Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo

Koko: px
Aloita esitys sivulta:

Download "Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012"

Transkriptio

1 Puheentutkimuksen tilastoanalyysin perusteet 8. luento Pertti Palo

2 Käytännön asioita Viimeisen seminaarin siirto: > Miten seminaarin luentokuulustelun voi korvata?

3 Harjoitustöiden arvosanat Oletusarvosana on 3. Sitä muutetaan seuraavin perustein: Oppiminen ja osaamisen taso näkyy: Perustelut: Mielenkiintoisuus eli hyvin motivoitu: Selkeys, järjestelmällisyys:

4 Lisäkriteerit Hyväksyttävältä työltä vaaditaan lisäksi, että: Analyysi on teknisesti ok. Työnjako ja ajankäyttö on raportoitu. Käytetyn ajan raportoinnin ei tarvitse olla orjallisen tarkka. Arvio kunkin ryhmän jäsenen tekemistä tunneista riittää. Lisäksi voi kertoa, jos joku teki jollain lailla merkittävemmän osan työstä ja sen pitäisikö tämän vaikuttaa arvosanoihin.

5 Seminaari Kullakin ryhmällä yksi esitelmä ja yksi posteri. Seminaarissa esitelmät 4*15 min ja posterit yht. 20 min. Kummallakin kerralla 10 min luentokuulustelu.

6 2. harjoitustyön datan esittely Katsotaan R:llä dataa...

7 5min happipaussi

8 Mikä on ANOVA ja mitä sillä tehdään? ANOVA on lyhenne sanoista ANalysis Of VAriance. Siis suomeksi varianssi- tai vaihteluanalyysi. Yksinkertaisimmillaan se on tilastollinen testi, joka yleistää odotusarvojen vertaamisen useammalle kuin kahdelle ryhmälle. Tämä on myös sen yleisin käyttötarkoitus.

9 No, jos se on testi, miten se tehdään? Yksisuuntainen varianssianalyysi: Taustaoletukset: (Seuraava koskee useita/tyypillisiä ANOVA-malleja, mutta ei kaikkia.) Kerätään otos joka luokittuu kolmeen tai useampaan luokkaan. Verrattavat ryhmät/luokat ovat riippumattomia Normaalisuus - residuaalit ovat normaalijakautuneita Varianssien homogeenisuus eli homoskedastisuus - sama varianssi eri ryhmissä.

10 No, jos se on testi, miten se tehdään? Yksisuuntainen varianssianalyysi: Taustaoletukset: (Seuraava koskee useita/tyypillisiä ANOVA-malleja, mutta ei kaikkia.) Kerätään otos joka luokittuu kolmeen tai useampaan luokkaan. Verrattavat ryhmät/luokat ovat riippumattomia Normaalisuus - residuaalit ovat normaalijakautuneita Varianssien homogeenisuus eli homoskedastisuus - sama varianssi eri ryhmissä. Hypoteesit: H 0 : Luokkien odotusarvot ovat yhtä suuret eli µ 1 = µ 2 =... = µ n. H 1 : Jonkin luokan odotusarvo on erisuuri kuin muiden.

11 Entäs jos data ei ole normaalijakautunutta? Kruskal-Wallis -testi: Taustaoletukset: Kerätään otos joka luokittuu kolmeen tai useampaan luokkaan. Verrattavat ryhmät/luokat ovat riippumattomia Varianssien homogeenisuus eli homoskedastisuus - sama varianssi eri ryhmissä.

12 Entäs jos data ei ole normaalijakautunutta? Kruskal-Wallis -testi: Taustaoletukset: Kerätään otos joka luokittuu kolmeen tai useampaan luokkaan. Verrattavat ryhmät/luokat ovat riippumattomia Varianssien homogeenisuus eli homoskedastisuus - sama varianssi eri ryhmissä. Hypoteesit: H 0 : Luokkien mediaanit ovat yhtä suuret. H 1 : Jonkin luokan mediaani on eri suuri kuin muiden.

13 ANOVA-esimerkki, osa I Esimerkki R:llä...

14 ANOVA-esimerkki, osa I Esimerkki R:llä... > aov ( du1~tcond, d u r a t i o n _ d a t a _ v a i n i o) >tavutyypin_ja_du1n_anova > summary ( tavutyypin_ja_ du1n_ anova ) Df Sum Sq Mean Sq F v a l u e Pr(>F ) tcond < 2. 2 e 16 R e s i d u a l s S i g n i f. c o d e s :

15 ANOVA-esimerkki, osa II > summary ( t a v u t y y p i n _ j a _ d u 1 n _ l i n e a a r i m a l l i ) C a l l : lm ( f o r m u l a = du1 ~ tcond, data = d u r a t i o n _ d a t a _ v a i n i o ) R e s i d u a l s : Min 1Q Median 3Q Max C o e f f i c i e n t s : E s t i m a t e Std. E r r o r t v a l u e Pr ( > t ) ( I n t e r c e p t ) < 2e 16 t condcv t c o n d c v c < 2e 16 t c o n d c v v < 2e 16 tcondvbx e 09 tcondvby < 2e 16 S i g n i f. c o d e s : R e s i d u a l s t a n d a r d e r r o r : on 3294 d e g r e e s o f freedom M u l t i p l e R s q u a r e d : , A d j u s t e d R s q u a r e d : F s t a t i s t i c : 1584 on 5 and 3294 DF, p v a l u e : < 2. 2 e 16

16 Mikä kaikki voi olla jännää? Yksisuuntainen varianssianalyysi: Onko eri ryhmien odotusarvoissa eroa? Kaksi(- tai useampi )suuntainen varianssianalyysi: Sama kuin yksi suuntainen, mutta luokitteluja on kaksi tai enemmän. Koeasetelmat, joissa toistetaan sama koe samoilla. koehenkilöillä tai mittauskohteilla useita kertoja eri aikoina. Koeasetelmat, joissa mitattavia muuttujia (selitettäviä muuttujia, tulosmuuttujia) on enemmän kuin yksi. Koeasetelmat, joissa on joko etukäteen määrätyt luokat (kokeen tekijä tekee käsittelyt ) tai joissa luokat määräytyvät satunnaisesti. Koeasetelmat, joissa on sekä määrättyjä että satunnaisia luokkia (kts. Baayenin viimeinen luku).... ja paljon muuta.

17 Luentokuulustelu

18 Luentokuulustelu 1. Oliko ensimmäisen tavun riimin pituuden odotusarvo sama kaikille tavutyypeille? 2. Anna esimerkki sinua kiinnostavasta ongelmasta, jonka tutkimiseen voisi käyttää ANOVAa?

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa

Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa Martti Vainio, Juhani Järvikivi & Stefan Werner Helsinki/Turku/Joensuu Fonetiikan päivät 2004, Oulu 27.-28.8.2004

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

TESTINVALINTATEHTÄVIEN VASTAUKSET

TESTINVALINTATEHTÄVIEN VASTAUKSET TESTINVALINTATEHTÄVIEN VASTAUKSET Vastaukset on merkitty keltaisella, muuttujien mittaustasot muuttujan kuvauksen perässä ja muu osa vastauksesta kysymyksen perässä. Tehtävä 1. Talousmatematiikan kurssin

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Aki Taanila VARIANSSIANALYYSI

Aki Taanila VARIANSSIANALYYSI Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen

Lisätiedot

Terra Preta kasvatuskoe Pilkon pellolla 2012-2013

Terra Preta kasvatuskoe Pilkon pellolla 2012-2013 Terra Preta kasvatuskoe Pilkon pellolla 2012-2013 Karelia ammattikorkeakoulu Biotalouden keskus Simo Paukkunen Lokakuu 2013 Sisällys 1 Johdanto... 1 2 Aineisto ja menetelmät... 1 3 Tulokset... 6 3.1 Oraiden

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Yleisiä kommentteja kokeesta.

Yleisiä kommentteja kokeesta. Lukuvuoden fysiikan valtakunnallisen kokeen palaute.6. Palautteita yhteensä 454 oppilaan tuloksesta. Pistekeskiarvo 7,6 joka vastaa arvosanaa 6,5. Oppilaita per pistemäärä 5 5 5 5 4 6 8 4 6 8 4 6 8 4 6

Lisätiedot

Aki Taanila TILASTOLLINEN PÄÄTTELY

Aki Taanila TILASTOLLINEN PÄÄTTELY Aki Taanila TILASTOLLINEN PÄÄTTELY 17.6.2010 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 7 2.1 Normaalijakautuneisuuden testaaminen... 7 2.2 Keskiarvon luottamusväli...

Lisätiedot

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalyysi Bonferronin menetelmä, F-testi, Jäännösneliösumma, Kaksisuuntainen varianssianalyysi Kokonaiskeskiarvo,

Lisätiedot

TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA. Pentti Nieminen 03.11.2014

TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA. Pentti Nieminen 03.11.2014 TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA LUKIJAN NÄKÖKULMA 2 TAUSTAKYSYMYKSIÄ 3 Mitä tutkimusmenetelmiä ja taitoja opiskelijoille tulisi opettaa koulutuksen eri vaiheissa?

Lisätiedot

Vertailutestien tulosten tulkinta Mikä on hyvä tulos?

Vertailutestien tulosten tulkinta Mikä on hyvä tulos? Vertailutestien tulosten tulkinta Mikä on hyvä tulos? Pertti Virtala PANK-menetelmäpäivä 29.1.2015 Sisältö Mittaustarkkuuden käsitteitä Mittaustarkkuuden analysointi Stabiilius Kohdistuvuus Toistettavuus

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33. Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tilastollisen analyysin perusteet, kevät 2007 3. luento: Pari sanaa vielä hypoteesien formuloinneista Kai Virtanen Hypoteesien muodoista Luennolla nro. 2 muotoiltiin nollahypoteesi - H 0 : θ

Lisätiedot

Simulointi. Varianssinhallintaa Esimerkki

Simulointi. Varianssinhallintaa Esimerkki Simulointi Varianssinhallintaa Esimerkki M C Esimerkki Tarkastellaan lasersäteen sirontaa partikkelikerroksesta Jukka Räbinän pro gradu 2005 Tavoitteena simuloida sirontakuvion tunnuslukuja Monte Carlo

Lisätiedot

Muuttujien väliset riippuvuudet esimerkkejä

Muuttujien väliset riippuvuudet esimerkkejä Tarja Heikkilä Muuttujien väliset riippuvuudet esimerkkejä Sisältö MUUTTUJIEN VÄLISTEN YHTEYKSIEN TUTKIMINEN TILASTOLLINEN TESTAUS MERKITSEVYYSTASO MUUTTUJIEN VÄLISTEN YHTEYKSIEN TUTKIMINEN SPSS-OHJELMALLA

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua Havaintoaineiston perusteella näyttää ilmeiseltä, että alkuperäisen laastin sidoslujuus on suurempi. Ero sattumasta johtuvaa? Palataan tuonnempana. Tension bond strength data for Portland Cement formulation

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin

Lisätiedot

USEAN RYHMÄN VERTAILU

USEAN RYHMÄN VERTAILU 11.3.2015 USEAN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Usean ryhmän vertailu Potilasryhmä Ikäryhmä Koulutusaste Sairaala Siviilisääty Hoitomenetelmä

Lisätiedot

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON? SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10

Lisätiedot

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,

Lisätiedot

Tervetuloa opiskelemaan DIGITAALI- TEKNIIKKAA! Digitaalitekniikan matematiikka Luku 0 Sivu 1 (9)

Tervetuloa opiskelemaan DIGITAALI- TEKNIIKKAA! Digitaalitekniikan matematiikka Luku 0 Sivu 1 (9) Tervetuloa opiskelemaan DIGITAALI- TEKNIIKKAA! Digitaalitekniikan matematiikka Luku 0 Sivu 1 (9) Digitaalitekniikan matematiikka Luku 0 Sivu 2 (9) Yleistä opintojaksosta Laajuus 3 op = 80 h, kokonaan lukukauden

Lisätiedot

KAHDEN RYHMÄN VERTAILU

KAHDEN RYHMÄN VERTAILU 10.3.2015 KAHDEN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Luennon sisältö Luokitellut muuttujat Ristiintaulukko, prosentit Khiin neliötesti

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Empiirinen projekti. Olli-Matti Laine Kauppatieteet

Empiirinen projekti. Olli-Matti Laine Kauppatieteet Empiirinen projekti Olli-Matti Laine Kauppatieteet 1 Contents 1. Johdanto... 3 2. Kuvaileva osa... 4 3. Analyysiosa... 17 4. Yhteenveto... 35 2 1. Johdanto Tutkin projektissa tilastollisin menetelmin kansantaloudellisia

Lisätiedot

Sosiaalisten verkostojen data

Sosiaalisten verkostojen data Sosiaalisten verkostojen data Hypermedian jatko-opintoseminaari 2008-09 2. luento - 17.10.2008 Antti Kortemaa, TTY/Hlab Wasserman, S. & Faust, K.: Social Network Analysis. Methods and Applications. 1 Mitä

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

Puheentutkimuksen tilastoanalyysin perusteet

Puheentutkimuksen tilastoanalyysin perusteet Puheentutkimuksen tilastoanalyysin perusteet Pertti Palo 2.11.2011 Kuka? Tekn.Lis. Pertti Palo pertti.palo (ät) helsinki.fi vastaanotto sopimuksen mukaan Todennäköisyyslaskua keväästä -99 Puhetieteiden

Lisätiedot

Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan

Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan ammattiopiston viimeisenä keväänä vahvistaa AMK:uun pyrkivien taitoja pääsykoetta varten saada jo etukäteen 5 op:n suoritus valinnaisiin Tulos:

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Hierarkkiset koeasetelmat. Heliövaara 1

Hierarkkiset koeasetelmat. Heliövaara 1 Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän

Lisätiedot

Tutkimuksen suunnittelu / tilastolliset menetelmät. Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011

Tutkimuksen suunnittelu / tilastolliset menetelmät. Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011 Tutkimuksen suunnittelu / tilastolliset menetelmät Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011 Kvantitatiivisen tutkimuksen vaiheet Suunnittelu Datan keruu Aineiston analysointi

Lisätiedot

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä:

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä: 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa

Lisätiedot

Aki Taanila TILASTOLLINEN PÄÄTTELY

Aki Taanila TILASTOLLINEN PÄÄTTELY Aki Taanila TILASTOLLINEN PÄÄTTELY 14.4.2012 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 7 2.1 Normaalijakautuneisuuden testaaminen... 7 2.2 Keskiarvon luottamusväli...

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen

Lisätiedot

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ] Johdatus tekoälyyn Luento 6.10.2011: Koneoppiminen Patrik Hoyer [ Kysykää ja kommentoikaa luennon aikana! ] Koneoppiminen? Määritelmä: kone = tietokone, tietokoneohjelma oppiminen = ongelmanratkaisukyvyn

Lisätiedot

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

SEM1, työpaja 2 (12.10.2011)

SEM1, työpaja 2 (12.10.2011) SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):

Lisätiedot

Mat 2.4177 Operaatiotutkimuksen projektityöseminaari

Mat 2.4177 Operaatiotutkimuksen projektityöseminaari Mat 2.4177 Operaatiotutkimuksen projektityöseminaari Kemira GrowHow: Paikallisen vaihtelun korjaaminen kasvatuskokeiden tuloksissa 21.2.2008 Ilkka Anttila Mikael Bruun Antti Ritala Olli Rusanen Timo Tervola

Lisätiedot

SAS-ohjelmiston perusteet 2010

SAS-ohjelmiston perusteet 2010 SAS-ohjelmiston perusteet 2010 Luentorunko/päiväkirja Ari Virtanen 11.1.10 päivitetään luentojen edetessä Ilmoitusasioita Opintojakso suoritustapana on aktiivinen osallistuminen harjoituksiin ja harjoitustehtävien

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

Mittausjärjestelmän kalibrointi ja mittausepävarmuus

Mittausjärjestelmän kalibrointi ja mittausepävarmuus Mittausjärjestelmän kalibrointi ja mittausepävarmuus Kalibrointi kalibroinnin merkitys kansainvälinen ja kansallinen mittanormaalijärjestelmä kalibroinnin määritelmä mittausjärjestelmän kalibrointivaihtoehdot

Lisätiedot

OHJ-4301 Sulautettu Ohjelmointi

OHJ-4301 Sulautettu Ohjelmointi OHJ-4301 Sulautettu Ohjelmointi (http://www.cs.tut.fi/~sulo/) 5op, to 12-14, TB 109 Arto Salminen, arto.salminen@tut.fi Läpäisyvaatimukset Hyväksytysti suoritetut: Tentti Harjoitustyöt Harjoitustyöt 3

Lisätiedot

Jäähdyttävän puhallussuihkun vaikutus työsuoriutumiseen ja viihtyvyyteen toimistotyössä laboratoriotutkimus

Jäähdyttävän puhallussuihkun vaikutus työsuoriutumiseen ja viihtyvyyteen toimistotyössä laboratoriotutkimus Jäähdyttävän puhallussuihkun vaikutus työsuoriutumiseen ja viihtyvyyteen toimistotyössä laboratoriotutkimus Sisäilmastoseminaari 11.3.15 Helsinki Henna Maula, TTL Hannu Koskela, TTL Johanna Varjo, TTL

Lisätiedot

Sisältö. Perusteiden Kertaus. Tilastollinen analyysi. Peruskäsitteitä. Peruskäsitteitä. Kvantitatiivinen metodologia verkossa

Sisältö. Perusteiden Kertaus. Tilastollinen analyysi. Peruskäsitteitä. Peruskäsitteitä. Kvantitatiivinen metodologia verkossa Sisältö Kvantitatiivinen metodologia verkossa Perusteiden Kertaus Pekka Rantanen Helsingin yliopisto Tilastollinen analyysi Tilastotieteen tavoitteet Kvantitatiivisen tutkimuksen peruskäsitteitä Tilastollisten

Lisätiedot

2 2 -faktorikokeen määritelmä

2 2 -faktorikokeen määritelmä TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tai useamman tekijän vaikutusta

Lisätiedot

T-61.281 Luonnollisen kielen tilastollinen käsittely

T-61.281 Luonnollisen kielen tilastollinen käsittely T-6.8 Luonnollisen kielen tilastollinen käsittely Ratkaisut. Ti 7..4, 8:5-: Palautellaan mieliin todennäköisyyslaskuja Versio.. Todennäköisyyksistä ensimmäinen P( sana=lyhenne sana=kolmikirjaiminen ) =.8

Lisätiedot

KESKI-SUOMEN RISTEILY 2. 3.10.2009

KESKI-SUOMEN RISTEILY 2. 3.10.2009 KESKI-SUOMEN RISTEILY 2. 3.10.2009 RISTEILYN ODOTUSARVO (VASTASIKO KESKI-SUOMI RISTEILY ODOTUKSIASI?) 1 % 11 % 30 % Huono (0 kpl) Välttävä (3 kpl) Tyydyttävä (28 kpl) Hyvä (140 kpl) Erinomainen (72 kpl)

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

A130A0760 Ekonomin viestintätaidot

A130A0760 Ekonomin viestintätaidot A130A0760 Ekonomin viestintätaidot Johdanto ja ohjeita kurssille Opettajat: Päivi Maijanen-Kyläheiko Heidi Parkkinen Lauri Haiko Mirka Rahman Päivän ohjelma 9.15 10.00 Esittäytyminen 10.00 10.45 Kurssin

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain

Lisätiedot

D B. Levykön rakenne. pyöriviä levyjä ura. lohko. Hakuvarsi. sektori. luku-/kirjoituspää

D B. Levykön rakenne. pyöriviä levyjä ura. lohko. Hakuvarsi. sektori. luku-/kirjoituspää Levyn rakenne Levykössä (disk drive) on useita samankeskisiä levyjä (disk) Levyissä on magneettinen pinta (disk surface) kummallakin puolella levyä Levyllä on osoitettavissa olevia uria (track), muutamasta

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

Vastaus Lukumäärä Prosentti 20% 40% 60% 80% 100%

Vastaus Lukumäärä Prosentti 20% 40% 60% 80% 100% Palaute Nyytin ja SPR:n Hengailuillasta 4.11.2011 Yhteenvetoraportti Osallistujia 31, joista 8 miestä. Palautteita 24 Sukupuoli Vastaus Lukumäärä Prosentti 20% 40% 60% 80% 100% 1. Nainen 16 66,67% 2. Mies

Lisätiedot

FÖRETAGARE I SAMARBETE YRITTÄJÄT YHTEISTYÖSSÄ. 22.3.2011 / Krista Gustafsson Oy Luotsaamo Ab Kimitoöns centrum 2010 Kemiönsaaren keskustat 2010

FÖRETAGARE I SAMARBETE YRITTÄJÄT YHTEISTYÖSSÄ. 22.3.2011 / Krista Gustafsson Oy Luotsaamo Ab Kimitoöns centrum 2010 Kemiönsaaren keskustat 2010 FÖRETAGARE I SAMARBETE YRITTÄJÄT YHTEISTYÖSSÄ 22.3.2011 / Krista Gustafsson Oy Luotsaamo Ab Kimitoöns centrum 2010 Kemiönsaaren keskustat 2010 Taustaa Kemiön keskustan yrittäjien parissa tehtiin analyysi

Lisätiedot

Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs)

Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

IBM SPSS Statistics 21 (= SPSS 21)

IBM SPSS Statistics 21 (= SPSS 21) Tarja Heikkilä IBM SPSS Statistics 21 (= SPSS 21) SPSS = Statistical Package for Social Sciences Ohjelman käynnistys Aloitusikkuna Päävalikot Työkalut Muuttujat (Variables) Tapaukset (Cases) Tyhjä datataulukko

Lisätiedot

AntiVirus koulunkäyntiä sairastapauksen sattuessa. Riia Palmqvist Heli Parhiala Helsingin yliopiston Viikin normaalikoulu

AntiVirus koulunkäyntiä sairastapauksen sattuessa. Riia Palmqvist Heli Parhiala Helsingin yliopiston Viikin normaalikoulu koulunkäyntiä sairastapauksen sattuessa Riia Palmqvist Heli Parhiala Käynnistyy koululla, kun OHR-ryhmä saa tiedon, että oppilas joutuu olemaan pitkään poissa sairauden vuoksi. Oppilaan ja huoltajien kanssa

Lisätiedot

LIITE 2. PERUSOPETUKSEN OPPIMISYMPÄRISTÖJEN NYKYTILANNE JA OPETTAJIEN VALMIUDET RAPORTTIIN LIITTYVIÄ TAULUKOITA JA KUVIOITA

LIITE 2. PERUSOPETUKSEN OPPIMISYMPÄRISTÖJEN NYKYTILANNE JA OPETTAJIEN VALMIUDET RAPORTTIIN LIITTYVIÄ TAULUKOITA JA KUVIOITA LIITE 2. PERUSOPETUKSEN OPPIMISYMPÄRISTÖJEN NYKYTILANNE JA OPETTAJIEN VALMIUDET RAPORTTIIN LIITTYVIÄ TAULUKOITA JA KUVIOITA Toukokuu 2016 Valtioneuvoston selvitysja tutkimustoiminnan julkaisusarja 18/2016

Lisätiedot

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

Johdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi. TKK (c) Ilkka Mellin (2005) 1 ohdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi TKK (c) Ilkka Mellin (2005) Kaksisuuntainen varianssianalyysi Varianssianalyysi: ohdanto Kaksisuuntainen varianssianalyysi ja sen suorittaminen

Lisätiedot

5 Osa 5: Ohjelmointikielen perusteita

5 Osa 5: Ohjelmointikielen perusteita 5 Osa 5: Ohjelmointikielen perusteita 5.1 Omat funktiot R on lausekekieli: Kaikki komennot kuten funktiokutsut ja sijoitusoperaatiot ovat lausekkeita. Lausekkeet palauttavat jonkin arvon. Lausekkeita voidaan

Lisätiedot

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011

Lisätiedot

PÖYTYÄN KUNTA, KYRÖN VANHA KOULU TILASTOVERTAILU DNA-ANALYYSEISTÄ

PÖYTYÄN KUNTA, KYRÖN VANHA KOULU TILASTOVERTAILU DNA-ANALYYSEISTÄ PÖYTYÄN KUNTA, KYRÖN VANHA KOULU TILASTOVERTAILU DNA-ANALYYSEISTÄ Projekti 1787715 23.1.2015 Sisällysluettelo 1. YHTEYSTIEDOT... 3 2. TILASTOVERTAILU... 4 2.1 Tilastoaineisto... 4 2.2 Käsitteitä... 4 2.3

Lisätiedot

815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 5 Vastaukset

815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 5 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 5 Vastaukset Harjoituksen aiheena ovat aliohjelmat ja abstraktit tietotyypit sekä olio-ohjelmointi. Tehtävät tehdään C-, C++- ja Java-kielillä.

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

Määrälliset tutkimusmenetelmät

Määrälliset tutkimusmenetelmät Määrälliset tutkimusmenetelmät I (4 op) Taina I. Lehtinen 09-191 28 307 PL 53 Fabianinkatu 32-00014 Helsingin yliopisto Taina.Lehtinen@Helsinki.FI 4. Tilastolliset testit Reliabiliteettikerroin Parametriset

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

Mittaaminen projektipäällikön ja prosessinkehittäjän työkaluna

Mittaaminen projektipäällikön ja prosessinkehittäjän työkaluna Mittaaminen projektipäällikön ja prosessinkehittäjän työkaluna Finesse-seminaari 22.03.00 Matias Vierimaa 1 Mittauksen lähtökohdat Mittauksen tulee palvella sekä organisaatiota että projekteja Organisaatiotasolla

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot