Signaalien generointi
|
|
- Yrjö Parviainen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Signaalinkäsittelyssä joudutaan usein generoimaan erilaisia signaaleja keinotekoisesti. Tyypillisimpiä generoitavia aaltomuotoja ovat eritaajuiset sinimuotoiset signaalit (modulointi) sekä normaalijakautunut kohina, mutta digitaalisesti voidaan generoida myös mielivaltaisia aaltomuotoja. Yleisimmät tekniikat perustuvat taulukkolukujen (look-up table) käyttöön. Muita mahdollisia toteutustapoja ovat mm. marginaalisesti stabiiliin rekursioon perustuvat generaattorit. Signaalin generointi taulukkoluvuilla Signaaleja voidaan generoida digitaalisesti lukemalla aaltomuodosta muistiin talletettuja näytepisteitä. Näytepisteet voidaan muodostaa näytteistämällä analoginen aaltomuoto tai laskennallisesti. Jos näytepisteet kuvaavat tarkasti signaalin yhden jakson, voidaan jatkuva signaali muodostaa lukemalla näytepisteiden muodostama jakso useita kertoja peräkkäin. Jyrki Laitinen TL5362 DSK-algoritmit (S23) 1
2 Signaalin generointi taulukkoluvuilla (jatkuu) Generoidun signaalin taajuutta voidaan muunnella vaihtamalla nopeutta, jolla näytepisteiden arvot luetaan taulukosta, tai yleisemmin vaihtamalla taulukosta luettavien näytepisteiden lukumäärää. Jälkimmäisessä tapauksessa on huomioitava laskostumisen mahdollisuus. Aaltomuodon laatua mitataan yleensä harmonisella kokonaissäröllä (total harmonic distortion, THD). Hyvälaatuisilla signaaleilla perustaajuuden tehon suhde harmonisten taajuuksien tehoon on tyypillisesti > db. Jyrki Laitinen TL5362 DSK-algoritmit (S23) 2
3 Esimerkki. Sinimuodon generointi taulukkoluvuilla. Talletetaan N kpl tasavälisesti poimittuja näytteitä sinin jaksosta binaarimuodossa lukumuistiin ja luetaan ne vakioaskelin etenevällä osoitelaskurilla halutulla näytetaajuudella. i 36 x, N [] i = sin, i = 1, K N Näyte Arvo Koska sinijakso on symmetrinen, riittää tässä tapauksessa periaatteessa ¼-jakson näytepisteiden tallettaminen. Tällöin saavutetaan merkittävä muistisäästö, mutta lukualgoritmit monimutkaistuvat. Jyrki Laitinen TL5362 DSK-algoritmit (S23) 3
4 Esimerkki. Sinimuodon generointi taulukkoluvuilla. (jatkuu) Käytännössä generoitavan signaalin taajuutta joudutaan useimmiten säätämään vaihtelemalla taulukosta luettavien näytepisteiden määrää. Jos taajuutta muutetaan kokonaislukuaskelin, on näyteajoitus täsmällinen ja generoituun signaaliin syntyvä särö määräytyy näytteiden esitystarkkuudesta. Jos sen sijaan käytössä on murtolukuaskel taulukkoa luetaan kokonaisluvuksi katkaistulla osoittimen arvolla, jolloin näyteajoituksen virheistä syntyy lisäsäröä. Jos esim. edellä halutaan generoida siniä perustaajuuden f asemesta taajuudella 8f/6 ja lukunopeus on vakio, jää ainoaksi mahdollisuudeksi generoida signaali nopeammin lukemalla vähemmän näytepisteitä yhtä jaksoa kohden. Tässä siis kahdeksan pisteen asemesta luetaan vain kuusi pistettä, jolloin yksi jakso tuotetaan lyhyemmässä ajassa eli signaalin taajuus kasvaa (f 8f/6). Jyrki Laitinen TL5362 DSK-algoritmit (S23) 4
5 Esimerkki. Sinimuodon generointi taulukkoluvuilla. (jatkuu) taulukoidut arvot halutut arvot Näyte Haluttu arvo Taulukoitu arvo Virhe Jyrki Laitinen TL5362 DSK-algoritmit (S23) 5
6 Esimerkki. Sinimuodon generointi taulukkoluvuilla. (jatkuu) Taajuuden säädössä syntyvää säröä voidaan pienentää interpoloimalla taulukoitujen näytepisteiden välisiä arvoja. y y = = A + B T b A + ( B A T a t A) F T b t T A on aika-akselin suunnassa lähimpänä interpoloitavaa arvoa oleva taulukon piste. Arvot (B - A) voidaan joko laskea erikseen tai tallettaa valmiiksi taulukkoon. Kun esim. edellä kasvatettiin generoitavan sinisignaalin taajuutta f 8f/6, on ositelaskurin murto-osan arvo F = 2/6 = 1/3. a = osoitelaskurin murto - osan arvo = F T a + t taulukoidut arvot lin. interp. arvot Jyrki Laitinen TL5362 DSK-algoritmit (S23) 6 T a A y B T b
7 Esimerkki. Sinimuodon generointi taulukkoluvuilla. (jatkuu) Näyte Haluttu arvo Lin. interp. arvo Virhe Jyrki Laitinen TL5362 DSK-algoritmit (S23) 7
