ELEC-A7200 Signaalit ja järjestelmät

Samankaltaiset tiedostot
ELEC-A7200 Signaalit ja järjestelmät

ELEC-A7200 Signaalit ja järjestelmät

ELEC-A7200 Signaalit ja järjestelmät

Luento 8. Suodattimien käyttötarkoitus

Luento 5. tietoverkkotekniikan laitos

Signaalit ja järjestelmät aika- ja taajuusalueissa

Luento 8. Suodattimien käyttötarkoitus

Luento 9. tietoverkkotekniikan laitos

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri

Luento 4 Fourier muunnos

Numeeriset menetelmät

Luento 7. LTI-järjestelmät

Signaalimallit: sisältö

Luento 8. tietoverkkotekniikan laitos

Spektri- ja signaalianalysaattorit

IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.

Luento 2. Jaksolliset signaalit

2. kierros. 2. Lähipäivä

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla

S Signaalit ja järjestelmät

Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA OSA 1

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

spektri taajuus f c f c W f c f c + W

A! Modulaatioiden luokittelu. Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet. ELEC-C7230 Tietoliikenteen siirtomenetelmät

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

Helsinki University of Technology

Luento 7. tietoverkkotekniikan laitos

SIGNAALITEORIAN KERTAUSTA OSA 2

Signaalien datamuunnokset

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

Signaalien datamuunnokset. Digitaalitekniikan edut

ELEC-C7230 Tietoliikenteen siirtomenetelmät

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

1 Vastaa seuraaviin. b) Taajuusvasteen

Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N)

Luento 7. Järjestelmien kokoaminen osista

2. kierros. 1. Lähipäivä

ELEC-C5070 Elektroniikkapaja (5 op)

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN

Satunnaismuuttujien muunnokset ja niiden jakaumat

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

Dynaamisten systeemien identifiointi 1/2

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

Luento 5: Kantataajuusvastaanotin AWGNkanavassa I: Suodatus ja näytteistys a. Kuvaa diskreetin ajan signaaliavaruussymbolit jatkuvaan aikaan

Tietoliikennesignaalit & spektri

Luento 9. Epälineaarisuus

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen

Signaaliavaruuden kantoja äärellisessä ajassa a

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Radioamatöörikurssi 2015

Laplace-muunnos: määritelmä

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

MS-C1420 Fourier-analyysi osa I

Kapeakaistainen signaali

6.2.3 Spektrikertymäfunktio

LABORATORIOTYÖ 2 A/D-MUUNNOS

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

T SKJ - TERMEJÄ

Laskuharjoitus 4 ( ): Tehtävien vastauksia

LABORATORIOTYÖ 2 A/D-MUUNNOS

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0,

1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:

MS-C1420 Fourier-analyysi osa I

Havaitsevan tähtitieteen peruskurssi I. Datan käsittely. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

VAIHEKOHERENTIT BINÄÄRISET KANTOAALTOMODULAATIOT JA NIIDEN VIRHETODENNÄKÖISYYDET

Uuden sukupolven HF-kommunikaatiotekniikka

Radiokurssi. Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut

Tilastomatematiikka Kevät 2008

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Mat Systeemien identifiointi, aihepiirit 1/4

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Luento 9. Epälineaarisuus

LUKU 7 TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka I Osa 30 Kari Kärkkäinen Kevät 2015

MS-C1420 Fourier-analyysi osa I

Lähettimet ja vastaanottimet

Signaalien generointi

Jaksollisen signaalin spektri

Petri Kärhä 04/02/04. Luento 2: Kohina mittauksissa

1 Olkoon suodattimen vaatimusmäärittely seuraava:

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Dynaamiset regressiomallit

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Transkriptio:

ELEC-A700 Signaalit ja järjestelmät Professori Riku Jäntti

ELEC-A700 Signaalit ja järjestelmät Mitä kurssilla käsitellään? signaalien ja järjestelmien peruskäsitteitä signaali- ja järjestelmäanalyysin perusmenetelmiä signaalin siirron perusteita signaalin mittaamisen perusteita Missä tällaisia tietoja tarvitaan? kun jotain mitataan kun jotain signaalia siirretään kun signaaleja suodatetaan kun signaaleja generoidaan kun jotain järjestelmää säädetään

