Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet
|
|
- Mikko Mäkelä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet
2 Käsitteelliset tehtävät
3 Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen? Miksi virtauksen irtaantuminen kasvattaa kappaleen vastusta? Miksi pallon vastus saattaa pienentyä, kun sen pintaa karhennetaan? Mitä siirtymäpaksuus kuvaa? Miten rajakerros vaikuttaa virtaviivoihin rajakerroksen ulkopuolella? Miten laminaarin ja turbulentin rajakerroksen nopeusjakaumat eroavat toisistaan? Pyörivät virtauskoneet Miten määrittelisit pumpun ja turbiinin? Mihin keskipakopumpun nopeuskolmion eri komponentit liittyvät? Miten pumpun momentti on määritettävissä sen sisään- ja ulosvirtauksen perusteella?
4 Putkisto ja häviöt
5 Putkisto ja häviöt Q, h p, D?
6 Putkisto ja häviöt
7 Putkisto ja häviöt Ratkeaa laajennetulla Bernoullilla ja mahdollisesti iteroimalla Vaihe 1 (Ongelma konseptuaalisella tasolla) mitä tiedetään virtaussuureista (paine, nopeus, asemakorkeus) mitä putkistossa tapahtuu? (minkälaisia häviöitä, onko pumppuja) miten suhtautuvat tuntemattomaan suureeseen?
8 Putkisto ja häviöt Vaihe 2 (Ongelman matemaattinen kuvaus) laajennettu Bernoulli, jossa kitkahäviöt selvitetään Moodysta painehäviön laskentaan tarvitaan suhteellinen pinnankarheus ja Reynoldsin luku Darcyn häviökerroin Putkiosuuden kitkahäviö (kirjassa major loss)
9 Putkisto ja häviöt Vaihe 3 (Ongelman ratkaiseminen) jos kysytään painehäviötä, homma suoraviivaista lasketaan tarvittavat suureet ja katsotaan häviökerroin Moodysta jos kysytään halkaisijaa tai tilavuusvirtaa, pitää iteroida kirjoitetaan kaikki yhtälöt (laajennettu Bernoulli, Reynoldsin luku, suhteellinen karheus) arvataan arvo (häviökertoimelle tai halkaisijalle, riippuu tilanteesta) lasketaan yhtälöistä arvot niin, että voidaan käyttää Moodya korjataan arvausta Moodyn perusteella ja toistetaan
10 Putkisto ja häviöt Tarkastellaan vaakasuoraa teräsputkea ( = mm), jonka läpi virtaa fluidia ( = 4.6x10-7 m 2 /s, = 800 kg/m 3 ) tilavuusvirralla 7600 l/min. Miten putkistossa tapahtuvat häviöt tyypillisesti jaotellaan ja mitä häviöitä tapahtuu tässä tapauksessa? (1p) Kuinka suuri painehäviö putkessa tapahtuu 100 metrin matkalla, jos sen halkaisija on 300 mm? (2p) Määritä putken halkaisija siten, että putken painehäviö on 100 kpa 150 metrin matkalla. (3p)
11 Pyörivät koneet
12 Pyörivät koneet
13 Pyörivät koneet Tehtävät ratkeavat tyypillisesti aina kulmaliikemäärän taseen avulla oleellista ymmärtää, mitä eri nopeuskomponentit tarkoittavat Vaihe 1 (Ongelma konseptuaalisella tasolla) mitä tehtävässä tapahtuu (mitä menee sisään, mitä tulee ulos) oleellista 1. massavirta laitteen läpi 2. tangentiaalinen nopeus maan suhteen sisään ja ulos nopeuskolmio sitoo nopeuskomponentit ja antaa tarvittaessa puuttuvan nopeuden ymmärrettävä, miten eri komponentit liittyvät ongelman asetteluun
14 Pyörivät koneet Vaihe 2 (Ongelman matemaattinen kuvaus) kulmaliikemäärän tase ja apuna jatkuvuusyhtälö oltava tarkkana nopeuskomponenttien kanssa kulmaliikemäärän vuossa esiintyy massavirta (normaalikomponentti) ja tangentiaalinen nopeus
15 Pyörivät koneet Vaihe 3 (Muiden suureiden laskenta) mitä tarkoittaa pumpun teho (ideaalinen, teoreettinen, todellinen, akseli)? miten lasketaan pumpun synnyttämä nostokorkeus? Mekaaninen työ (gh p )
16 Pyörivät koneet Keskipakopumpun impelleri pyörii nopeudella 1200 rpm kuvan 1 mukaisesti. Fluidi tulee pumppuun pyörimisakselin suuntaisesti ja lähtee pumpusta 30 o asteen kulmassa säteeseen nähden. Absoluuttinen nopeus V 2 ulosvirtauksessa on 30 m/s. Piirrä nopeuskolmio ulosvirtauksessa ja selitä, mihin nopeuskolmion eri komponentit liittyvät. (2p) Selitä, miten pystyt määrittämään pumpun momentin annetuista tiedoista ja laske momentti, jos fluidin tiheys on 1000 kg/m 3? (2p) Miten voit määrittää nostokorkeuden ja kuinka suuri se on b-kohdan arvoilla? (2p)
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin
LisätiedotKJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
Lisätiedot14. Putkivirtausten ratkaiseminen. KJR-C2003 Virtausmekaniikan perusteet
14. Putkivirtausten ratkaiseminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten erilaisia putkistovirtausongelmia ratkaistaan? Motivointi: putkijärjestelmien mitoittaminen sekä painehäviöiden
Lisätiedot17. Pyörivät virtauskoneet. KJR-C2003 Virtausmekaniikan perusteet
17. Pyörivät virtauskoneet KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mikä on pyörivä virtauskone ja miten sen toimintaa ja suorituskykyä voidaan tarkastella opitun perusteella? Motivointi: pyörivät
Lisätiedot(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi?