8 Kohinan generointi Signaalien generointi Kohinaa generoidaan yleensä signaalien modulointia tai järjestelmien simulointia ja testausta varten. Koska testisignaalin tulee yleensä muistuttaa mahdollisimman paljon todellisia signaaleja, tulisi generoitavan kohinan jakauman olla normaalijakauman kaltainen (Gaussin kellokäyrä), mikä on luonnossa esiintyvän satunnaiskohinan tyypillinen muoto. Kohinan generointi perustuu satunnaislukujen muodostamiseen, joka voidaan toteuttaa laskennallisesti tai ns. takaisinkytketyllä siirtorekisterillä. Satunnaislukujen laskennalliseen muodostukseen käytettävät algoritmit ovat usein muotoa R = (as + b) mod c, missä R on satunnaisluku, a, b ja c ovat mielivaltaisesti valittuja vakioita ja S siemenluku. Yhdestä siemenluvusta lähtien voidaan muodostaa satunnaissatunnaislukujen jono. Jono toistuu kuitenkin samaa siemenlukua käytettäessä aina samanlaisena. Jyrki Laitinen TL5362 DSK-algoritmit (S23) 8
9 Kohinan generointi (jatkuu) Signaalien generointi Siemenlukua voidaan myös vaihtaa, jolloin satunnaisuutta voidaan lisätä. Yleinen tekniikka on muodostaa uusi siemenluku kellonajasta aina järjestelmän käynnistyksen yhteydessä. Laskennalliset satunnaislukugeneraattorit muodostavat tyypillisesti satunnaislukuja, joiden arvot ovat välillä..1, keskiarvo.5, hajonta 1/ 12 ja jakauma (todennäköisyystiheysfunktio, probability density function = pdf) tasainen. Jakaumaa voidaan approksimoida näytepisteiden histogrammilla. Kun generoituja satunnaislukuja summataan, tuloksena saatavan kohinan jakauma alkaa lähestyä normaalijakaumaa. Kun jokainen kohinapiste muodostetaan n. 12 satunnaisluvun summana jakauma approksimoi yleensä riittävän hyvin normaalijakaumaa. Algoritmi perustuu tilastotieteen keskeiseen raja-arvolauseeseen (central limit theorem), jonka mukaan satunnaislukujen summan jakauma lähestyy normaalijakaumaa, kun termien määrää lisätään, riippumatta satunnaislukujen jakauman muodosta. Jyrki Laitinen TL5362 DSK-algoritmit (S23) 9
10 Kohinan generointi (jatkuu) Signaalien generointi Muodostettaessa satunnaislukuja takaisinkytketyllä siirtorekisterillä saadaan valesatunnainen (pseudo-random) sekvenssi, joka on jaksollinen pitkällä tarkasteluvälillä. Takaisinkytkijöitten sijoittelu määrää syntyvän satunnaissekvenssin pituuden. Jos siirtorekisterin pituus on M bittiä, satunnaissekvenssin maksimipituus on 2 M -1. Maksimipituisella sekvenssillä rekisterissä käyvät kaikki mahdolliset bittikombinaatiot lukuunottamatta lukua.... MSB siirtorekisteri LSB XOR XOR lähtö takaisinkytkijät Jyrki Laitinen TL5362 DSK-algoritmit (S23) 1
11 Kohinan generointi (jatkuu) Normaalijakautunut kohina Keskihajonta σ Keskiarvo µ σ 2 = varianssi = teho Jyrki Laitinen TL5362 DSK-algoritmit (S23) 11
12 Kohinan generointi (jatkuu) Signaalien generointi Normaalijakauma (µ =, σ = 1) Todennäköisyys σ σ Arvo Jyrki Laitinen TL5362 DSK-algoritmit (S23) 12
13 Kohinan generointi (jatkuu) Signaalien generointi Jyrki Laitinen TL5362 DSK-algoritmit (S23) 13
Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Johdanto ja pseudosatunnaislukujen generointi Eri menetelmiä satunnaismuuttujien
TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
Satunnaislukujen generointi
Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
Havaintoaineiston trimmauksen vaikutus otoskeskiarvoon
TEKNILLINEN KORKEAKOULU Teknillisen fysiikan ja matematiikan koulutusohjelma Mat-.108 Sovelletun matematiikan erikoistyöt 13.11.001 Havaintoaineiston trimmauksen vaikutus otoskeskiarvoon Kalle Soukka 4193W
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
Tietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
Virheen kasautumislaki
Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin
TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja SPDemo-ohjelmistoja käyttäen. Kokoa
IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.
