset (1/5) Alkuarvot ja tyyppimuunnokset (2/5) Alkuarvot ja tyyppimuunnokset (3/5)

Alkuarvot ja tyyppimuunnokset (1/5) Alkuarvot ja tyyppimuunnokset (2/5) Alkuarvot ja tyyppimuunnokset (3/5) Alkuarvot ja tyyppimuunnokset (1/5) Aiemmin olemme jo antaneet muuttujille alkuarvoja, esimerkiksi: int luku = 123; Alkuarvon on oltava muuttujan tietotyypin mukainen, esimerkiksi int-muuttujilla kokonaisluku,

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

5. Luento: Rinnakkaisuus ja reaaliaika. Tommi Mikkonen, tommi.mikkonen@tut.fi

5. Luento: Rinnakkaisuus ja reaaliaika. Tommi Mikkonen, tommi.mikkonen@tut.fi 5. Luento: Rinnakkaisuus ja reaaliaika Tommi Mikkonen, tommi.mikkonen@tut.fi Agenda Perusongelmat Jako prosesseihin Reaaliaika Rinnakkaisuus Rinnakkaisuus tarkoittaa tässä yhteydessä useamman kuin yhden

Lisätiedot

Ehto- ja toistolauseet

Ehto- ja toistolauseet Ehto- ja toistolauseet 1 Ehto- ja toistolauseet Uutena asiana opetellaan ohjelmointilauseet / rakenteet, jotka mahdollistavat: Päätösten tekemisen ohjelman suorituksen aikana (esim. kyllä/ei) Samoja lauseiden

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys

Lisätiedot

2 Konekieli, aliohjelmat, keskeytykset

2 Konekieli, aliohjelmat, keskeytykset ITK145 Käyttöjärjestelmät, kesä 2005 Tenttitärppejä Tässä on lueteltu suurin piirtein kaikki vuosina 2003-2005 kurssin tenteissä kysytyt kysymykset, ja mukana on myös muutama uusi. Jokaisessa kysymyksessä

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 4 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 4 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 4 vastaukset Harjoituksen aiheena ovat imperatiivisten kielten lauseisiin, lausekkeisiin ja aliohjelmiin liittyvät kysymykset. Tehtävä 1. Mitä

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä Sisällys 11. Javan toistorakenteet Laskuri- ja lippumuuttujat.. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin lopettaminen break-lauseella.

Lisätiedot

Stabilointi. arvosana. arvostelija. Marja Hassinen

Stabilointi. arvosana. arvostelija. Marja Hassinen hyväksymispäivä arvosana arvostelija Stabilointi Marja Hassinen Helsinki 28.10.2007 Hajautetut algoritmit -seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö 1 1 Johdanto 1 2 Resynkroninen

Lisätiedot

Jaetun muistin muuntaminen viestin välitykseksi. 15. lokakuuta 2007

Jaetun muistin muuntaminen viestin välitykseksi. 15. lokakuuta 2007 Jaetun muistin muuntaminen viestin välitykseksi Otto Räsänen 15. lokakuuta 2007 1 Motivaatio 2 Valtuuden välitys Peruskäsitteitä 3 Kolme algoritmia Valtuuden välitys käyttäen laskuria ilman ylärajaa Valtuuden

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten,

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, että se pystyy suorittamaan kaikki mahdolliset algoritmit?

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

Ongelma(t): Miten mikro-ohjelmoitavaa tietokonetta voisi ohjelmoida kirjoittamatta binääristä (mikro)koodia? Voisiko samalla algoritmin esitystavalla

Ongelma(t): Miten mikro-ohjelmoitavaa tietokonetta voisi ohjelmoida kirjoittamatta binääristä (mikro)koodia? Voisiko samalla algoritmin esitystavalla Ongelma(t): Miten mikro-ohjelmoitavaa tietokonetta voisi ohjelmoida kirjoittamatta binääristä (mikro)koodia? Voisiko samalla algoritmin esitystavalla ohjelmoida useita komponenteiltaan ja rakenteeltaan

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Kombinatorisen logiikan laitteet

Kombinatorisen logiikan laitteet Kombinatorisen logiikan laitteet Kombinatorinen logiikka tarkoittaa logiikkaa, jossa signaali kulkee suoraan sisääntuloista ulostuloon Sekventiaalisessa logiikassa myös aiemmat syötteet vaikuttavat ulostuloon

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

4. Luento: Prosessit ja säikeets. Tommi Mikkonen, tommi.mikkonen@tut.fi

4. Luento: Prosessit ja säikeets. Tommi Mikkonen, tommi.mikkonen@tut.fi 4. Luento: Prosessit ja säikeets Tommi Mikkonen, tommi.mikkonen@tut.fi Agenda Prosessi Säikeet Keskeytykset Keskeytyskäsittely Käyttöjärjestelmäkutsut Prosessielementti Prosessin hallinta Suunnittelunäkökohtia

Lisätiedot

Intel Threading Building Blocks

Intel Threading Building Blocks Intel Threading Building Blocks Markku Vajaranta Esko Pekkarinen TBB Pähkinänkuoressa C++ luokkamallinen rinnakkaisuus Abstrahoi rinnakkaisuutta korkean tason tehtävät (tasks) ja niiden skedulointi suuri

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

12. Javan toistorakenteet 12.1

12. Javan toistorakenteet 12.1 12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu

Lisätiedot

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Rinnakkaisuus. Tarkastelemme, miten algoritmien suoritusta voi nopeuttaa käyttämällä useaa laskentayksikköä samanaikaisesti.

Rinnakkaisuus. Tarkastelemme, miten algoritmien suoritusta voi nopeuttaa käyttämällä useaa laskentayksikköä samanaikaisesti. Rinnakkaisuus Tarkastelemme, miten algoritmien suoritusta voi nopeuttaa käyttämällä useaa laskentayksikköä samanaikaisesti. Miksi rinnakkaisuus on tärkeää? Millaisia nopeutuksia rinnakkaistamalla ylipäänsä

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

11. Javan toistorakenteet 11.1

11. Javan toistorakenteet 11.1 11. Javan toistorakenteet 11.1 Sisällys Laskuri- ja lippumuuttujat. Sisäkkäiset silmukat. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin

Lisätiedot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat. Operaatiot. Imperatiivinen laskenta. Muuttujat. Esimerkkejä: Operaattorit.

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat. Operaatiot. Imperatiivinen laskenta. Muuttujat. Esimerkkejä: Operaattorit. 3. Muuttujat ja operaatiot Sisällys Imperatiivinen laskenta. Muuttujat. Nimi ja arvo. Muuttujan nimeäminen. Muuttujan tyyppi.. Operandit. Arvon sijoitus muuttujaan. Aritmeettiset operaattorit. Arvojen

Lisätiedot

Sisällys. 3. Pseudokoodi. Johdanto. Johdanto. Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen.

Sisällys. 3. Pseudokoodi. Johdanto. Johdanto. Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Sisällys 3. Pseudokoodi Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet: Valinta if- ja if--rakenteilla. oisto while-, do-while- ja for-rakenteilla. 3.1 3.2 Johdanto

Lisätiedot

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op Assembly ja konekieli Tietokoneen ja ohjelmiston rakenne Loogisilla piireillä ja komponenteilla rakennetaan prosessori ja muistit Prosessorin rakenne

Lisätiedot

3. Muuttujat ja operaatiot 3.1

3. Muuttujat ja operaatiot 3.1 3. Muuttujat ja operaatiot 3.1 Sisällys Imperatiivinen laskenta. Muuttujat. Nimi ja arvo. Muuttujan nimeäminen. Muuttujan tyyppi. Operaattorit. Operandit. Arvon sijoitus muuttujaan. Aritmeettiset operaattorit.

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2

Lisätiedot

ADA. Ohjelmointikieli. Ryhmä 5 Henna Olli, Päivi Hietanen

ADA. Ohjelmointikieli. Ryhmä 5 Henna Olli, Päivi Hietanen ADA Ohjelmointikieli Ryhmä 5 Henna Olli, Päivi Hietanen 1 JOHDANTO Ada on käännettävä ohjelmointikieli, joka kehitettiin vähentämään sulautettujen ja reaaliaikaisten järjestelmien käyttökustannuksia. Kieli

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 06.09.2005 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014 18. syyskuuta 2014 IDL - proseduurit Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

IDL - proseduurit. ATK tähtitieteessä. IDL - proseduurit

IDL - proseduurit. ATK tähtitieteessä. IDL - proseduurit IDL - proseduurit 25. huhtikuuta 2017 Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

OHJ-4301 Sulautettu Ohjelmointi

OHJ-4301 Sulautettu Ohjelmointi OHJ-4301 Sulautettu Ohjelmointi (http://www.cs.tut.fi/~sulo/) 5op, to 12-14, TB 109 Arto Salminen, arto.salminen@tut.fi Läpäisyvaatimukset Hyväksytysti suoritetut: Tentti Harjoitustyöt Harjoitustyöt 3

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 19: Rinnakkaisuus Riku Saikkonen (merkityt ei-laajan kurssin kalvot: Otto Seppälä) 24. 3. 2011 Sisältö 1 Säikeet 2 Lukot 3 Monitorit 4 Muuta säikeisiin

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n. Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin.

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin. 2. Ohjausrakenteet Ohjausrakenteiden avulla ohjataan ohjelman suoritusta. peräkkäisyys valinta toisto Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet

Lisätiedot

CUDA. Moniydinohjelmointi 17.4.2012 Mikko Honkonen

CUDA. Moniydinohjelmointi 17.4.2012 Mikko Honkonen CUDA Moniydinohjelmointi 17.4.2012 Mikko Honkonen Yleisesti Compute Unified Device Architecture Ideana GPGPU eli grafiikkaprosessorin käyttö yleiseen laskentaan. Nvidian täysin suljetusti kehittämä. Vuoden

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Ongelma(t): Miten tietokoneen käyttöjärjestelmä toimii sisäisesti, jotta resurssit saadaan tehokkaaseen käyttöön?

Ongelma(t): Miten tietokoneen käyttöjärjestelmä toimii sisäisesti, jotta resurssit saadaan tehokkaaseen käyttöön? Ongelma(t): Miten tietokoneen käyttöjärjestelmä toimii sisäisesti, jotta resurssit saadaan tehokkaaseen käyttöön? 2013-2014 Lasse Lensu 2 Systeemiohjelmat ovat tietokoneen laitteistoa lähellä olevia ohjelmia,

Lisätiedot

Palvelut. Sulautetut järjestelmät Luku 2 Sivu 1 (??) Sulautetut käyttöjärjestelmät

Palvelut. Sulautetut järjestelmät Luku 2 Sivu 1 (??) Sulautetut käyttöjärjestelmät Sulautetut järjestelmät Luku 2 Sivu 1 (??) Palvelut Käyttöjärjestelmän tehtävänä on tarjota ohjelmoijalla erilaisia palveluita Tyypillisin palvelu, jota sulautetut käyttöjärjestelmät tarjoavat on prosessien

Lisätiedot

Kaikkien paikallisten ääriarvojen haku

Kaikkien paikallisten ääriarvojen haku Kaikkien paikallisten ääriarvojen haku 30.4.2017 Heikki Apiola Tiedosto: opi_minimointiliven.mlx, opi_minimointiliven.m Funktio: lok_min.m (help lok_min) Lisää esimerkkejä: ex_lok_min.m Abstrakti Lähdetään

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat Sisällys 12. Javan toistorakenteet Ylstä toistorakentsta. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirhtä. Silmukan rajat asetettu kierroksen

Lisätiedot

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op Assembly ja konekieli Tietokoneen ja ohjelmiston rakenne Loogisilla piireillä ja komponenteilla rakennetaan prosessori ja muistit Prosessorin rakenne

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

ImageRecognition toteutus

ImageRecognition toteutus ImageRecognition toteutus Simo Korkolainen 27 kesäkuuta 2016 Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla Neuroverkon opetuksessa

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 11.08.2010 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.

Lisätiedot

Luento 5 Yhteisvikojen analyysi PSA:n sovelluksia

Luento 5 Yhteisvikojen analyysi PSA:n sovelluksia alto-yliopiston perustieteiden korkeakoulu Luento 5 Yhteisvikojen analyysi S:n sovelluksia hti Salo Systeemianalyysin laboratorio alto-yliopiston perustieteiden korkeakoulu L 11100, 00076 alto ahti.salo@aalto.fi

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

HELIA 1 (15) Outi Virkki Tietokantasuunnittelu 13.11.2000

HELIA 1 (15) Outi Virkki Tietokantasuunnittelu 13.11.2000 HELIA 1 (15) Luento 2.7 Toiminnallisuutta tietokantaan... 2 Deklaratiivinen eheysvalvonta... 2 Proseduraalinen eheysvalvonta... 3 Eheysvalvonnan suunnittelusta... 4 Sääntöjen määrittely... 4 Toteutusvaihtoehdot...

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot