Salkin poliorokotekoe Ryhmän koko Sairastuvuus (per ) Hoitoryhmä Vertailuryhmä Ei saanut rokottaa

Koko: px
Aloita esitys sivulta:

Download "Salkin poliorokotekoe Ryhmän koko Sairastuvuus (per 100000) Hoitoryhmä 200000 28 Vertailuryhmä 200000 71 Ei saanut rokottaa 350000 46"

Transkriptio

1 TKK (c) Ilkka Mellin (2005) 1 suunnittelu: Johdanto Johdattelevia esimerkkejä suunnittelu ja tilastolliset mallit Johdanto TKK (c) Ilkka Mellin (2005) 2 suunnittelu: Johdanto Johdattelevia esimerkkejä >> Esimerkkejä Avainsanat Harha Hoitoryhmä Kaksoissokkokoe Kokeen kohteet Satunnaistaminen ryhmä TKK (c) Ilkka Mellin (2005) 3 TKK (c) Ilkka Mellin (2005) 4 Salkin koe 1/3 Salkin koe 2/3 Tri Salkin johdolla tehtiin USA:ssa 1954 hänen kehittämälleen poliorokotteelle kenttäkoe. Kokeen kohteet: Peruskoulujen 1., 2. ja 3. luokkien lapset. Kokeen suoritus: Lapset jaettiin arpomalla kahteen ryhmään. (i) Hoitoryhmälle annettiin rokotetta. (ii) ryhmälle annettiin plaseboa (lumetta). (iii) Sairastavuuksia (per ) hoito- ja vertailuryhmissä verrattiin toisiinsa. Salkin poliorokotekoe Ryhmän koko Sairastuvuus (per ) Hoitoryhmä ryhmä Ei saanut rokottaa Osaa lapsista ei saanut rokottaa. TKK (c) Ilkka Mellin (2005) 5 TKK (c) Ilkka Mellin (2005) 6

2 TKK (c) Ilkka Mellin (2005) 7 Salkin koe 3/3 NFIP-koe 1/3 Salkin koe oli satunnaistettu vertaileva kaksoissokkokoe: (i) Satunnaistus: Lapset jaettiin hoito- ja vertailuryhmään arpomalla. (ii) : Kokeen vasteena ollutta sairastavuutta (per ) hoito- ja vertailuryhmissä verrattiin toisiinsa. (iii) Kaksoisokkokoe: Kokeen tekijät ja kohteet eivät tienneet ennen seuranta-ajan päättymistä oliko kohde kuulunut hoito- vai vertailuryhmään. Tri Salkin kehittämälle poliorokotteelle tehtiin myös USA:n kansallisen lapsihalvaussäätiön (NFIP) järjestämä koe. Kokeen kohteet: Peruskoulujen 1., 2. ja 3. luokkien lapset. Kokeen suoritus: 2. luokan lapset pyrittiin rokottamaan, 1. ja 3. luokkien lapset muodostivat vertailuryhmän. (i) Hoitoryhmälle annettiin rokotetta. (ii) Sairastuvuuksia (per ) hoito- ja vertailuryhmissä verrattiin toisiinsa. TKK (c) Ilkka Mellin (2005) 8 NFIP-koe 2/3 NFIP-koe 3/3 NFIP:n poliorokotekoe Ryhmän koko Sairastuvuus (per ) Hoitoryhmä ryhmä Ei saanut rokottaa Osaa 2. luokan lapsista ei saanut rokottaa. TKK (c) Ilkka Mellin (2005) 9 Koska NFIP-kokeessa ei oltu käytetty satunnaistusta, tulokset olivat harhaisia. Tämä nähdään vertaamalla vertailuryhmien sairastuvuuksia Salkin kokeessa (71 per ) ja NFIP-kokeessa (54 per ). Syynä NFIP-kokeen harhaisuuteen oli se, että koe- ja vertailuryhmät eivät NFIP-kokeessa olleet samanlaisia: NFIP-kokeen vertailuryhmässä olivat mukana myös ne, joita ei olisi saanut rokottaa ja sairastuvuus polioon oli niiden 2. ja 3. luokkien lasten joukossa, jotka olisi saanut rokottaa suurempaa kuin niiden joukossa, joita ei olisi saanut rokottaa. Tämä johtui siitä, että lastensa rokotuksen kielsivät tavallisemmin alempien sosiaaliryhmien vanhemmat, joiden lapsissa oli varhaislapsuudessa kehittänyt immuniteetti poliota vastaan useammin kuin ylempien sosiaaliryhmien lapsissa. TKK (c) Ilkka Mellin (2005) 10 Vetolujuuskoe 1/4 Vetolujuuskoe 2/4 Tavoitteena on tutkia uudesta synteettisestä kuidusta tehdyn langan vetolujuutta (lb/in 2 ). Lankaan sekoitetaan aina puuvillaa ja jo ennestään tiedetään, että puuvillan määrä vaikuttaa langan vetolujuuteen. Tarkoituksena on selvittää vetolujuuden kannalta optimaalinen puuvillan määrä. Asian selvittämiseksi järjestetään koe, jossa puuvillan määrää langoissa vaihdellaan (5 painoprosenttia) ja vetolujuudet mitataan useasta eri lankanäytteestä (5 näytettä kutakin lankaa). Tensile strenght (lb/in 2 ) Obs Cotton weight % Mean Total TKK (c) Ilkka Mellin (2005) 11 TKK (c) Ilkka Mellin (2005) 12

3 TKK (c) Ilkka Mellin (2005) 13 Vetolujuuskoe 3/4 Vetolujuuskoe 4/4 Keskiarvoprofiili: TnslStrngth Means of TnslStrngth CttnWghtPrctg Kysymys 1: Eroavatko keskiarvoprofiililla kuvatut ryhmäkohtaiset (vetolujuuksien) keskiarvot tilastollisesti merkitsevästi toisistaan? Kysymys 2: Jos ryhmäkohtaiset (vetolujuuksien) keskiarvot eroavat toisistaan, mikä puuvillan määrä tuottaa optimaalisen vetolujuuden langalle? Kysymyksiin voidaan vastata soveltamalla aineistoon yksisuuntaista varianssianalyysia. TKK (c) Ilkka Mellin (2005) 14 Akun kesto 1/4 Akun kesto 2/4 Tavoitteena on tutkia eri materiaaleista valmistettujen akkujen kestoa (tunteina) eri lämpötiloissa. Tarkoituksena on selvittää lämpötilan suhteen optimaalinen materiaali. Asian selvittämiseksi järjestetään koe, jossa eri materiaaleista (3 materiaalia) valmistettujen akkujen kesto mitataan useassa eri lämpötilassa (3 lämpötilaa; F). Life (h) Temp ( F) Material TKK (c) Ilkka Mellin (2005) 15 TKK (c) Ilkka Mellin (2005) 16 Akun kesto 3/4 Akun kesto 4/4 Keskiarvoprofiili: BatteryLife Means of BatteryLife Temp Material Kysymys 1: Eroavatko keskiarvoprofiililla kuvatut ryhmäkohtaiset (kestoajan) keskiarvot tilastollisesti merkitsevästi toisistaan? Kysymys 2: Jos ryhmäkohtaiset (kestoaikojen) keskiarvot eroavat toisistaan, mikä materiaali toimii eri lämpötilat huomioiden optimaalisen keston akulle? Kysymyksiin voidaan vastata soveltamalla aineistoon kaksisuuntaista varianssianalyysia. TKK (c) Ilkka Mellin (2005) 17 TKK (c) Ilkka Mellin (2005) 18

4 TKK (c) Ilkka Mellin (2005) 19 suunnittelu: Johdanto Esimerkkejä >> Avainsanat Harha Hoitoryhmä Kaksoissokkokoe Kausaliteetti asetelma toisto Kokeen kohteet Kontrolli Käsittely Satunnaistaminen Satunnaisvaihtelu Sekoittava tekijä Systemaattiset erot Syy-yhteys ryhmä TKK (c) Ilkka Mellin (2005) 20 asetelmat Kokeellisessa tutkimuksessa tavoitteena on selvittää, millaisia vaikutuksia tutkimuksen kohteisiin kohdistetuilla erilaisilla käsittelyillä on kohteisiin. Käsittelyllä tarkoitetaan tutkimuksen kohteiden olosuhteiden aktiivista, suunnitelmallista ja järjestelmällistä muuttamista. Tiukasti ottaen vain kokeiden perusteella voidaan tehdä kausaalisia eli syy-yhteyksiä koskevia päätelmiä. Tutkimus perustuu suorien havaintojen tekemiseen, jos havaintojen kohteiden olosuhteisiin ei tutkimuksessa puututa. asetelmalla tarkoitetaan kokeen tekemiseen liittyviä periaatteita ja sääntöjä: (i) Mitä käsittelyitä kokeen kohteisiin sovelletaan? (ii) Miten kokeen kohteet valitaan? (iii) Mikä on tehtävien koetoistojen lukumäärä? TKK (c) Ilkka Mellin (2005) 21 TKK (c) Ilkka Mellin (2005) 22 Kontrolloidut kokeet Yksinkertainen kontrolloitu koe Kokeesta ei voida tehdä luotettavia johtopäätöksiä, ellei koe ole kontrolloitu: (i) tuloksiin vaikuttavien ulkopuolisten sekoittavien tekijöiden kontrolloimiseksi kokeessa on vertailtava vähintään kahden erilaisen käsittelyn vaikutuksia. (ii) Erilaisten käsittelyiden kohteiksi valittavien perusjoukon alkioiden välisten systemaattisten erojen kontrolloimiseksi käsittelyiden kohdistamisessa on käytettävä satunnaistusta. (iii) tuloksiin liittyvän satunnaisvaihtelun kontrolloimiseksi kokeessa on tehtävä riittävästi koetoistoja. Alla oleva kaavio kuvaa yksinkertaista kontrolloitua koetta: (1) Jaetaan kokeen kohteet satunnaisesti kahteen ryhmään. (2) Kohdistetaan ryhmiin erilaiset käsittelyt. (3) Vertaillaan käsittelyiden vaikutuksia. Satunnaistus Ryhmä 1 Ryhmä 2 Käsittely 1 Käsittely 2 TKK (c) Ilkka Mellin (2005) 23 TKK (c) Ilkka Mellin (2005) 24

5 TKK (c) Ilkka Mellin (2005) 25 Yksinkertainen kontrolloitu koe: Esimerkki Oletetaan, että haluamme tutkia vastakehitetyn lääkkeen tehoa tautiin, johon aikaisemmin ei ole ollut lääkettä, mutta josta osa potilaista saattaa parantua myös ilman hoitoa (vrt. rokotuskokeet edellä). Tällöin lääkkeen tehon selvittämiseksi voidaan järjestää kontrolloitu koe esimerkiksi seuraavalla tavalla: (1) Jaetaan riittävän suuri joukko potilaita satunnaisesti kahteen ryhmään. (2) Annetaan toiselle ryhmälle uutta lääkettä ja toiselle ryhmälle plaseboa eli lumelääkettä. (3) Vertaillaan parantuneiden suhteellisia osuuksia. Pohdi seuraavia kysymyksiä: Miksi potilaita pitää olla riittävästi? Miksi potilaat jaetaan ryhmiin satunnaisesti? Miksi toiselle ryhmälle annetaan plaseboa? Kommentteja 1/3 Jos koe on kontrolloitu eli kokeessa on käytetty suunnitelmallisesti ja järjestelmällisesti vertailua, satunnaistusta ja koetoistoja niin koetuloksien analysointi tilastotieteen keinoin on mahdollista. Jos koe on kontrolloitu, koetuloksiin liittyvät systemaattiset ja satunnaiset tekijät voidaan erottaa ja kuvata ja kuvauksen luotettavuus voidaan arvioida. Jos koe on kontrolloitu, käsittelyiden vaikutuksista kokeen kohteisiin voidaan tehdä luotettavia johtopäätöksiä. TKK (c) Ilkka Mellin (2005) 26 Kommentteja 2/3 Jos koe ei ole kontrolloitu eli kokeessa ei ole käytetty suunnitelmallisesti ja järjestelmällisesti vertailua, satunnaistusta ja koetoistoja niin koetuloksien analysointi tilastotieteen keinoin ei ole mahdollista. Jos koe ei ole kontrolloitu, koetuloksiin liittyviä systemaattisia ja satunnaisia tekijöitä ei voida erottaa ja kuvata ja kuvauksen luotettavuutta ei voida arvioida. Jos koe ei ole kontrolloitu, käsittelyiden vaikutuksista kokeen kohteisiin ei voida tehdä luotettavia johtopäätöksiä. Kommentteja 3/3 Jos koe ei ole kontrolloitu, koeasetelma saattaa systemaattisesti suosia joitakin tulosvaihtoehtoja. Jos koeasetelma suosii systemaattisesti joitakin tulosvaihtoehtoja, asetelmaa sanotaan harhaiseksi. Harhaisten koeasetelmien perusteella ei voida tehdä luotettavia johtopäätöksiä. TKK (c) Ilkka Mellin (2005) 27 TKK (c) Ilkka Mellin (2005) 28 Kontrolloidut kokeet ja satunnaistus 1/2 Kontrolloidut kokeet ja satunnaistus 2/2 Kokeen satunnaistus tarkoittaa sitä, että käsittelyiden kohdistamisessa käytetään arvontaa. Arvonta on ainoa puolueeton tapa kohdistaa käsittelyitä, koska arpominen ei suosi mitään perusjoukon osaa. Satunnaistettujen kokeiden tulosten analysointiin voidaan soveltaa tilastollisia menetelmiä, koska arvonta noudattaa todennäköisyyslaskennan lakeja. Satunnaistus takaa suurella todennäköisyydellä sen, että kokeessa erilaisten käsittelyiden kohteiksi joutuvat perusjoukon osajoukot ovat ennen käsittelyiden soveltamista ominaisuuksiltaan keskimäärin samankaltaisia. Satunnaistus takaa suurella todennäköisyydellä sen, että kokeen tuloksista voidaan tehdä kausaalipäätelmiä: Jos koe on satunnaistettu, kokeen tuloksissa havaitut systemaattisten erojen on johduttava erilaisista käsittelyistä. TKK (c) Ilkka Mellin (2005) 29 TKK (c) Ilkka Mellin (2005) 30

Koesuunnittelu ja tilastolliset mallit Johdanto. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu ja tilastolliset mallit Johdanto. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu ja tilastolliset mallit Johdanto TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu: Johdanto Johdattelevia esimerkkejä Tilastolliset kokeet TKK (c) Ilkka Mellin (2005) 2 Koesuunnittelu: Johdanto

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2004) 1 ja mittaaminen Johdatus tilastotieteeseen ja mittaaminen TKK (c) Ilkka Mellin (2004) 2 ja mittaaminen: Mitä opimme? 1/3 Tilastollisen tutkimuksen kaikki mahdolliset kohteet

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2004) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Käytännön järjestelyt Luennot: Luennot maanantaisin (sali E) ja keskiviikkoisin (sali U4) klo 10-12 Luennoitsija: (lauri.viitasaari@aalto.fi)

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä

Lisätiedot

TILASTOLLINEN LAADUNVALVONTA

TILASTOLLINEN LAADUNVALVONTA 1 Aki Taanila TILASTOLLINEN LAADUNVALVONTA 31.10.2008 2 TILASTOLLINEN LAADUNVALVONTA Tasalaatuisuus on hyvä tavoite, jota ei yleensä voida täydellisesti saavuttaa: asiakaspalvelun laatu vaihtelee, vaikka

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

ARVIOINTIPERIAATTEET

ARVIOINTIPERIAATTEET PSYKOLOGIAN YHTEISVALINNAN VALINTAKOE 2012 ARVIOINTIPERIAATTEET Copyright Helsingin yliopisto, käyttäytymistieteiden laitos, Materiaalin luvaton kopiointi kielletty. TEHTÄVÄ 1. (max. 34.5 pistettä) 1 a.i)

Lisätiedot

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c.

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c. Epäyhtälö Kahden lausekkeen A ja B välisiä järjestysrelaatioita A < B, A B, A > B ja A B nimitetään epäyhtälöiksi. Esimerkiksi 2 < 6, 9 10, 5 > a + + 2 ja ( + 1) 2 2 + 2 ovat epäyhtälöitä. Epäyhtälössä

Lisätiedot

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin

Lisätiedot

Tutkimusasetelmat. - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla

Tutkimusasetelmat. - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla Tutkimusasetelmat - Oikea asetelma oikeaan paikkaan - Vaikeakin tutkimusongelma voi olla ratkaistavissa oikealla tutkimusasetelmalla Jotta kokonaisuus ei unohdu Tulisi osata Tutkimusasetelmat Otoskoko,

Lisätiedot

Hierarkkiset koeasetelmat. Heliövaara 1

Hierarkkiset koeasetelmat. Heliövaara 1 Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän

Lisätiedot

2 2 -faktorikokeen määritelmä

2 2 -faktorikokeen määritelmä TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tai useamman tekijän vaikutusta

Lisätiedot

Johdatus tilastotieteeseen Tilastotiede tieteenalana. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastotiede tieteenalana. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastotiede tieteenalana TKK (c) Ilkka Mellin (2005) 1 Tilastotiede tieteenalana Mitä tilastotiede on? Tilastotieteen sovellukset TKK (c) Ilkka Mellin (2005) 2 Tilastotiede

Lisätiedot

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Miten ilmaston lämpeneminen Arktiksessa vaikuttaa Suomen ilmastoon?

Miten ilmaston lämpeneminen Arktiksessa vaikuttaa Suomen ilmastoon? Miten ilmaston lämpeneminen Arktiksessa vaikuttaa Suomen ilmastoon? Timo Vihma Ilmatieteen laitos Meteorologinen tutkimus Mitä tiedämme varmuudella - Arktis on viimeisten 100 vuoden aikana lämmennyt noin

Lisätiedot

Poimi yrityksistä i) neljän, ii) kymmenen suuruinen otos. a) yksinkertaisella satunnaisotannalla palauttaen, b) systemaattisella otannalla

Poimi yrityksistä i) neljän, ii) kymmenen suuruinen otos. a) yksinkertaisella satunnaisotannalla palauttaen, b) systemaattisella otannalla 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Harjoitus 2, viikko 38, syksy 2012 1. Tutustu liitteen 1 kuvaukseen Suuresta bränditutkimuksesta v. 2009. Mikä tämän kuvauksen perusteella on ko.

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Ratkaisuehdotukset Kesäyliopisto 2014. 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio.

Ratkaisuehdotukset Kesäyliopisto 2014. 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio. Harjoitukset 2 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio. a) Mikä on kysynnän hintajousto 12 :n ja 6 :n välillä?

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

II- luento. Etiikan määritelmiä. Eettisen ajattelu ja käytänteet. 1 Etiikka on oikean ja väärän tutkimusta

II- luento. Etiikan määritelmiä. Eettisen ajattelu ja käytänteet. 1 Etiikka on oikean ja väärän tutkimusta II- luento Eettisen ajattelu ja käytänteet Etiikan määritelmiä 1 Etiikka on oikean ja väärän tutkimusta 2. Etiikka ei ole samaa kuin moraali, se on moraalin tutkimusta 3. Etiikka ei ole tutkimusta siitä,

Lisätiedot

Lohkoasetelmat. Vilkkumaa / Kuusinen 1

Lohkoasetelmat. Vilkkumaa / Kuusinen 1 Lohkoasetelmat Vilkkumaa / Kuusinen 1 Motivointi 1/3 Kaksisuuntaisella varianssianalyysilla voidaan tutkia kahden tekijän A ja B vaikutusta sekä niiden yhdysvaikutusta tutkimuksen kohteeseen Kaksisuuntaisessa

Lisätiedot

PÄÄTÖS SISÄPIIRINTIEDON JULKISTAMISEN LYKKÄÄMISESTÄ

PÄÄTÖS SISÄPIIRINTIEDON JULKISTAMISEN LYKKÄÄMISESTÄ Yhtiön X SISÄPIIRIOHJE, LIITE 3 1 (5) PÄÄTÖS SISÄPIIRINTIEDON JULKISTAMISEN LYKKÄÄMISESTÄ FINANSSIVALVONNALLE TOIMITETTAVAT TIEDOT HUOM.: Finanssivalvonnalle toimitetaan alla olevat tiedot ainoastaan sellaisesta

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Syksyn aloituskampanjat lippukunnissa

Syksyn aloituskampanjat lippukunnissa Syksyn aloituskampanjat lippukunnissa Partiossa eletään nyt hyvää nousukautta. Jotta sama tilanne jatkuisi, olemme tehneet teille syksyn toiminnan aloittamisen tueksi tarkoitetun vihkon. Viime syksynä

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Päätöksentekomenetelmät

Päätöksentekomenetelmät L u e n t o Päätösongelmia löytyy joka paikasta Hanna Virta / Liikkeenjohdon systeemit Päätöksentekomenetelmät Luennon sisältö Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Päästökauppa:

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

SKYPE-RYHMÄN LUOMINEN

SKYPE-RYHMÄN LUOMINEN SKYPE-RYHMÄN LUOMINEN JA RYHMÄPUHELUN SOITTAMINEN Ryhmän perustaminen on helppoa. Tarvitset internet-yhteyden sekä tietokoneen, jossa on mikrofoni ja webbikamera. Useimmissa kannettavissa tietokoneissa

Lisätiedot

Dynaaminen optimointi

Dynaaminen optimointi Dynaaminen optimointi Tapa ratkaista optimointitehtävä Tehtävä ratkaistaan vaiheittain ja vaiheet yhdistetään rekursiivisesti Perustuu optimaalisuusperiaatteeseen: Optimaalisen ratkaisupolun loppuosa on

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

SUOMALAISEN TYÖNTEKIJÄN HYVINVOINTI -SELVITYS

SUOMALAISEN TYÖNTEKIJÄN HYVINVOINTI -SELVITYS SUOMALAISEN TYÖNTEKIJÄN HYVINVOINTI -SELVITYS Riikka Mattila, asiantuntijalääkäri, Odum Oy 1 ESITYKSEN SISÄLTÖ Tutkimuksen aineisto ja toteutus Aineiston koko Sukupuolijakauma Työkykyennusteen muutos Työkykyriskiin

Lisätiedot

Induktio kaavan pituuden suhteen

Induktio kaavan pituuden suhteen Induktio kaavan pituuden suhteen Lauselogiikan objektikieli määritellään kurssilla Logiikka 1B seuraavasti: 1. Lausemuuttujat p 1, p 2, p 3,... ovat kaavoja. 2. Jos A on kaava, niin A on kaava. 3. Jos

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

Orientoivat opinnot osa 3: Opintojen suunnittelu

Orientoivat opinnot osa 3: Opintojen suunnittelu 1 Kieli-, käännös- ja kirjallisuustieteiden yksikkö Orientoivat opinnot osa 3: Opintojen suunnittelu Opintoasiain päällikkö Kati Lampinen 2 Opintojen suunnitteluun vaikuttavat esimerkiksi Oma tapa oppia

Lisätiedot

Suomi toisena kielenä -ylioppilaskoe. FT Leena Nissilä Opetusneuvos, yksikön päällikkö OPETUSHALLITUS

Suomi toisena kielenä -ylioppilaskoe. FT Leena Nissilä Opetusneuvos, yksikön päällikkö OPETUSHALLITUS Suomi toisena kielenä -ylioppilaskoe FT Leena Nissilä Opetusneuvos, yksikön päällikkö OPETUSHALLITUS 1 Uusi opetussuunnitelma haastaa oppimisen Uusi opetussuunnitelma haastaa oppimisen Teknologian soveltaminen

Lisätiedot

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyden aksioomat Todennäköisyyden määritteleminen Todennäköisyyden aksioomat äärellisissä otosavaruuksissa

Lisätiedot

Lectio praecursoria. Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin. Markus Ojala. 12.

Lectio praecursoria. Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin. Markus Ojala. 12. Lectio praecursoria Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin Markus Ojala 12. marraskuuta 2011 Käsitteet Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

Itsehallintoalueen valmistelutilaisuus 19.4.2016. Jarkko Wuorinen Maakuntahallituksen puheenjohtaja

Itsehallintoalueen valmistelutilaisuus 19.4.2016. Jarkko Wuorinen Maakuntahallituksen puheenjohtaja Itsehallintoalueen valmistelutilaisuus 19.4.2016 Jarkko Wuorinen Maakuntahallituksen puheenjohtaja Työllisyys- ja työttömyysaste (15-64-v.) Etelä-Savon maakunnassa 1998-2015, % Lähde: Tilastokeskus, Työvoimatutkimus

Lisätiedot

VIITASAAREN KAUPUNGIN LUOTTAMUSHENKILÖIDEN PALKKIOSÄÄNTÖ (voimaantulo 1.1.2015)

VIITASAAREN KAUPUNGIN LUOTTAMUSHENKILÖIDEN PALKKIOSÄÄNTÖ (voimaantulo 1.1.2015) VIITASAAREN KAUPUNGIN LUOTTAMUSHENKILÖIDEN PALKKIOSÄÄNTÖ (voimaantulo 1.1.2015) 2 S I S Ä L L Y S L U E T T E L O Sivu 1 SOVELTAMISALA... 3 2 KOKOUSPALKKIOT... 3 3 SAMANA PÄIVÄNÄ PIDETYT KOKOUKSET... 4

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015

Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015 Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015 1. Onko olemassa yhtenäistä verkkoa, jossa (a) jokaisen kärjen aste on 6, (b) jokaisen kärjen aste on 5, ja paperille piirrettynä sivut eivät

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden aksioomat TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden aksioomat >> Todennäköisyyden määritteleminen Todennäköisyyden

Lisätiedot

Lukion. Calculus. Polynomifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Polynomifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Polynomifunktiot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Polynomifunktiot (MAA) Pikatesti ja kertauskokeet Tehtävien ratkaisut

Lisätiedot

MUUTOS 14! - Sosiaaliset kriteerit julkisissa hankinnoissa!

MUUTOS 14! - Sosiaaliset kriteerit julkisissa hankinnoissa! Kysely Välkky-projektissa keväällä 2011 toteutetuista MUUTOS! -koulutuksista MUUTOS 14! - Sosiaaliset kriteerit julkisissa hankinnoissa! Aika ja paikka: 11.3.2011, MTC Oy, Pori Kouluttajat: Timo Martelius

Lisätiedot

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen

TUKIMATERIAALI: Arvosanan kahdeksan alle jäävä osaaminen TERVEYSTIETO Terveystiedon päättöarvioinnin kriteerit arvosanalle 8 ja niitä täydentävä tukimateriaali Opetuksen tavoite Terveyttä tukeva kasvu ja kehitys T1 ohjata oppilasta ymmärtämään terveyden laaja-alaisuutta,

Lisätiedot

Opettajalle ohje opintojakson toteutuksen tekemiselle mallipohjana ja mallipohjan tuominen opintojakson toteutukseen.

Opettajalle ohje opintojakson toteutuksen tekemiselle mallipohjana ja mallipohjan tuominen opintojakson toteutukseen. 1 Opettajalle ohje opintojakson toteutuksen tekemiselle mallipohjana ja mallipohjan tuominen opintojakson toteutukseen. (HUOM!): Toteutussuunnitelmat otetaan käyttöön vasta 2015 OPSista lähtien. (Connect

Lisätiedot

AINEENOPETTAJIEN ERITYISOPETUS RYHMÄKERTA 3

AINEENOPETTAJIEN ERITYISOPETUS RYHMÄKERTA 3 AINEENOPETTAJIEN ERITYISOPETUS RYHMÄKERTA 3 http://blogs.helsinki.fi/lmuusita 1 POHDI Mitä teet, jos oppilaasi ei opi muiden tahdissa? 2 NYT VOIMASSA OLEVA, 2011 VANHA Käyttäytymis- ja sopeutumisvaikeuksisten

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

Joukkoistuuko työ Suomessa ja mitä siitä seuraa?

Joukkoistuuko työ Suomessa ja mitä siitä seuraa? Tuomo Alasoini Joukkoistuuko työ Suomessa ja mitä siitä seuraa? Teknologinen kehitys muuttaa työtä vauhdilla. Digitaaliset alustat tarjoavat uusia mahdollisuuksia jakaa työtä ja tehdä työtarjouksia ihmisille,

Lisätiedot

Mitä kausaalivaikutuksista voidaan päätellä havainnoivissa tutkimuksissa?

Mitä kausaalivaikutuksista voidaan päätellä havainnoivissa tutkimuksissa? Mitä kausaalivaikutuksista voidaan päätellä havainnoivissa tutkimuksissa? Mervi Eerola Turun yliopisto Sosiaalilääketieteen päivät 3.-4.11.2014 HS 27.9.2014: Juhana Vartiainen ja Kari Hämäläinen (VATT):

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

11.4. Rakenteellista käsittelyä tilavuusrenderöintialgoritmeissa

11.4. Rakenteellista käsittelyä tilavuusrenderöintialgoritmeissa 11.4. Rakenteellista käsittelyä tilavuusrenderöintialgoritmeissa Tilavuusdatan katseluprosessi on käsitteellisesti yksinkertaista. Se pitää sisällään tilavuuden kierron katselusuuntaan ja sitten säteen

Lisätiedot

11. laskuharjoituskierros, vko 15, ratkaisut

11. laskuharjoituskierros, vko 15, ratkaisut 11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa

Lisätiedot

Testaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486.

Testaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486. Mat-.103 Koesuunnittelu ja tilastolliset mallit Harjoitus 8, kevät 004 Esimerkkiratkaisut. 1. Myrkyllistä ainetta oli kaadettu jokeen, joka johtaa suurelle kalastusalueelle. Tie- ja vesirakennusinsinöörit

Lisätiedot

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta...

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta... JHS 160 Paikkatiedon laadunhallinta Liite III: Otanta-asetelmat Sisällysluettelo 1. Johdanto... 2 2. Todennäköisyysotanta... 2 2.1 Yksinkertainen satunnaisotanta... 3 2.2 Ositettu otanta... 3 2.3 Systemaattinen

Lisätiedot

Kuntosaliharjoittelun kesto tunteina Kokonaishyöty Rajahyöty 0 0 5 1 5 10 2 15 8 3 23 6 4 29 4 5 33 -

Kuntosaliharjoittelun kesto tunteina Kokonaishyöty Rajahyöty 0 0 5 1 5 10 2 15 8 3 23 6 4 29 4 5 33 - Harjoitukset 1 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. Oheisessa taulukossa on esitettynä kuluttajan saama hyöty kuntosaliharjoittelun kestosta riippuen. a) Laske taulukon tyhjään

Lisätiedot

13.10.2011 T U K E A T A R V I T S E V A O P I S K E L I J A L U K I O S S A. www.erityisopetus.com

13.10.2011 T U K E A T A R V I T S E V A O P I S K E L I J A L U K I O S S A. www.erityisopetus.com T U K E A T A R V I T S E V A O P I S K E L I J A L U K I O S S A Lukio OPS:n perusteet vuodelta 2003, kohta 4.4 sanoo lukion erityisestä tuesta seuraavaa: Erityisen tuen tarkoituksena on auttaa ja tukea

Lisätiedot

SEITSEMÄS VAALIKAUSI (2009 2014) SYYSKUU 2009 PARLAMENTTIEN VÄLISISTÄ SUHTEISTA VASTAAVIEN VALTUUSKUNTIEN JÄRJESTÄYTYMISKOKOUKSET 1

SEITSEMÄS VAALIKAUSI (2009 2014) SYYSKUU 2009 PARLAMENTTIEN VÄLISISTÄ SUHTEISTA VASTAAVIEN VALTUUSKUNTIEN JÄRJESTÄYTYMISKOKOUKSET 1 SEITSEMÄS VAALIKAUSI (2009 2014) SYYSKUU 2009 PARLAMENTTIEN VÄLISISTÄ SUHTEISTA VASTAAVIEN VALTUUSKUNTIEN JÄRJESTÄYTYMISKOKOUKSET 1 ooo JÄRJESTÄYTYMISKOKOUKSISSA SOVELLETTAVA MENETTELY Työjärjestyksen

Lisätiedot

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa:

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa: Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalsi Aritmeettinen keskiarvo, Estimointi, F-testi,

Lisätiedot

Parametrittomat ja robustit menetelmät. Jukka Nyblom Jyväskylän yliopisto 2009

Parametrittomat ja robustit menetelmät. Jukka Nyblom Jyväskylän yliopisto 2009 Parametrittomat ja robustit menetelmät Jukka Nyblom Jyväskylän yliopisto 2009 1 Sisältö 1 Satunnaistamismalli ja permutaatiotestit 4 1.1 Täysin satunnaistettu koe, käsittely ja kontrolli 4 1.2 Vastinparivertailu,

Lisätiedot

Suonenjoki. Asukasluku 31.12.2009 7 611 92 626 248 182 5 351 427

Suonenjoki. Asukasluku 31.12.2009 7 611 92 626 248 182 5 351 427 Talouden tarkastelu Talouden tarkastelu on tehty Tilastokeskuksen talouden tunnuslukuaikasarjoja (vuodet 1998 2009) hyödyntäen sekä kaupunkien vuoden 2010 tilinpäätöstietojen pohjalta. Tuloslaskelmien

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Asukastoimikuntien lausuntojen yhteenveto käyttöarvon mukaisesta vuokrien tasauksesta

Asukastoimikuntien lausuntojen yhteenveto käyttöarvon mukaisesta vuokrien tasauksesta Asukastoimikuntien lausuntojen yhteenveto käyttöarvon mukaisesta vuokrien tasauksesta VAV Asunnot Oy uudistaa ARA-kiinteistöjensä vuokranmääritystä. Uudessa mallissa pääomakulujen lisäksi tasattaisiin

Lisätiedot

Sisäinen auditointi osa Oamkin ympäristöohjelmatyötä 11.05.2009

Sisäinen auditointi osa Oamkin ympäristöohjelmatyötä 11.05.2009 Sisäinen auditointi osa Oamkin ympäristöohjelmatyötä 11.05.2009 2. Päivä Sisäinen auditointi Luovassa (1.6.09) Etätehtävien purku Auditoinnin suunnittelu ja menetelmät Poikkeamat Auditoinnin raportointi

Lisätiedot

ASUKASKYSELY YHTEISTYÖSSÄ HÄRKÄMÄKI JYRKKÄLÄ VIENOLA 20210

ASUKASKYSELY YHTEISTYÖSSÄ HÄRKÄMÄKI JYRKKÄLÄ VIENOLA 20210 ASUKASKYSELY YHTEISTYÖSSÄ HÄRKÄMÄKI JYRKKÄLÄ VIENOLA 20210 Asukaskysely oli käynnissä Syyskuussa Härkämäessä Asukaskyselyn oli suunnitellut Helsingin yliopisto FT Saara Yousfi paikkatietosuunnittelija,

Lisätiedot

Joustava perusopetus. - taustaa ja perusteita

Joustava perusopetus. - taustaa ja perusteita Joustava perusopetus - taustaa ja perusteita Paasitorni 27.9.2010 Jopo-toiminnan taustaa Ensimmäiset 26 kuntaa käynnistivät toiminnan vuonna 2006. Lukuvuonna 2007-2008 toimintaa oli 72:ssa kunnassa. Lukuvuonna

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

Terveydenhuolto Suomessa

Terveydenhuolto Suomessa Stefan Gofferjé Terveydenhuolto Suomessa Maahanmuuttajien ammatilliseen peruskoulutukseen valmistava koulutus 03.08.2012 31-05.2013 Tampereen Aikuiskoulutuskeskus Sisällysluettelo Terveysjärjestelmä...3

Lisätiedot

Vähittäiskaupan esimiesten työehtosopimus

Vähittäiskaupan esimiesten työehtosopimus Vähittäiskaupan esimiesten työehtosopimus 1.4.2012 30.4.2014 Vähittäiskaupan esimiesten työehtosopimus 1.4.2012 30.4.2014 1 Kaupan liitto Palvelualojen ammattiliitto VÄHITTÄISKAUPAN ESIMIESTEN TYÖEHTOSOPIMUS

Lisätiedot

KiVa Koulu tilannekartoituskysely 2016 sivu 1/31. KiVa Koulu tilannekartoituskysely 2016 sivu 2/31. KiVa Koulu tilannekartoituskysely 2016 sivu 3/31

KiVa Koulu tilannekartoituskysely 2016 sivu 1/31. KiVa Koulu tilannekartoituskysely 2016 sivu 2/31. KiVa Koulu tilannekartoituskysely 2016 sivu 3/31 KiVa Koulu tilannekartoituskysely 2016 sivu 1/31 Tervetuloa täyttämään kysely! Koulutunnus: Oppilaiden tilannekartoitussalasana: Kirjaudu kyselyyn KiVa Koulu tilannekartoituskysely 2016 sivu 2/31 Kukaan

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Huomaathan, että ohjeessa olevat näytöistä otetut kuvat voivat poiketa sinun koulutuksesi vastaavien sivujen kuvista.

Huomaathan, että ohjeessa olevat näytöistä otetut kuvat voivat poiketa sinun koulutuksesi vastaavien sivujen kuvista. OHJE OPISKELIJALLE MOODLEN KÄYTTÖÖN 1/5 2011/2012 MOODLE KOULUTUKSESSA Työterveyslaitoksella käytetään Moodle -verkko-oppimisalustaa. Potilassiirtojen Ergonomia - koulutus on monimuotokoulutusta, johon

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

Apteekkien työntekijöiden apteekkikohtainen erä 1.10.2009

Apteekkien työntekijöiden apteekkikohtainen erä 1.10.2009 Apteekkien työntekijöiden apteekkikohtainen erä 1.10.2009 Apteekkien Työnantajaliiton koulutusaineisto apteekeille 1.6.2009 / JKK 1 Tavoitteet Apteekkikohtainen erä on tarkoitettu henkilökohtaisen hyvän

Lisätiedot

Liukeneminen 31.8.2016

Liukeneminen 31.8.2016 Liukeneminen KEMIAN MIKROMAAILMA, KE2 Kertausta: Kun liukenevan aineen rakenneosasten väliset vuorovaikutukset ovat suunnilleen samanlaisia kuin liuottimen, niin liukenevan aineen rakenneosasten välisiä

Lisätiedot

Riskienhallinta DTV projektissa. Digi-tv vastaanottimella toteutetut interaktiiviset sovellukset

Riskienhallinta DTV projektissa. Digi-tv vastaanottimella toteutetut interaktiiviset sovellukset Teknillinen korkeakoulu 61 Riskienhallinta DTV projektissa Digi-tv vastaanottimella toteutetut interaktiiviset sovellukset Versio Päiväys Tekijä Kuvaus 1.0 29.10.01 Oskari Pirttikoski Ensimmäinen versio

Lisätiedot

Antavatko Kelan standardit mahdollisuuden toteuttaa hyvää kuntoutusta työssä uupuneille ja mielenterveysongelmaisille?

Antavatko Kelan standardit mahdollisuuden toteuttaa hyvää kuntoutusta työssä uupuneille ja mielenterveysongelmaisille? Antavatko Kelan standardit mahdollisuuden toteuttaa hyvää kuntoutusta työssä uupuneille ja mielenterveysongelmaisille? Sari Kauranen, psykologi Verve Oulu Kokemuksia ja havaintoja kahdesta näkökulmasta

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Perusopetuksen aamu- ja iltapäivätoiminnan laadun arviointi 2016 Västankvarns skola/ Tukiyhdistys Almus ry.

Perusopetuksen aamu- ja iltapäivätoiminnan laadun arviointi 2016 Västankvarns skola/ Tukiyhdistys Almus ry. Perusopetuksen aamu- ja iltapäivätoiminnan laadun arviointi 06 Västankvarns skola/ toteutti perusopetuksen aamu- ja iltapäivätoiminnan seurantakyselyn lapsille ja huoltajille huhtikuussa 06. Vuoden 06

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

Luento 6. June 1, 2015. Luento 6

Luento 6. June 1, 2015. Luento 6 June 1, 2015 Normaalimuodon pelissä on luontevaa ajatella, että pelaajat tekevät valintansa samanaikaisesti. Ekstensiivisen muodon peleissä pelin jonottaisella rakenteella on keskeinen merkitys. Aluksi

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

ALKUPERÄINEN www.atlantisabutment.fi

ALKUPERÄINEN www.atlantisabutment.fi ALKUPERÄINEN www.atlantisabutment.fi Lue lisää potilaskohtaisten Atlantis -abutmenttien hyödyistä sinulle ja potilaillesi. 799357-FI-1208 2012 DENTSPLY IH ATLANTIS -TAKUU KATTAVA TURVA TYÖLLESI www.atlantisabutment.fi

Lisätiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot T (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan T (c) Ilkka Mellin (2004) 2 : Mitä oimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa,

Lisätiedot

ymmärtää lapsuuden arvon ainutkertaisuuden edistää omalla toiminnallaan lapsen kasvurauhaa tukee lapsen itsetuntoa ja minäkuvan kehittymistä

ymmärtää lapsuuden arvon ainutkertaisuuden edistää omalla toiminnallaan lapsen kasvurauhaa tukee lapsen itsetuntoa ja minäkuvan kehittymistä 1 Lasten ja nuorten erityisohjaajan ammattitutkinto VALINNAISET TUTKINNON OSAT ERITYISTÄ TUKEA TARVITSEVIEN LASTEN JA HEIDÄN PERHEIDENSÄ OHJAUS JA TUKEMINEN Näytön antaja Arvioija: Paikka ja aika: AMMATTITAITOVAATIMUS

Lisätiedot