TL536DSK-algoritmit (J. Laitinen)..5 Välikoe, ratkaisut Millaisia ongelmia kvantisointi aiheuttaa signaalinkäsittelyssä? Miksi ongelmat korostuvat IIR-suodatinten tapauksessa? Tarkastellaan Hz taajuista
2. kierros. 2. Lähipäivä
2. kierros 2. Lähipäivä Viikon aihe Vahvistimet, kohina, lineaarisuus Siirtofunktiot, tilaesitys Tavoitteet: tietää Yhden navan vasteen ekvivalentti kohinakaistaleveys Vastuksen terminen kohina Termit
1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen
AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (008). Digital audio signal processing (nd ed). Reiss. (008), Understanding sigma-delta modulation: The solved and
6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4
Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen
Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen
MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon
11 Raja-arvolauseita ja approksimaatioita
11 Raja-arvolauseita ja approksimaatioita Tässä luvussa esitellään sellaisia kuuluisia todennäköisyysteorian raja-arvolauseita, joita sovelletaan usein tilastollisessa päättelyssä. Näiden raja-arvolauseiden
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Diskreetit muuttujat,
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot
Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot Sievin lukio Tehtävien ratkaisut tulee olla esim. Libre officen -writer ohjelmalla tehtyjä. Liitä vastauksiisi kuvia GeoGebrasta ja esim. TI-nSpire
Signaalien datamuunnokset. Digitaalitekniikan edut
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena
Signaalien datamuunnokset
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan
Teema 8: Parametrien estimointi ja luottamusvälit
Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.
Simulointi. Satunnaisluvut
Simulointi Satunnaisluvut Satunnaisluvut Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin, John v. Neumann Simuloinnissa käytetään aina näennäisesti satunnaisia
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Satelliittipaikannus
Kolme maailmalaajuista järjestelmää 1. GPS (USAn puolustusministeriö) Täydessä laajuudessaan toiminnassa v. 1994. http://www.navcen.uscg.gov/gps/default.htm 2. GLONASS (Venäjän hallitus) Ilmeisesti 11
Tilastolliset jakaumat, niiden esittäminen ja tunnusluvut
TILASTO-OPPIA Tilastolliset jakaumat, niiden esittäminen ja tunnusluvut Diskreetit jakaumat ja niiden esittäminen frekvenssitauluna ja kaaviona Jakauma on diskreetti jos tilastomuuttuja voi saada vain
Jaksollisen signaalin spektri
Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Laitteita - Yleismittari
Laitteita - Yleismittari Yleistyökalu mittauksissa Yleensä digitaalisia Mittaustoimintoja Jännite (AC ja DC) Virta (AC ja DC) Vastus Diodi Lämpötila Transistori Kapasitanssi Induktanssi Taajuus 1 Yleismittarin
1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:
TL61, Näytejonosysteemit (K00) Harjoitus 1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) 1 (t) = cos(000πt) + sin(6000πt) + cos(00πt) ja ) (t) = cos(00πt)cos(000πt).
Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset
Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset valintakriteerit resoluutio ja nopeus Yleisimmät A/D-muunnintyypit:
Parametrin estimointi ja bootstrap-otanta
Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista
EMC Säteilevä häiriö
EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä
Todennäköisyysjakaumia
8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
ELEC-C5070 Elektroniikkapaja (5 op)
(5 op) Luento 5 A/D- ja D/A-muunnokset ja niiden vaikutus signaaleihin Signaalin A/D-muunnos Analogia-digitaalimuunnin (A/D-muunnin) muuttaa analogisen signaalin digitaaliseen muotoon, joka voidaan lukea
13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
Algoritmit 2. Luento 12 Ke Timo Männikkö
Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit
MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312 SATE.2010 Dynaaminen kenttäteoria MIKROAALTOUUNI Sivumäärä: 12 Jätetty tarkastettavaksi:
tilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen
Flash AD-muunnin Koostuu vastusverkosta ja komparaattoreista. Komparaattorit vertailevat vastuksien jännitteitä referenssiin. Tilanteesta riippuen kompraattori antaa ykkösen tai nollan ja näistä kootaan
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
Luento 2. Jaksolliset signaalit
Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi
Jatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä
1 DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä JK 23.10.2007 Johdanto Harrasteroboteissa käytetään useimmiten voimanlähteenä DC-moottoria. Tämä moottorityyppi on monessa suhteessa kätevä
Simulointi. Simulointi kätevää kun muuttujissa vaihtelua. Luennon sisältö. Mitä simulointi on? L u e n t o
L u e n t o Katariina Kemppainen / Logistiikka Simulointi Luennon sisältö Simulointimallit päätöksenteossa Todennäköisyysjakaumat Satunnaisluvut ja Ecel Mallin rakentaminen Simulointi kätevää kun muuttujissa
LABORATORIOTYÖ 2 A/D-MUUNNOS
LABORATORIOTYÖ 2 A/D-MUUNNOS 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä ja näytteenottotaajuus
LABORATORIOTYÖ 2 A/D-MUUNNOS
LABORATORIOTYÖ 2 A/D-MUUNNOS Päivitetty: 23/01/2009 TP 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
