2.7. Intertemporaalinen valinta

Koko: px
Aloita esitys sivulta:

Download "2.7. Intertemporaalinen valinta"

Transkriptio

1 9.7. Interteporaalinen valinta Aikaisein tarkasteltiin intrateporaalista valintaa: kuinka paljon ja issä suhteessa kuluttaja haluaa hyödykkeitä X ja X juuri nyt. Seuraavaksi tarkasteluun otetaan ukaan kuluttaisen ajankohta eli interteporaalinen valinta: kuinka paljon kuluttaja kuluttaa hyödykettä (tai hyödykkeitä) X tänään ja huoenna tai nyt ja tulevaisuudessa. * Aika tuo aivan uuden eleentin valintoihin, kuluttaiseen, säästäiseen ja sijoittaiseen. * Kansalaisten on lähes ahdotonta yärtää reaali- ja niellissuureiden eroja esi. pääoaverotuksen yhteydessä. * Kun kulutusta halutaan siirtää yöhepään tai aikaisepaan ajankohtaan kuin tulot, niin siihen tarvitaan pääoaarkkinoita. * Kuluttaja tavallisesti arvostaa täänhetkistä kulutusta eneän kuin tulevaisuudessa tapahtuvaa kuluttaista. Hyötyfunktion aikapreferenssi β <. Tään hetken kulutuksesta luopuisesta on aksettava korvaus +r. Analyysikehikko: - Tarkastelussa kaksi periodia eli periodit ja. - Kuluttajan tulot periodilla on ja periodilla (alkuvarantopiste) - Kuluttaja voi lainata ja tallettaa rahaa korolla r - Budjettisuoran kulakerroin = - (+r) - Budjettisuora kulkee aina alkuvarantopisteen kautta - Korko on analoginen käsite hinnan kanssa - Hyödykkeen X kulutus periodilla on C ja periodilla C - Budjettirajoite on C + C/(+r) = + /(+r)

2 30 Erikoistapauksia: ) lainauskorko (rl) ja talletuskorko (rt) poikkeavat toisistaan. rl > rt > budjettisuorassa polvi ) lainauksessa äärällinen rajoite budjettisuorassa katkoskohta Koronuutosten vaikutus kuluttajan hyötyyn ) kuluttaja lainaaja a) korko laskee -----> kuluttajan hyöty kasvaa (pysyy varasti lainaajana) b) korko nousee > - jos pysyy lainaajana -----> hyöty laskee - jos siirtyy tallettajaksi ----> hyödyn kehityksestä ei voida olla varoja (nyt sellaiset valinnat ovat ahdollisia, jotka eivät äsken olleet) ) kuluttaja tallettajana a) korko nousee > kuluttajan hyöty kasvaa (pysyy varasti tallettajana) b) korko laskee - jos pysyy tallettajana > hyöty laskee - jos vaihtaa lainaajaksi > hyödyn kehityksestä ei voida olla varoja

3 3 Kulutuksen ajankohdan siirtäinen - Myydään ja ostetaan tään päivän kulutusta. - Kuluttaisen ajankohdan siirtäiseen liittyvää kauppaa käydään sijoitushyödykkeillä kuten talletuksilla, osakkeilla, bondeilla, velkakirjoilla, kullalla, asunnoilla, koruilla jne. - Sijoitushyödykkeisiin sisältyy lupaus ja odotus tietystä tuottovirrasta. Esi. * Bondin yyjä: haluaa kuluttaa tulevan tuottovirran jo tänään (lainaaja). * Bondin ostaja: valis luopuaan tään päivän kulutuksesta ja kuluttaa ieluuin huoenna. Bondin tai osakkeen tuottovirran hintaan vaikuttavat: ) tuotto ) aika 3) korkotaso Esi. bondin arvo tänään kahden periodin allissa (present value) (lainan ottainen = bondin yyinen) V = + r A) Jos sijoitushyödykkeellä on äärettöyyteen ulottuva vakio tuottovirta, niin ikä on arvopaperin arvo tänään? V = ( + r) ( + r) ( + r) ( + r) (Geoetrinen sarja a + aq + aq + aq aq suppenee, kun q < ja sen sua s = a q )

4 3 q = + r ja a = + r s = r Esi. tuotto 0 äärettöyyteen asti ja korkotaso 0 %, ikä on bondin hinta? s = 0 0, = 00 B) Jos sijoitushyödykkeellä on äärettöyyteen ulottuva nopeudella (+g) kasvava tuottovirta, niin ikä on arvopaperin arvo tänään? V = ( + g) ( + g) ( + r) ( + r) ( + r) ( + g) n ( + r) n q = + + g r ja a = + r s = r g

5 33.8. Riski ja sijoitushyödykkeiden kauppa ) Kuluttaja arvostaa tään päivän kulutusta eneän kuin tulevaisuuden kulutusta -----> Kulutuksesta luopuisesta pitää saada korvaus (tuotto). ) Kuluttaja arvostaa varaa tuottoa eneän kuin epävaraa > Epävarasta tuotosta pitää saada korvaus (suurepi tuotto). - Jos sijoitushyödykkeiden välillä ei ole eroja riskin suhteen, niin sijoitushyödykkeiden tuotto on saa. Esi. Tarjolla on kaksi riskitöntä sijoitusvaihtoehtoa a ja b: a) Sijoitetaan rahat pankkiin, josta saadaan tuotto (+r). b) Ostetaan riskitön arvopaperi, jonka hinta alkuhetkellä on 0. Kaikki tietävät varasti, että arvopaperin hinta seuraavalla periodilla on. Mitä tapahtuu, jos ( r) +. Oletetaan, että ( r) + > 0 0 Sijoittajat yyvät arvopaperia b ja sijoittavat saadut rahat pankkiin -----> arvopaperin tarjonta kasvaa -----> arvopaperin hinta laskee -----> arvopaperin tuotto nousee, kunnes ( r). Oletetaan, että ( r) + < 0 + = Sijoittajat tyhjentävät pankkitilinsä ja ostavat arvopaperia b -----> arvopaperin kysyntä kasvaa -----> arvopaperin hinta nousee -----> arvopaperin tuotto laskee, kunnes ( r) + = 0 0

6 34 Markkinoilla sijoitushyödykkeet hinnoitellaan niiden sisältään riskin ja uiden oinaisuuksien suhteen. - Riski on negatiivinen oinaisuus. - Sijoitushyödykkeen käyttöarvo on positiivinen oinaisuus. Esi. Taiteeseen, koruihin ja antiikkiin sisältyy tuotto-odotuksia (A) ja niistä saadaan hyötyä niitä käytettäessä (K) (= A+K). Tällöin tuotto R = A + K 0 = +r, joten A 0 < +r > Korut eivät ole hyvä sijoituskohde, jos haluaa hyvän tuoton! Öljy sijoitushyödykkeenä. Öljyn hinnan uutokset - Öljy aan sisällä on kuten raha pankissa (tai uissa sijoitushyödykkeissä) - Jos öljyn hinta nousee hitaain kuin rahan arvo pankissa, öljylähteiden oistajien kannattaa pupata lähteet heti tyhjiksi ja sijoittaa rahat pankkiin. ----> öljyn hinta laskee - Jos taas öljyn hinta nousee nopeain kuin rahojen arvo pankissa, öljyä ei kannata pupata lainkaan -----> öljyn hinta nousee. Öljyn hinnan taso - Öljyn kysyntä D vuodessa vakio ja öljyvarannot S -----> öljyä jäljellä T = S/D vuodeksi - Öljyä voidaan valistaa hiilestä C k/l vakiokustannuksilla - T vuoden kuluttua kaikki öljyvarannot on käytetty loppuun, jolloin öljyn hinta on C k/l > öljyn hinnan pitää kasvaa siten, että T vuoden kuluttua öljy aksaa C k/l eli

7 35 T ( + r ) = C 0 Öljyn hinta tänään: C = ( + ) 0 r T ) Teknologia kehittyy (C laskee) > öljyn hinta laskee ) Löydetään uusia öljylähteitä (T kasvaa (T = S/D)) > Öljyn hinta laskee 3) Korkotaso nousee (r kasvaa) > Öljyn hinta laskee Metsä sijoitushyödykkeenä - Metsä kasvaa ajassa funktion F(t) ukaisesti. - Nuoren etsän kasvu on voiakkainta; kasvu hidastuu etsän ikääntyessä. df( t) d F( t) > 0 ja < 0 dt dt - Milloin etsänoistajan kannattaa yydä puut ja sijoittaa rahat pankkiin. a) Rahat etsässä kasvaa F(t) ukaan b) Rahat pankissa kasvaa +r -----> optiissa df ( t ) = + r dt Eli rahat kannattaa pitää sijoitettuna etsään, kunnes etsänkasvu hidastunut pankkikoron ukaiseksi.

8 36.9. Epävaruus ja odotetun hyödyn teoria Testi. Kuan valitset a) 0 euroa varasti b) Arvonnan, jossa 50 % ahdollisuus saada 5 euroa ja 50 % ahdollisuus saada 5 euroa Odotettu arvo 0,5* 5 + 0,5*5 = 0 (odotusarvoltaan reilu peli ) - Sijoittajat eivät pidä riskistä (risk aversion) ----> riskin ottaisesta pitää palkita. - Jotkut kuitenkin pitävät riskistä (risk loving) esi. lottoajat ja veikkaajat -----> riskinottaisesta voidaan rangaista. - Riskineutraali henkilö ei kiinnitä huoiota riskin äärään, vaan odotettuun tuottoon. * Kuluttajanteoriassa käsiteltiin ordinaalista hyötyfunktiota. Monotoniset transforaatiot olivat ahdollisia. * Odotetun hyödyn teoriassa hyötyfunktio on kardinaalinen. Hyödyn äärällä on erkitystä. - Riskinkaihtajan hyötyfunktio: du( w) > 0 dw d U( w) < dw 0 - Riskistä pitävän hyötyfunktio: du( w) > 0 dw d U( w) > dw 0 - Riskineutraalin hyötyfunktio: du( w) > 0 dw d U( w) = dw 0