Signaalit ja järjestelmät Fysikaalinen järjestelmä Sähköpiiri Mekaaninen järjestelmä Virtausjärjestelmä Biologinen prosessi Jatkuvaaikainen signaali Jännite Virta Paine Terminen kohina 1/f kohina Pyyhkäisevä spekrianalysaattori Signaali taajuusalueessa Mittauskohina Alipäästösuodatin Näytteenotto Analogia- Digitaalimuunnos Diskreettiaikainen signaali FFT 8.9.016 3

Signaalit ja järjestelmät Fysikaalinen järjestelmä Sähköpiiri Mekaaninen järjestelmä Virtausjärjestelmä Biologinen prosessi Jatkuvaaikainen signaali Jännite Virta Paine Terminen kohina 1/f kohina Pyyhkäisevä spekrianalysaattori Signaali taajuusalueessa Mittauskohina Alipäästösuodatin Näytteenotto Analogia- Digitaalimuunnos Diskreettiaikainen signaali FFT 8.9.016 4

Johdanto luento Sisältö Kurssijärjestelyt Johdatus signaaleihin ja järjestelmiin Signaalin teho- ja energia Signaalit aika-alueessa Järjestelmät aika-alueeessa Signaalit taajuusalueessa Järjestelmät taajuusalueesa Modulaatio Satunnaissignaalit ja kohina Näytteenotto 8.9.016 5

Signaalien teho ja energia

Signaalin teho ja energia Sähköpiiri jossa resistiivinen 1 Ohmin kuorma (R=1 ς) Hetkellinen näennäisteho ut () 1 it () < ut () R R * 1 Pt () < uti () () t < ut () < ut () R Vastuksessa kuluva energia aikavälillä [t 0,t 1 ] t 1 1 E < P() t dt < u() t dt, t, t 0 0 t Vastuksessa kuluva keskimääräinen teho aikavälillä [t 0,t 1 ] t 1 1 1 1 P < P() t dt < u() t dt t, t t, t 1 0 t 1 0 t 0 0 t 7

Signaalien luokittelu Energiasignaalit: Tehosignaalit: Yleistetty energia T E? lim s() t dt T, T Signaali on energiasignaali, jos 0<E< Yleistetty teho T 1 P? lim T s() t dt T T, Signaali on tehosignaali, jos 0<P< 8

Jaksolliset signaalit ovat tehosignaaleja Jaksollinen signaali xt ( ) < xt ( T), t 0 T 0 on jaksonaika, 1/T 0 on ominaistaajuus Keskimääräisen tehon laskemiseksi riittää, että tarkastellaan yhtä jakson mittaista aikaväliä. Jakson paikka voidaan valita mielivaltaisesti T 0 t0 T0 () () 0 0 T T 0 t 1 1 P < x t dt < x t dt! t T 0 0 -T 0 / T 0 / t 9

Energiasignaalit Pulssit ovat energia signaaleita. Esim. Yksikköpulssi rect(t) Vaimenevat signaalit ovat (tyypillisesti) energiasignaaleja Vaimeneva värähtely ϖ (, at Ce cos t, a= 0 0 1 0.8 0.6 0.4 0. 0-0. -0.4-0.6-0.8 0 0.5 1 1.5.5 3 3.5 4 10

Erikoissignaalit voidaan lausua Diracin delta-funktion avulla Diracin delta-funktio χ(t) on äärettömän kapea pulssi, jonka pinta-ala on 1. χ(t) on tehosignaali, 0 χ() t dt < χ() t dt < 1 0, χ 1 t < rect δ δ ( t limδ 0 1 δ x( 1 1 1, x rect < 0 muutoin, 1 δ 1 δ 11

Erikoissignaalit Signum ja askel ovat tehosignaaleja, 1 t ; 0 sign( t) < 0 t < 0 1 t = 0 1 sign( t) 0 t 0 step( t) < < 1 t = 0 Erikoissignaalit riippuvat χ(t):stä! d dt sign( t) < χ ( t 1

Signaalit aikaalueessa Signaali-avaruus

Vektoriavaruus Vektori x voidaan esittää vektoriavaruuden ortonormaalin kannan {v k, k=1,, n} avulla n x< k < 1 H k ( v x v Sisätulo = Pistetulo n H * v x( x v < k i ki, i< 1 Ortonormaalisuus H vk vl ( 1 < 0 k k k < l l * xv * ( v x v φ φ 1 * vx 1 * ( v x v 1 1 x v v x 1 x 1 < x 1 < 0 0 < 1 v v 1 H * * < v1 v v v < 14

Signaaliavaruus Signaali x(t) voidaan esittää vektoriavaruuden ortonormaalin kannan {v k (t), k=1,, n} avulla n < k< 1 x() t x(), t v () t v () t Sisätulo k t1 * (), k()? () k() t x t v t 0 k x t v t dt Ortonormaalisuus: 1 l < k v(), t l vk() t < 0 l k x( t) < x rect( t) x rect( t, 1) 1 < xv () t x v () t 1 1 v1() t < rect() t t ( v( t) < rect, 1 15

Signaaliavaruus Sini ja kosini ovat ortogonaalisia Moduloitu signaali x( t) < Acos ϖ t π < Asin π cos ϖ t, Acos π sin ϖ t 8-PSK ( ( ( ( ( c c c Konstellaatio diagrammi 011 001 000 010 100 110 101 111 http://zone.ni.com/cms/images/devzone/tut/psk.jpg 16

Sisätulo Sisätulo mittaa signaalien samankaltaisuutta Esim. 100 ms pituinen pulssi x(t) halutaan havaita kohinasta. Millä ajanhetkellä pulssi alkoi? Pulssi x(t-00) Pulssi + kohina xt (,σ ), yt () Aika ms Aika ms Viive σ ms 17

Järjestelmät aikaalueessa Konvoluutio-integraali

Järjestelmät Järjestelmä / Systeemi / Prosessi on objekti, joka määrittää relaatiot signaalijoukon välillä. Järjestelmän signaalit jaetaan usein tulosuureisiin ja lähtösuureisiin Tulosignaalit ovat järjestelmästä riippumattomia Lähtösignaalit sisältävät järjestelmän tuottamaa informaatiota. Tyypillisesti järjestelmä reagoi lähtösignaaleihin ja tuottaa niiden perusteella lähtösignaalit. Tällöin tulo- ja lähtösignaalien välillä vallitsee kausaliteettisuhde. Häiriöt Manipuloitavat tulosuureet Järjestelmä Lähtösuureet SISO MISO SIMO MIMO Single Input-Single Output Multiple Input Single Output Single Input Multiple Output Multiple Input Multiple Output 19

Lineaariset aikainvariantit järjestelmät Linear Time Invariant (LTI) Systems Jatkuva-aikaisen LTI-järjestelmän toimintaa kuvaa lineaarinen differentiaaliyhtälö x(t) h(t) y(t) n n, 1 m m, 1 d d d d yt () <, a1 yt (), Κ, ayt () 1 n b0 xt () b1 xt () Κ bxt () n n, m m, 1 m dt dt dt dt R i(t) L i(t) C i(t) k B m v(t) vt () < Rit () v(t) dit () v() t < L dt v(t) dvt () i() t < C dt x 1 (t) x (t) F () t < k( x() t, x ()) t k < kχxt () 1 x 1 (t) x (t) () dχxt () Fb t < B dt x(t) () d xt () Fm t < m dt 0

LTI-järjestelmän impulssivaste Impulssivaste h(t) χ(t) h(t) h(t) Esim. RC suodatin R x(t) C y(t) 1

LTI-järjestelmän vaste LTI-järjestelmän vaste mielivaltaiselle herätteelle x(t) y( t) < x( σ) h( t, σ) dσ, Konvoluutiointegraali voidaan tulkita usean impulssivasteen summaksi y( t) < x( σ) h( t, σ) dσ x( kt ) h( t, kt ), k <, R http://mathlets.org/mathlets/convolution-accumulation/ x(t) C y(t)

Impulssivaste Esim. Konserttisalin akustiikan mallinnus h t h t σ ( () < kχ, k k 3

Signaalit 0,8 1 0,6 0,4 0, 0 0,8 1 0,6 0,4 0, 0 0,8 1 0,6 0,4 0, 0 Normaali sydämen lyönti 4 Hz 8 Hz 1 Hz 16 Hz 0 Hz Kammiotakykardia 4 Hz 8 Hz 1 Hz 16 Hz 0 Hz Kammiovärinä 4 Hz 8 Hz 1 Hz 16 Hz 0 Hz taajuusalueessa Fourier-sarja ja Fourier-muunnos

Jaksolliset signaalit ovat tehosignaaleja Aika-alueessa xt ( ) < xt ( T), t Fourier-sarja esitys οk x( t) < xk exp j k <, T 0 0 Taajuusalueessa ( k Fourier-sarjan kertoimet 1 οk x < x t exp j dt T, 0 T T 0 0 sk k Keskimääräinen teho Jaksonaika T 0 T 0 x() t -T 0 / T 0 / V 1 P< x() t dt< xk T t 0 T 0 k<, Viivaspektri Tehospektri Ominaistaajuus 1/T 0 Harmoninen taajuus /T 0, 3/T 0, 4/T 0, x k W Hz k T 0 Hz 5

Pulssit ovat energiasignaaleja Aika-alueessa xt ( ), t Fourier-käänteismuunnos Taajuusalueessa Fourier muunnos X( f), f < ο ( ( ) < ( )exp, ο ( x( t) X( f )exp j ft df, X f x t j ft dt, Pulssin energia E < x( t) dt < X( f ) df,, Energiaspektri xt () s(t) 1. 1 0.8 0.6 0.4 V X( f) S(f) 1 0.9 0.8 0.7 0.6 0.5 0.4 J Hz 0. 0-0. - -1.5-1 -0.5 0 0.5 1 1.5 t x( t) < rect( t) X( f) < sinc( f) 0.3 0. 0.1 0-4 -3 - -1 0 1 3 4 f 6

Jaksolliset signaalit ovat Fourier muunnettavissa erikoissignaalien avulla Aika-alueessa xt ( ) < xt ( T), t Fourier-sarja esitys οk x( t) < xk exp j k <, T 0 0 Taajuusalueessa sk Fourier-muunnos οk X( f) < xkχ f, k<, T0 k Keskimääräinen teho T 0 0 T 0 1 P < x() t dt < X( f ) df < xk T x() t V, k<, Tehospektri x k W Hz Jaksonaika T 0 -T 0 / T 0 / t k T Ominaistaajuus 1/T 0 Harmoninen taajuus /T 0, 3/T 0, 4/T 0, 0 Hz 7

Jaksollisen signaalin katkaisu Aika-alueessa xt ( ) < xt ( T), t Fourier-sarja esitys οk x( t) < xk exp j k <, T 0 0 Taajuusalueessa sk Fourier-muunnos οk X( f) < xkχ f, k<, T0 k Katkaistu signaali t xk ( t) < xt ( rect T Xk ( f) < Xf (, ε) Tsinc εtd ( ε, Jaksonaika T 0 T xk() t V Katkaistun signaalin spektri leviää Energiaspektri ( ) J Xk f Hz f Hz 8

Jaksollisen signaalin katkaisu Signaalin katkaiseminen käyttäen ikkunointifunktiota w(t) ( ( ( x () t < x t wt ( ) X ( f) < X f, εw ε dε k k, Kertolasku aika-alueessa <=> konvoluutio taajuusalueessa Esim. Siniaallon katkaisu käyttäen Hamming ja Hanning -ikkunoita http://www.ni.com/white-paper/4844/en/ 9

Aika- ja taajuusalueen analyysi Volttia Wattia/Hz 30

Aika- ja taajuusalueen signaalit Signaali generaattori Oskilloskooppi (Aika-alueen signali) Spektri-analysaattori (Taajuusalueen signaali) 31

Aika- ja taajuusalueen signaalit Signaaligeneraattorin tuottama kanttiaalto Kanttiaaltoja esiintyy mm. Digitaalinen kello signaali Hakkuriteholähteen tuottama vaihtojännite Testisignaali 3

Aika- ja taajuusalueen signaalit Spektrianalysaattorin tuottama tulos. -3.9 db Fourier-sarjaesityksen perusteella laskettu viivaspektri Teorian ennustamat arvot ovat erittäin lähellä mitattuja arvoja! -13.5 db -17.9 db -0.8 db -3.0 dḇ 4.7 db-6. db -7.4 db -8.5 db Teoriaa voi käyttää varmistaakseen siitä, että mittalaitteet on oikein kalibroitu! 8.9.016 33

http://www.hi-fiworld.co.uk/loudspeakers/69/91-frequency-response.html Järjestelmät taajuusalueessa Signaalien suodattaminen