2. TILASTOLLINEN TESTAAMINEN...
!" # 1. 1. JOHDANTO... 3 2. 2. TILASTOLLINEN TESTAAMINEN... 4 2.1. T-TESTI... 4 2.2. RANDOMISAATIOTESTI... 5 3. SIMULOINTI... 6 3.1. OTOSTEN POIMINTA... 6 3.2. TESTAUS... 7 3.3. TESTIEN TULOSTEN VERTAILU...
Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)
Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen
https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Tulosten keruu ja analyysi Varianssinreduktiotekniikoista 24/09/2002
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
Alias-ilmiö eli taajuuden laskostuminen
Prosessiorientoituneet mallit Todellista hybridijärjestelmää ELEC-C1230 Säätötekniikka Luku 12: Näytteenottoteoreema ja jatkuvien säätimien diskreetit approksimaatiot Prosessiorientoituneet mallit katsotaan
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?
21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä
SIGNAALITEORIAN KERTAUSTA OSA 2
1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman
Esimerkki 1: auringonkukan kasvun kuvailu
GeoGebran LASKENTATAULUKKO Esimerkki 1: auringonkukan kasvun kuvailu Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi aurinkoisina kesinä hyvissä kasvuolosuhteissa Suomessakin
Luento 9. tietoverkkotekniikan laitos
Luento 9 Luento 9 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 9.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio
Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
Simulointi. Luennon sisältö. L u e n t o. Simulointimallit päätöksenteossa Todennäköisyysjakaumat. Satunnaisluvut ja Excel Mallin rakentaminen
L u e n t o Simulointi Luennon sisältö Katariina Kemppainen / Logistiikka Simulointimallit päätöksenteossa Todennäköisyysjakaumat Satunnaisluvut ja Excel Mallin rakentaminen Simulointimallit päätöksenteossa
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
Numeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti
Taajuusmittauskilpailu Hertsien herruus 2008 1. MITTAUSJÄRJESTELMÄ Mittausraportti Petri Kotilainen OH3MCK Mittausjärjestelmän lohkokaavio on kuvattu alla. Vastaanottoon käytettiin magneettisilmukkaantennia
Harjoitus 8: Monte Carlo -simulointi (Matlab)
SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheet Satunnaismuuttujien ja todennäköisyysjakaumien kertaus Tilastollinen estimointi
Simuloinnin taktisia kysymyksiä
Simuloinnin taktisia kysymyksiä Simuloinnilla on aina tavoite. Simuloitaessa on käytössä ohjelma, joka tilastollisesti riittävän yhtenevä alkuperäisen systeemin kanssa. Miten simulointi järjestetään niin,
Harjoitus 8: Monte-Carlo simulointi (Matlab)
Harjoitus 8: Monte-Carlo simulointi (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheet Satunnaismuuttujien ja todennäköisyysjakaumien
Normaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
Lähettimet ja vastaanottimet
Aiheitamme tänään Lähettimet ja vastaanottimet OH3TR:n radioamatöörikurssi Kaiken perusta: värähtelijä eli oskillaattori Vastaanottimet: värähtelijän avulla alas radiotaajuudelta eri lähetelajeille sama
Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
TL5231, Signaaliteoria (S2004) Matlab-harjoituksia
1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Generointi yksinkertaisista diskreeteistä jakaumista
S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita
Numeeriset menetelmät
Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion
Kapeakaistainen signaali
Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):
TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a
pisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
Oikosulkumoottorikäyttö
Oikosulkumoottorikäyttö 1 DEE-33040 Sähkömoottorikäyttöjen laboratoriotyöt TTY Oikosulkumoottorikäyttö T. Kantell & S. Pettersson 2 Laboratoriomittauksia suorassa verkkokäytössä 2.1 Käynnistysvirtojen