9 37 Riskin kaihtaja (risk averter) U(0) > 0,5U(5) + 0,5U(5) Ei suostu odotusarvoltaan reiluun peliin Riskistä pitävä (risk lover) U(0) < 0,5U(5) + 0,5U(5) Hyväksyy odotusarvoltaan epäreilun pelin Jotta riskin kaihtaja suostuu epävaruuteen niin, riskinottaisesta on palkittava: a) Odotettujen tuottojen oltava suurepia (yli 5 ja/tai 5) tai b) Hyvän vaihtoehdon todennäköisyys oltava suurepi (yli 0,5) Riskistä pitävällä on päinvastoin. Esi. Jos hyötyfunktiosi on uotoa U(W) = W, ikä on odotettu hyöty ja hyöty odotetusta arvosta edellisessä arvonnassa. Odotettu hyöty = 0, , 5 5 =,8 +,936 = 3,054 Hyöty odotetusta arvosta U(0) = 0 = 3,6 a) Kuinka todennäköinen hyvän tulean pitää olla, jotta valitset pelin varan tulean sijaan? a 5 + ( a) 5 = 3,6 a = 0, > ( - 0,434) = 0,566 vastaus 56,6 %

10 38 b) Mikä on hyödyn uutos, kun todennäköisyydet uuttuvat siten, että arvonnassa onkin 50 %:n ahdollisuus saada 3 euroa ja 50 %:n ahdollisuus saada 7 euroa Arvonnan odotusarvo säilyy ennallaan eli 0,5 * 7 + 0,5 * 3 = 0, utta varianssi pienenee. Odotettu hyöty = 0, , 5 3 = 3,5 > 0, , 5 5 = 3, > Odotettu hyöty kasvaa.0. Sijoitushyödykkeiden hinnoittelu - Arvopaperiarkkinoilla jaetaan ja hinnoitellaan riskejä. - Sijoittajalle tuotto on hyödyke ja riski haitake. - Sijoittajan hyötyfunktio on jälleen ordinaalinen. U = U(r,s) du( r, s) > 0 dr du( r, s) < 0 ds r: tuotto s: keskihajonta Odotettu tuotto ( r ) r = S s= π sw Odotettu varianssi s π s : tapahtuan s todennäköisyys ws : varallisuus (tuotto) tapahtualla s S s = π s( ws r), s= josta saadaan keskihajonta ottaalla neliöjuuri

11 39 S s = π s( ws r) s= Hyötyfunktion perusteella - Sijoittaja saa saan odotetun tuoton pieneällä riskillä > Hyöty kasvaa - Sijoittaja sietää suurepaa riskiä, jos odotettu tuotto kasvaa. Kuvio 3.

12 40

13 4 Sijoittajan käyttäytyinen Sijoittajalla kaksi vaihtoehtoa: ) Sijoittaa riskittöään arvopaperiin (rf, 0) ) Sijoittaa riskiä sisältävään arvopaperisalkkuun (r, s) Riskin hinta = r r s f Sijoittajan hyötyfunktiosta saadaan rajasubstituutiosuhde (MRS) differentioialla U = U(r,s) -----> Ur dr + Us ds = 0 dr ds U U s = = MRS r Sijoittajan optiivalinta, kun MRS = r r s f (Kuvio 3.3)

14 4

15 43 Yksittäisen osakkeen hinnoittelu - Edellisessä analyysissä sijoittajalla oli valittavissa vain yksi riskiä sisältävä sijoituskohde > riskiä voitiin itata keskihajonnalla. - Kun valittavana on useita riskiä sisältäviä arvopapereita, yksittäisen arvopaperin keskihajonta ei kuvaa riskiä > sijoittajan riski riippuu koko arvopaperisalkun riskistä. - Ostaalla useita riskiä sisältäviä arvopapereita -----> riskiä voidaan pienentää tuoton pysyessä ennallaan. Esi. kaksi arvopaperia (jäätelötehdas A ja sateenvarjotehdas B), kaksi ahdollista tapahtuaa (sateinen kesä,aurinkoinen kesä ), oleat tapahtuat yhtä todennäköisiä. (paistaa) (sataa) A 0-5 valitaan A (s = 7,5, r =,5) (jäätelötehdas) B -5 0 valitaan B (s = 7,5, r =,5) (sateenvarjotehdas) valitaan 0,5A+0,5B (s = 0, r =,5) - Jos valitaan toinen arvopaperi (A tai B), joudutaan ottaaan riskiä. - Valitsealla puolet olepia arvopaperia, saadaan saa odotettu tuotto ilan riskiä > Negatiivisesti korreloidut osakkeet hyödyllisiä salkussa, koska ne vähentävät riskiä > Osakkeen oa keskihajonta ei kuvaa riskiä > Osakkeen riskisyyttä kuvaa parhaiten osakkeen korrelaatio uiden osakkeiden kanssa.

16 44 Osakkeen reagointia koko arvopaperisalkun uutoksille kuvataan beta-kertoiella. Osakkeella pieni β : osakearkkinoiden uutoksilla vain pieni vaikutus osakkeen hintaa (pieni riski). Osakkeella suuri β : osakearkkinoiden uutoksilla suuri vaikutus osakkeen hintaan (suuri riski). Osakearkkinoilla hinnoitellaan riskin ja tuoton suhde Riskin hinta = r r s f Yksittäisen osakkeen sisältää riski on βi s Riskin kustannus on * βi s = r r s f * βi s = βi (r - rf) Tasapainossa kaikilla osakkeilla pitää olla saa riskikorjattu tuotto ri - βi (r - rf) = rf ri = rf + βi (r - rf) CA -alli Kaikki osakkeet hinnoitellaan CA -allin ääritteleälle arvopaperiarkkinasuoralle (ks. kuvio 3.4).

17 45

18 46.. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisein tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko arkkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskealla yhteen yksittäiset kysyntäkäyrät. Kuluttajan i hyödykkeen kysyntä X X = (,, ) i i i Koko arkkinoiden kysyntä X (,,,,... ) = Xi (,, i ) Huo. arkkinakysyntä riippuu yös tulonjaosta. ----> Tarkastelua rajoitetaan siten, että arkkinoilla ajatellaan olevan yksi edustava kuluttaja, jonka tulot ovat kaikkien tulojen sua. X = X (,, M) M: talouden kokonaistulot Kun oletetaan M ja uuttuattoiksi, voidaan piirtää talouden kysyntäkäyrä. n n i= M kasvaa ----> kysyntäkäyrä siirtyy ylöspäin (noraalihyödyke) M vähenee ----> kysyntäkäyrä siirtyy alaspäin (noraalihyödyke) X on substituutti ja sen hinta kasvaa ----> X kysyntäkäyrä siirtyy ylöspäin X on kopleentti ja sen hinta kasvaa ----> X kysyntäkäyrä siirtyy alaspäin

19 Kuvio 5. 47

20 48 b) Joustot ) kysynnän tulojousto ε = äärän suhteellinen uutos / tulojen suhteellinen uutos ε = q q = q * q ε > 0 noraalihyödyke ε < 0 inferiorinen hyödyke ε > ylellisyyshyödyke 0 < ε < välttäättöyyshyödyke ) kysynnän hintajousto - käsitellään usein positiivisena lukuna εp = äärän suhteellinen uutos / hinnan suhteellinen uutos εp = q q p p = q p * p q εp > εp < εp = joustava kysyntä joustaaton kysyntä ykkösjoustava kysyntä

21 49 3) kysynnän ristijousto εp = hyödykkeen kysynnän suhteellinen uutos / hyödykkeen hinnan suhteellinen uutos εp = q q p p = q p * p q εp > 0 εp < 0 substituutti kopleentti iirrä lineaarinen kysyntäkäyrä q = 0 - p ja analysoi joustot.

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä Kuluttajan teoriaa tähän asti Valintojen tekemistä niukkuuden vallitessa - Tavoitteen optimointia rajoitteella Luento 6 Kuluttajan ylijäämä 8.2.2010 Budjettirajoite (, ) hyödykeavaruudessa - Kulutus =

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21)

3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 1. Työn tarjonta Kuluttajan valintateorian perusmalli soveltuu suoraan kotitalouksien työn tarjontapäätöksen

Lisätiedot

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus Kulutus Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 13.11.2013 Antti Ripatti (HECER) Kulutus 13.11.2013 1 / 11 Indifferenssikäyrät ja kuluttajan teoria Tarkastellaan edustavaa kotitaloutta.

Lisätiedot

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 tudent: ate: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 016 Assignment: 016 www 1. Millä seuraavista tuotteista on itseisarvoltaan pienin kysynnän hintajousto? A. Viini B. Elokuvat

Lisätiedot

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n.

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n. Harjoitukset 2, vastauksia. Ilmoittakaa virheistä ja epäselvyyksistä! 1. b (kysyntäkäyrä siirtyy vasemmalle) 2. c (kysyntäkäyrä siirtyy oikealle) 3. ei mikään edellisistä; oikea vastaus olisi p 2

Lisätiedot

TU Kansantaloustieteen perusteet Syksy 2016

TU Kansantaloustieteen perusteet Syksy 2016 TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä

Lisätiedot

3. www-harjoitusten mallivastaukset 2016

3. www-harjoitusten mallivastaukset 2016 TU-91.1001 Kansantaloustieteen perusteet 3. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Reaalitulo perunoina on 0 = 40 20*P, mistä seuraa 2 perunaa. Reaalitulo korkokenkinä on M = 40-0*P = 40 makkaraa.

Lisätiedot

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '

Lisätiedot

Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola)

Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Hyvinvointiteoria tarkastelee sitä, miten resurssien allokoituminen kansantaloudessa vaikuttaa ihmisten hyvinvointiin Opimme

Lisätiedot

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P Osa 5. Joustoista Kysynnän hintajousto (price elasticity of demand) mittaa, miten kysynnän määrä reagoi hinnan muutokseen = kysytyn määrän suhteellinen muutos jaettuna hinnan suhteellisella muutoksella

Lisätiedot

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT KYSYNTÄ, TARJONTA JA HINTA Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT Paikka, jossa ostaja ja myyjä kohtaavat, voivat hankkia tietoa vaihdettavasta tuotteesta sekä tehdä

Lisätiedot

, tuottoprosentti r = X 1 X 0

, tuottoprosentti r = X 1 X 0 Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen

Lisätiedot

Hintakilpailu lyhyellä aikavälillä

Hintakilpailu lyhyellä aikavälillä Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:

Lisätiedot

Riski ja velkaantuminen

Riski ja velkaantuminen Riski ja velkaantuminen TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 28.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta (FCF) 2. Rahavirtojen

Lisätiedot

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x) Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.

Lisätiedot

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV

Lisätiedot

2. Hyödykkeen substituutit vaikuttavat kyseisen hyödykkeen kysynnän hintajoustoon.

2. Hyödykkeen substituutit vaikuttavat kyseisen hyödykkeen kysynnän hintajoustoon. TU-91.1001 Kansantaloustieteen perusteet WWW-harjoitus 2, syksy 2016 Vastaukset 1. Millä hyödykkeistä on pienin kysynnän hintajousto? V: D. Maito. Pienin kysynnän hintajousto (eli hinnanmuutoksen vaikutus

Lisätiedot

c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L

c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi HARJOITUKSET II 1. Jutan ruokavalio koostuu yksinomaan nauriista ja lantuista. Jutan hyötyfunktio on muotoa U(N,L) = 12NL. Tällä hetkellä Jutta on päättänyt

Lisätiedot

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016 Korko ja inflaatio Makrotaloustiede 31C00200 Kevät 2016 Sisältö Nimellis ja reaalikorot, Fisher yhtälö Lyhyt ja pitkä korko Rahapolitiikka ja korot Korko ja inflaatio Nimellinen korko i: 1 tänä vuonna

Lisätiedot

3d) Yes, they could: net exports are negative when imports exceed exports. Answer: 2182.

3d) Yes, they could: net exports are negative when imports exceed exports. Answer: 2182. . Se talous, jonka kerroin on suurempi, reagoi voimakkaammin eksogeenisiin kysynnän muutoksiin. Investointien, julkisen kysynnän tai nettoviennin muutokset aiheuttavat sitä suuremman muutoksen tasapainotulossa,

Lisätiedot

Kappale 9: Raha ja rahapolitiikka KT34 Makroteoria I. Juha Tervala

Kappale 9: Raha ja rahapolitiikka KT34 Makroteoria I. Juha Tervala Kappale 9: Raha ja rahapolitiikka KT34 Makroteoria I Juha Tervala Raha Raha on varallisuusesine, joka on yleisesti hyväksytty maksuväline 1. Hyödykeraha Luonnollinen arvo Esim.: kulta, oravanahkat, savukkeet

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Investointimahdollisuudet ja niiden ajoitus

Investointimahdollisuudet ja niiden ajoitus Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 2 Termiini- ja futuurihintojen määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola. luento 2 Termiini- ja futuurihintojen määräytyminen Rahoitusriskit ja johdannaiset Matti Estola luento 2 ermiini- ja futuurihintojen määräytyminen 1. ermiinien hinnoittelusta Esimerkki 1 Olkoon kullan spot -hinta $ 300 unssilta, riskitön korko 5 % vuodessa

Lisätiedot

Makrokatsaus. Elokuu 2016

Makrokatsaus. Elokuu 2016 Makrokatsaus Elokuu 2016 Osakkeet nousussa elokuussa Osakemarkkinat ovat palautuneet entiselle tasolleen Brexit-päätöksen jälkeen. Elokuussa pörssin tuotto oli vaisua tai positiivisella puolella useimmilla

Lisätiedot

Nordnetin luottowebinaari

Nordnetin luottowebinaari Nordnetin luottowebinaari Tervetuloa webinaariin! Webinaarissa opit käyttämään luottoa kaupankäynnissä. Lisää ostovoimaa luotolla, käytä salkkuasi luoton vakuutena ja paranna tuottomahdollisuuksia. Webinaarissa

Lisätiedot

LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1.

LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1. S-445 FSIIKK III (ES) Syksy 004, LH 5 Ratkaisut LHSf5-* Osoita, että van der Waalsin kaasun tilavuuden läötilakerroin on R ( b ) R a b Huoaa, että läötilakerroin on annettu oolisen tilavuuden = / ν avulla

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) 4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

TENTTIKYSYMYKSET

TENTTIKYSYMYKSET MIKROTALOUSTEORIA (PKTY1) Ari Karppinen TENTTIKYSYMYKSET 20.10.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään kysymykseen! Muista kirjoittaa nimesi

Lisätiedot

Taloustieteen perusteet 31A00110 19.02.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus

Taloustieteen perusteet 31A00110 19.02.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Taloustieteen perusteet 31A00110 19.02.2016 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Yht Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi

Lisätiedot

Pankkitalletukset ja rahamarkkinasijoitukset. Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry

Pankkitalletukset ja rahamarkkinasijoitukset. Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry Pankkitalletukset ja rahamarkkinasijoitukset Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry Korkosijoitukset Korkosijoituksiin luokitellaan mm. pankkitalletukset, rahamarkkinasijoitukset,

Lisätiedot

Verotus ja talouskasvu. Essi Eerola (VATT) Tulevaisuuden veropolitiikka -seminaari 25.09.2009

Verotus ja talouskasvu. Essi Eerola (VATT) Tulevaisuuden veropolitiikka -seminaari 25.09.2009 Verotus ja talouskasvu Essi Eerola (VATT) Tulevaisuuden veropolitiikka -seminaari 25.09.2009 Johdantoa (1/2) Talouskasvua mitataan bruttokansantuotteen kasvulla. Pienetkin erot talouden BKT:n kasvuvauhdissa

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Väestötaloustiede taloustieteen erityisalueena. Menetelmiä ja tuloksia Ulla Lehmijoki Taloudelliset termit tutuiksi

Väestötaloustiede taloustieteen erityisalueena. Menetelmiä ja tuloksia Ulla Lehmijoki Taloudelliset termit tutuiksi Väestötaloustiede taloustieteen erityisalueena. Menetelmiä ja tuloksia Ulla Lehmijoki Taloudelliset termit tutuiksi 20.3.2014 Taloustieteen menetelmät Taloudellinen imperialismi : taloustieteen menetelmät

Lisätiedot

Luento 8. June 3, 2014

Luento 8. June 3, 2014 June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa

Lisätiedot

Kuluttajan valinta. Tulovaikutukset. Hyvinvointiteoreemat. Samahyötykäyrät. Variaatiot (kompensoiva ja ekvivalentti) Hintatason mittaamisesta

Kuluttajan valinta. Tulovaikutukset. Hyvinvointiteoreemat. Samahyötykäyrät. Variaatiot (kompensoiva ja ekvivalentti) Hintatason mittaamisesta Kuluttajan valinta Tulovaikutukset Hyvinvointiteoreemat Samahyötykäyrät Variaatiot (kompensoiva ja ekvivalentti) Hintatason mittaamisesta 1 Mikrotaloustiede (31C00100) Prof. Marko Terviö Aalto-yliopisto

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

Pystysuuntainen hallinta 2/2

Pystysuuntainen hallinta 2/2 Pystysuuntainen hallinta 2/2 Noora Veijalainen 19.2.2003 Yleistä Tarkastellaan tilannetta jossa: - Ylävirran tuottajalla on yhä monopoliasema - Alavirran sektorissa vallitsee kilpailu - Tuottaja voi rajoitteillaan

Lisätiedot

Sijoitusmahdollisuudet hyödykkeisiin johdannaisten avulla

Sijoitusmahdollisuudet hyödykkeisiin johdannaisten avulla Sijoitusmahdollisuudet hyödykkeisiin johdannaisten avulla Sisältö Commerzbank AG Kulta, Hopea, Öljy ja VIX Bull & Bear Mini Future BEST Mahdollisuudet ja riskit 1 Commerzbank AG Saksan toiseksi suurin

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

SIJOITTAJAN OPAS ETF-rahastoihin

SIJOITTAJAN OPAS ETF-rahastoihin SIJOITTAJAN OPAS ETF-rahastoihin Pörssinoteerattu rahasto eli ETF (Exchange-Traded Fund) on rahasto, jolla voidaan käydä kauppaa pörssissä. ETF:ien avulla yksityissijoittajalla on mahdollisuus sijoittaa

Lisätiedot

Talousnäkymät 2015 Helsingin seudun kauppakamarin Luoteis-Uudenmaan kauppakamariyksikkö 7.11.2014 Timo Hirvonen Ekonomisti

Talousnäkymät 2015 Helsingin seudun kauppakamarin Luoteis-Uudenmaan kauppakamariyksikkö 7.11.2014 Timo Hirvonen Ekonomisti Talousnäkymät 2015 Helsingin seudun kauppakamarin Luoteis-Uudenmaan kauppakamariyksikkö 7.11.2014 Timo Hirvonen Ekonomisti Markkinoilla turbulenssia indeksi 2010=100 140 Maailman raaka-aineiden hinnat

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18 Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa

Lisätiedot

suurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille

suurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille KILPAILUMUODOT Kansantaloustieteen lähtökohta on täydellinen kilpailu. teoreettinen käsitteenä tärkeä Yritykset ovat tuotantoyksiköitä yhdistelevät tuotannontekijöitä o työvoimaa o luonnon varoja o koneita

Lisätiedot

Makrokatsaus. Huhtikuu 2016

Makrokatsaus. Huhtikuu 2016 Makrokatsaus Huhtikuu 2016 Positiiviset markkinat huhtikuussa Huhtikuu oli heikosti positiivinen kuukausi kansainvälisillä rahoitusmarkkinoilla. Euroopassa ja USA:ssa pörssit olivat tasaisesti plussan

Lisätiedot

Sijoitusrahaston säännöt ODIN Offshore

Sijoitusrahaston säännöt ODIN Offshore Käännös norjan kielestä Sijoitusrahaston säännöt ODIN Offshore 1 Sijoitusrahaston nimi Sijoitusrahasto ODIN Offshore on itsenäinen varallisuusmassa, joka muodostuu määrittelemättömän henkilöjoukon pääomasijoituksista,

Lisätiedot

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Tehtävä 1.Tarkastellaan opiskelijaa, jolla opiskelun ohella jää 8 tuntia päivässä käytettäväksi työntekoon ja vapaa-aikaan. Olkoot hänen

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Tietoa hyödykeoptioista

Tietoa hyödykeoptioista Tietoa hyödykeoptioista Tämä esite sisältää tietoa Danske Bankin kautta tehtävistä hyödykeoptiosopimuksista. Hyödykkeet ovat jalostamattomia tuotteita tai puolijalosteita, joita tarvitaan lopputuotteiden

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

RAHA, RAHOITUSMARKKINAT JA RAHAPOLITIIKKA. Rahoitusmarkkinat välittävät rahoitusta

RAHA, RAHOITUSMARKKINAT JA RAHAPOLITIIKKA. Rahoitusmarkkinat välittävät rahoitusta RAHA, RAHOITUSMARKKINAT JA RAHAPOLITIIKKA Rahoitusmarkkinat välittävät rahoitusta välittää säästöjä luotoiksi (pankit) tarjoaa säästöille sijoituskohteita lisäksi pankit hoitavat maksuliikenteen Rahan

Lisätiedot

Onko velkakriisi todellakin loppunut? Meelis Atonen. konsernin kultapuolen johtaja

Onko velkakriisi todellakin loppunut? Meelis Atonen. konsernin kultapuolen johtaja Himmeneekö kullan kiilto? Onko velkakriisi todellakin loppunut? Meelis Atonen TAVEX OY konsernin kultapuolen johtaja Mikä on nykyinen maailmantalouden terveys? Lopulta taivaalta sataa euroja EKP on luvannut

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

0% 10% 20% 30% 40% 50% 1% 2% 23% 25% 24% 21% 26% 24%

0% 10% 20% 30% 40% 50% 1% 2% 23% 25% 24% 21% 26% 24% Lehdistötiedote 18.4.2012 Kuvio 1. Puolet sijoittajista ilmoittaa kokevansa stressiä säästöjensä ajattelemisesta Minkä verran säästöjesi sijoittamiseen liittyvät ajatukset aiheuttavat sinulle stressiä?

Lisätiedot

Makrotaloustiede 31C00200

Makrotaloustiede 31C00200 Makrotaloustiede 31C00200 Kevät 2016 Harjoitus 5 1.4.2016 Arttu Kahelin arttu.kahelin@aalto.fi Tehtävä 1 a) Käytetään kaavaa: B t Y t = 1+r g B t 1 Y t 1 + G t T t Y t, g r = 0,02 B 2 Y 2 = 1 + r g B 1

Lisätiedot

Henkilötunnus Sukunimi Etunimet

Henkilötunnus Sukunimi Etunimet Valintakokeessa on kaksi osaa: Osa 1 sisältää viisi esseetehtävää kansantaloustieteestä. Osasta 1 voi saada 0 30 pistettä. Osa sisältää kuusi matematiikan laskutehtävää. Osasta voi saada 0 30 pistettä.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

ehdolla y = f(x1, X2)

ehdolla y = f(x1, X2) 3.3. Kustannusten minimointi * Voiton maksimointi: panosten määrän sopeuttaminen -----> tuotanto * Kustannusten minimointi: tiett tuotannon taso -----> etsitään optimaalisin panoskombinaatio tuottamaan

Lisätiedot

Bayesilainen päätöksenteko / Bayesian decision theory

Bayesilainen päätöksenteko / Bayesian decision theory Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena

Lisätiedot

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17)

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen

Lisätiedot

Talouden näkymät INVESTOINTIEN KASVU ON PYSÄHTYNYT TALOUSKASVU NIUKKAA VUOSINA 2012 JA 2013

Talouden näkymät INVESTOINTIEN KASVU ON PYSÄHTYNYT TALOUSKASVU NIUKKAA VUOSINA 2012 JA 2013 5 2012 Talouden näkymät TALOUSKASVU NIUKKAA VUOSINA 2012 JA 2013 Suomen kokonaistuotannon kasvu on hidastunut voimakkaasti vuoden 2012 aikana. Suomen Pankki ennustaa vuoden 2012 kokonaistuotannon kasvun

Lisätiedot

jälkeen Return on Knowledge Arvopaperin Rahapäivä, 16. syyskuuta 2009 Finlandia-talo Aku Leijala Sampo Rahastoyhtiö Oy

jälkeen Return on Knowledge Arvopaperin Rahapäivä, 16. syyskuuta 2009 Finlandia-talo Aku Leijala Sampo Rahastoyhtiö Oy Rahastojen tuottonäkymät finanssikriisin jälkeen Arvopaperin Rahapäivä, 16. syyskuuta 2009 Finlandia-talo Aku Leijala Sampo Rahastoyhtiö Oy Return on Knowledge Houkuttelevat vaihtoehdot eri markkinatilanteisiin.

Lisätiedot

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ 53 LKTRONIN SUHTLLISUUSTORTTINN LIIK- MÄÄRÄ 53. Lorentz-uunnos instein esitti. 95 erikoisen suhteellisuusteorian eruseriaatteen, jonka ukaan kaikkien luonnonlakien tulee olla saoja haainnoitsijoille, jotka

Lisätiedot

Vellamonkodit Oy:n järjestely. Liiketoimintajaosto

Vellamonkodit Oy:n järjestely. Liiketoimintajaosto Vellamonkodit Oy:n järjestely Liiketoimintajaosto 31.5.2016 Vellamonkodit Oy:n tase Omistus kaupunki 13,98% (päiväkoti) ja Kotilinnasäätiö 86,02% (asuinrakennus) Taseen loppusumma 5,9 milj. euroa, josta

Lisätiedot

Makrokatsaus. Maaliskuu 2016

Makrokatsaus. Maaliskuu 2016 Makrokatsaus Maaliskuu 2016 Myönteinen ilmapiiri maaliskuussa Maaliskuu oli kansainvälisillä rahoitusmarkkinoilla hyvä kuukausi ja markkinoiden tammi-helmikuun korkea volatiliteetti tasoittui. Esimerkiksi

Lisätiedot

12 Oligopoli ja monopolistinen kilpailu

12 Oligopoli ja monopolistinen kilpailu 12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä

Lisätiedot

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä.