Lineaariset aikainvariantit järjestelmät

LTI-järjestelmä aika- ja taajuusalueissa LTI-järjestelmä aika-alueessa x(t) h(t) ( ( y() t < h σ x t, σ dσ, LTI-järjestelmä taajuusalueessa Konvoluutio aika-alueessa Kertolasku taajuusalueessa X(f) H(f) Y( f) < H( f) X( f) 36

LTI-järjestelmän taajuusvaste x() t < cos οft( H(f) ζ ( ( ο ( y( t) < H f cos ft arg H f 0 Bode Diagram 0log 10 ( H(f) ) Magnitude (db) -10-0 -30 Teho vaimennus -40 0 arg{h(f)} Phase (deg) -45 Vaihesiirto -90 10-10 -1 10 0 10 1 10 Frequency (rad/sec) 37

Signaalin suodattaminen Y( f) < H( f) X( f) Mihin suodattimia tarvitaan? Signaalikaistan ulkopuolisen kohinan ja häiriöiden vaimentaminen Sovitettu suodatin signaalikohinasuhteen maksimoimiseksi näytteenottohetkellä Signaalien erottaminen muista signaaleista esim. radiovastaanottimessa Halutun pulssimuodon tai -spektrin generoiminen Siirtokanavan aiheuttamien lineaaristen vääristymien korjaus Alkuperäisen signaalin rekonstruktio näytteistä Dupleksisuodattimet (ylä- ja alasuunnan liikenteen erottaminen omille kaistoilleen) Esikorostus/jälkikorjausmenetelmät Peilitaajuussignaalin vaimentaminen superhetero- dyneperiaatteella toimivassa radiovastaanottimessa jne 38

Ideaaliset alipäästö-, ylipäästö- ja kaistanpäästösuodattimet Alipäästösuodatin H( f) A Kaistanpäästösuodatin H( f) A Päästökaista Ylipäästösuodatin H( f) A f Päästökaista Kaistanestosuodatin H( f) A f Estokaista f Estokaista f 39

Käytännön suodattimet KÄYTÄNNÖN SUODATIN 0log A(f) ΧA p Suodatinperheitä -10 db -0 db -30 db -40 db ΧA e Selektiivisyys päästökaista ylimenokaista estokaista 40

Käytännön suodattimet Esimerkki kaupallisesta Butterworth suodattimesta http://fi.mouser.com/images/texasinstruments/lrg/ti_soic_8.jpg 41

https://en.wikipedia.org/wiki/audio_power_amplifier#/media/file:unitra_ws- 503_arch1_%81%9.jpg Epälineaariset järjestelmät

Muistiton epälineaarisuus Epälineaarinen funktio f x(t) f( ) y(t) Taylor-sarja 1 1 1 3 y < f( x0) f '( x0) x, x0( f ''( x0) x, x0( f ''( x0) x, x0(...! 3! 4! < x x x... 3 0 1 3 Kertolasku aika-alueessa => Konvoluutio taajuusalueessa ( Y( f) < χ f X( f) X( f) X( f) X( f) X( f) X( f)... 0 1 3 43

Särö Muistiton epälineaarisuus synnyttää harmoonisia yliaaltoja x(t) οft( xt () < cos x f( ) y(t) 0 k< 1 ο ( yt ( ) < u u cos kft k x Särökerroin Kokonaissärökerroin (THD) u a n, 1 dn < A, A;; 1 u n n n, 1 1 a1 Särövaimennus An <, 0log dn ( tot u u3 u4 u5 3 4 5... u1 d < d d d d <... Kuuntele säröä: http://en.wikipedia.org/wiki/file:distortion_effect.ogg 44

Keskinäismodulaatio Kaksi eritaajuista signaalia sekoittuu epälineaarisessa järjestelmässä f, f x(t) x x 1 f( ) y(t) f < lf mf x x x keskeis l m < n 1 l <...,,,, 1,0,1,,... m<..,,,, 1,0,1,,... 45

Epälineaarisuuden karakterisointi Epälineaarisia komponentteja kuten tehovahvistimia mallinnetaan usein matala-asteisilla polynomeilla ( 3 f( x()) t a1x() t a3x t Mallin parametrit selvitetään usein käyttäen ns. two-tone testisignaalia x( t) < Acos ϖt Acos ϖ t ( ( 1 Teho spektri (db) f 1 f f 1 -f f 1 f f +f 1 46

( 3 y() t a1x() t a3x t a a 1 3 < 10 G 0 IP3 G, 3 10 0 <, 10 3 IP3 3 Output power (dbm) IM < P P t t IP 3 Input power IP 3 IM 3 47

https://en.wikipedia.org/wiki/modulation#/media/file:amfm3-en-de.gif Modulaatio https://www.google.fi/search?q=fm+radio&source=lnms&tbm=isch&sa=x &ved=0ahukewi9i9kopc_nahxgo5okhbapc5cq_auiccgb&biw=180& bih=953#imgrc=rmlld5lfdjpjam%3a

Modulaatio Modulaatiossa siirretään moduloivan signaalin spektri kantoaallon taajuusalueelle, joko siten että spektrin muoto säilyy lineaarisessa modulaatiossa, tai niin että spektrin muoto muuttuu epälineaarisessa modulaatiossa Moduloiva signaali v(t) Modulaattori c(t) Kantoaalto generaattori x(t) Kantoaalto Moduloitu signaali 49

Modulaatio ja demodulaatio (DSB) cos ο ft( c Vaihelukittu luuppi cos ο ft( c vt () xt () Kanava yt () ~ rt () Modulointi Demodulointi Alipäästösuodatus V( f) Y( f), f c f c X( f) R( f), f c f c 50

Satunnaissignaalit Kohina

Satunnaismuuttujat Satunnaismuuttuja Otosavaruus Tapahtuma Todennäköisyys Kertymäfunktio x ς ς E ς ζ E E Ζ ( ) Pr x < ζ Pr : 0,1 F x x x F(, < ) 0, F( < ) 1 x x Todennäköisyystiheys Odotusarvo Momentti Varianssi d fx ( x) < Fx ( x) 0 dx ζ x E < xf () x dx k ζ x, k E < x f () x dx, x ζ x < ζ x, ζ x var E E x f ( ) 0 x x 5

Satunnaismuuttujat Yhteisjakauma Riippumattomat satunnaismuuttujat: Kovarianssi: fxy, ( xy, ) ζ ζ ζ fx, y ( x, y) < fy ( x) fy ( y) E xy < E x E y ζ ζ ( ζ ( * Cov (, ) E E E x y < x, x y, y xy, Jos ja ovat riippumattomia Cov ( xy<, ) 0 xy, Cov (, ) < varζ Esim: y< ax b a jab vakioita => x y a x xy, 53

Satunnaissignaalit Satunnaisen signaalin käyttäytymistä tulevaisuudessa ei voida tarkasti ennustaa. Voidaan vain esittää todennäköisyys sille, että amplitudi on jollakin amplitudivälillä ( Pr xt () x < F(;) xt Satunnaissigaali on stationäärinen mikäli sen tilastolliset ominaisuudet eivät riipu ajasta x Amplitude 8 6 4 0 - -4 0 50 100 150 00 Time 8 6 4 Keskihajonta ρ= Oletusarvo λ=3 0 - -4 PDF 0 0.05 0.1 0.15 0. Todennäköisyys tiheys 54

Satunnaissignaali Stationääriset ergodiset stokastiset prosessit Aika-alueessa Autokorrelaatiofunktio * r( σ) < E ζ s( t) s ( t σ) Fourier-käänteismuunnos ο σ( r( σ) < S( f )exp j f df, Taajuusalueessa Fourier-muunnos = tehospektri ο σ( S( f ) < r( σ)exp, j f dt, Keskimääräinen teho ζ P < r(0) < E s() t < S( f ) df, 55

Valkoinen kohina Johtuu varautuneiden partikkelien (elektronien) satunnaisesta liikkeestä johtavassa aineessa. Kohinan amplitudi noudattaa Gaussin jakaumaa r x ζ xt < ζ xt < ρ E () 0, var () Autokorrelaatio ( < E ζ xtxt ( ) ( ) < ( σ σ χ σ ρ ( ρ χ σ σ Nollakeskiarvoista Varianssi = tehotiheys Tehospektri S ( ) x f < ρ Kohinan teho on jakaantunut tasan kaikille taajuuksille Tehotiheys huoneen lämpötilassa -174 dbm/hz 56

Värillinen kohina http://en.wikipedia.org/wiki/colors_of_noise LTI järjestelmä taajuusalueessa Deterministinen heräte X(f) X(f) H(f) Y( f) < H( f) X( f) Stokastinen heräte S x (f) H(f) S ( f) < H( f) S ( f) y x Sx( f) H( f) Sy ( f ) 57

Näytteenotto

Näytteenotto Otetaan jatkuvasta signaalista näytteitä tasavälein T xt () ζ x( kt), k ϒ T s näytteenottoväli f s =1/T s näytteenottotaajuus Nyquistin teoreema: Jos signaalin x(t) kaistanleveys on B, niin signaali voidaan palauttaa näytepisteistä mikäli fs B?f N Nyquistin rajataajuus. X( f) X s( f ) < fs X f, kfs( k<, fs B Xs ( f) B B 59

Näytteenotto Aliasointi ilmiö: Yli Nyquistin taajuuden oleva signaali, näyttää näytteistyksen jälkeen alemman taajuuden signaalilta. 1 0.8 0.6 0.4 0. 0 f s =4 Hz, f N = Hz f=1 Hz f=3 Hz -0. f f N, f -0.4-0.6 f N -0.8-1 0 0. 0.4 0.6 0.8 1 1. 1.4 1.6 1.8 t X( f) X s( f ) < fs X f, kfs( k<, fs ; B Gs ( f) B B 60

Kvantisointi Analogia digitaalimuunnoksessa analogia signaali kvantisoidaan Esim. Tasavälinen kvantisoija: kvantisointitasojen lukumäärä M Signaalin amplitudin dynaaminen alue [-A.A] x A QM Ζx < A M, 1 x < floor( x) M, 1, 1 Pyöristys alaspäin A A Χ x < < Kvantisointitasojen väli M M, 1 Χ x x 61

Kvantisointi Kvantisointia voidaan mallittaa tasajakautuneena additiivisena kohinana x A -A e y x Ρ y M bittinen A/D muunnos, tasojen määrä on M Signaali kohina-suhde A/D muuntimen ulostulossa sinimuotoiselle signaalille, jonka amplitudi on A=1. 1 P A 3 SNR < < < ρ x e M ~ 1.76 db 6.006 db/bitti Χx( 1 ( ) 1 rect x fe x < Χx Χx 6

Analogia-digitaalimuunnos (ADC) x T s =1/f s A y näytteenotto -A kvantisointi Kvantisointikohina on tasajakautunut taajuuksille [0,f N ] missä f N =f s / on Nyquistin rajataajuus ja f s on näytteenottotaajuus. Tarkastellaan kaistarajoitetun signaalin x(t) näytteistämistä. Kaistanleveys on B. Ylinäytteistämällä f s >B saadaan kvantisointikohinan vaikutusta tarkasteltavalle kaistalle pienennettyä 63

Diskreetti F-muunnos (DFT) ja nopea F-muunnos (FFT) Diskreetti Fourier muunnos (DFT) sekvenssille {x 0,x 1, x N-1 } N, 1 X ( k) xe D < n< 0 n n, iο k N FFT on DFT:n numeerisesti tehokas implementaatio Fourier muunnoksen numeerinen laskeminen T x pituiselle pulssille x(t) N, 1, iο ft ( ) s ( s) < s D( ), n< 0 X f T x nt e T X k k k T f < < fs, N < NT N T s x s 64

Signaalit ja järjestelmät

Mitä pitäisi oppia? Signaalien ja järjestelmien aika-alueen analyysi Sisätulo Impulssivaste Konvoluutio-integraali Signaalien taajuusalueen analyysi Viivaspektri, tehospektri, energiaspektri Signaalin kaistanleveys Jaksollisen signaalin spektrin leviäminen kun signaali katkaistaan Järjestelmien taajuusalueen analyysi Stabiilisuus, amplitudi ja vaihevääristymät, ryhmäkulkuaikaviive Alipäästösuodattimen mitoitus Epälineaariset järjestemät Särö ja keskinäismodulaatio Modulaatio ja demodulaatio Lineaarinen modulaatio (DSB, AM) Epälineaarinen modulatio (FM) Näytteenotto Nyquistin rajataajuus Aliasointi Kvantisointi Signaalien taajuusalueen analyysi käyttäen FFT:tä Satunnaiset signaalit Stationääriset ergodiset stokastiset prosessit Autokorrelaatio ja tehospektri Kohinan suodattaminen / värillinen kohina 66

Miksi? Jotta ymmärtää mitä pitää huomioida signaaleja Mitattaessa Siirrettäessä Generoitaessa 67