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. HUUTOKAUPOISTA A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. 2. Huutokauppapelejä voidaan käyttää taloustieteen

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

KEVÄT 2009: Mallivastaukset TERVEYSTALOUSTIEDE. 1. Määrittele seuraavat käsitteet (4. p, Sintonen - Pekurinen - Linnakko):

KEVÄT 2009: Mallivastaukset TERVEYSTALOUSTIEDE. 1. Määrittele seuraavat käsitteet (4. p, Sintonen - Pekurinen - Linnakko): KEVÄT 2009: Mallivastaukset TERVEYSTALOUSTIEDE 1. Määrittele seuraavat käsitteet (4. p, Sintonen - Pekurinen - Linnakko): 1.1. Vakuutettujen epätoivottava valikoituminen (1 p.) Käsite liittyy terveysvakuutuksen

Lisätiedot

PANKKIBAROMETRI I/2015

PANKKIBAROMETRI I/2015 PANKKIBAROMETRI I/2015 17.3.2015 1 Pankkibarometri I/2015 Sisällysluettelo 1 Kotitaloudet... 2 2 Yritykset... 5 Finanssialan Keskusliitto kysyy neljännesvuosittain Pankkibarometrin avulla pankinjohtajien

Lisätiedot

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

Mitä metsänomistajan on hyvä tietää hajauttamisesta. Risto Kuoppamäki, Nordea Varallisuudenhoito

Mitä metsänomistajan on hyvä tietää hajauttamisesta. Risto Kuoppamäki, Nordea Varallisuudenhoito Mitä metsänomistajan on hyvä tietää hajauttamisesta Risto Kuoppamäki, Nordea Varallisuudenhoito 3.9.2016 Sisältö Metsä sijoituskohteena: hyvät puolet ja riskit Eri sijoitusvaihtoehdot ja niiden pääpiirteet

Lisätiedot

Onko sijoittajalla oikeutta hyötyä ruuan hinnan noususta?

Onko sijoittajalla oikeutta hyötyä ruuan hinnan noususta? Onko sijoittajalla oikeutta hyötyä ruuan hinnan noususta? Finsifin seminaari 20.9.2011 Hanna Hiidenpalo 19.9.2011 1 Miksi elintarvikkeet ja ruuan tuotanto kiinnostavat myös sijoittajia? 35 % maailman työväestöstä

Lisätiedot

Seuraavaksi kysymme, onko tällainen markkinatasapaino yhteiskunnan kannalta hyvä vai huono eli toimivatko markkinat hyvin vai huonosti

Seuraavaksi kysymme, onko tällainen markkinatasapaino yhteiskunnan kannalta hyvä vai huono eli toimivatko markkinat hyvin vai huonosti Osa 7: Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7, Pohjolan mukaan) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla

Lisätiedot

KA 1 2009, tentti 14.10. 2009 (mikrotaloustieteen osuus), luennoitsija Mai Allo

KA 1 2009, tentti 14.10. 2009 (mikrotaloustieteen osuus), luennoitsija Mai Allo 1 KA 1 2009, tentti 14.10. 2009 (mikrotaloustieteen osuus), luennoitsija Mai Allo ÄLÄ IRROTA PAPEREITA TOISISTAAN! Ohjeet: Tenttikysymyksiä on kuusi (+ jokeri ohjeineen viimeisellä sivulla). Valitse tenttikysymyksistä

Lisätiedot

Fed kertoo taaperostaan. Pasi Sorjonen 16/12/2013

Fed kertoo taaperostaan. Pasi Sorjonen 16/12/2013 Fed kertoo taaperostaan Pasi Sorjonen 16/12/2013 Alkaako Fed taapertaa nyt vai kuukauden kuluttua? Viime viikon antia: Yhdysvalloissa sopu budjetista Tulevaa: Tavallista tärkeämpi keskuspankkien viikko

Lisätiedot

Asymmetrinen informaatio

Asymmetrinen informaatio Asymmetrinen informaatio Luku 36 Marita Laukkanen November 24, 2016 Marita Laukkanen Asymmetrinen informaatio November 24, 2016 1 / 10 Entä jos informaatio tuotteen laadusta on kallista? Ei ole uskottavaa,

Lisätiedot

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7)

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) 4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 1

Mat Dynaaminen optimointi, mallivastaukset, kierros 1 Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla

Lisätiedot

VERKKOLA. Verkkokauppapeli

VERKKOLA. Verkkokauppapeli VERKKOLA Verkkokauppapeli Vertti Woltti Verkkolan kunta Verkkolan kunta Tukku Maahantuoja Valmistaja Logistiikkakeskus Maksupalvelut Markkinointikeskus Pankki Talouden seuranta Pelaajan uutiset Satunnaistapahtumat

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 8. harjoitus 1. Ratkaise y + y + y = x. Kommentti: Yleinen työlista ratkaistaessa lineaarista, vakiokertoimista toisen kertaluvun differentiaaliyhtälöä

Lisätiedot

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % 6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

Monopoli 2/2. S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli 2/2. S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli / Monopolimarkkinat - oletuksia Seuraavissa tarkasteluissa oletetaan, että monopolisti tuntee kysyntäkäyrän täydellisesti monopolisti myy suoraan tuotannosta, ts. varastojen vaikutusta ei huomioida

Lisätiedot