Tehtävä 1 Vettä (10 astetta) virtaa suorassa valurautaisessa (cast iron) putkessa, jonka sisähalkaisija on 100 mm ja pituus 70 m. Tilavuusvirta on 15 litraa minuutissa. (a) Osoita, että virtaus on turbulenttia.
LisätiedotKJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 1.9.2017 klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
Lisätiedot(b) Määritä pumpun todellinen nostokorkeus, jos pumpun hyötysuhde on 65 %. 160 mm. 100 mm. 650 rpm. Kuva 1: Tehtävän asettelu.
Tehtävä 1 Kuvan keskipakopumppu pumppaa vettä (ρ = 998 kg/m 3 ) tilavuusvirralla 180 l/s. Pumpun pesän korkeus on mm. Oletetaan, että sisäänvirtauksessa absoluuttisella nopeudella ei ole tangentiaalista
Lisätiedot4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet
4. Kontrollitilavuusajattelu ja massan säilyminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten partikkelisysteemiin liittyvän suuren säilyminen esitetään tarkastelualueen taseena ja miten massan
Lisätiedot0. Johdatus virtausmekaniikkaan ( , 1.11, 23 s.)
Kurssin keskeinen sisältö 0. Johdatus virtausmekaniikkaan (1.1-1.8, 1.11, 23 s.) Mitä virtaus on, miksi se on kiinnostavaa ja mitkä ovat siihen keskeisesti liittyvät käsitteet? Motivointi: Flows occur
Lisätiedot15. Rajakerros ja virtaus kappaleiden ympäri. KJR-C2003 Virtausmekaniikan perusteet
15. Rajakerros ja virtaus kappaleiden ympäri KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten virtaus käyttäytyy fluidiin upotetun kappaleen ympärillä ja erityisesti sen välittömässä läheisyydessä?
LisätiedotKJR-C2003 MAE130A UCI ME336 UTSA Summer2015 Lecture 01 Mitä tarkoittaa fluidi?
KJR-C2003 MAE130A UCI ME336 UTSA Summer2015 Lecture 01 Mitä tarkoittaa fluidi? Intro Fluid Mechanics Mitkä lait pitää toteutua virtauksessa? Aineominaisuudet Viskositeetti, liukumattomuusehto Leikkausjännitys
LisätiedotEsim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).
3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa
LisätiedotLuku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
LisätiedotLuku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
Lisätiedoty 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.
Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon
Lisätiedot3. Bernoullin yhtälön käyttö. KJR-C2003 Virtausmekaniikan perusteet
3. Bernoullin yhtälön käyttö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mitä Bernoullin yhtälö tarkoittaa ja miten sitä voidaan käyttää virtausongelmien ratkaisemiseen? Motivointi: virtausnopeuden
LisätiedotKuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
LisätiedotViikon aiheena putkivirtaukset
Viikon aiheena putkivirtaukset Tänään keskitytään putkivirtausten luonteeseen ja keskeisiin käsitteisiin Seuraavalla kerralla putkivirtausongelmien ratkaisemisesta Putkivirtausten käytännön relevanssi
Lisätiedot0. Johdatus virtausmekaniikkaan. KJR-C2003 Virtausmekaniikan perusteet
0. Johdatus virtausmekaniikkaan KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mitä virtaus on, miksi se on kiinnostavaa ja mitkä ovat siihen keskeisesti liittyvät käsitteet? Motivointi: Flows occur
Lisätiedot9. Kitkaton virtaus ja potentiaaliteoria. KJR-C2003 Virtausmekaniikan perusteet
9. Kitkaton virtaus ja potentiaaliteoria KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten ja millä edellytyksillä virtausongelmaa voidaan yksinkertaistaa? Motivointi: Navier-Stokes yhtälöiden ratkaiseminen
Lisätiedot7. Differentiaalimuotoinen jatkuvuusyhtälö. KJR-C2003 Virtausmekaniikan perusteet
7. Differentiaalimuotoinen jatkuvuusyhtälö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten lähestymistapaa pitää muuttaa, jos halutaan tarkastella virtausta lokaalisti globaalin tasetarkastelun
LisätiedotHydrauliikka: kooste teoriasta ja käsitteistä
ENY-C003 / S-05 Hydrauliikka: kooste teoriasta ja käsitteistä Sovelletussa hydrodynamiikassa eli hydrauliikassa käsitellään veden virtausta putkissa ja avouomissa sekä maaperässä. Käsitteitä Rataviiva,
LisätiedotFluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla
Tehtävä 1 Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla ( πy ) u(y) = U sin, kun 0 < y < δ. 2δ Tässä U on nopeus kaukana
Lisätiedot(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
Lisätiedot12. Mallikokeet. KJR-C2003 Virtausmekaniikan perusteet
12. Mallikokeet KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten sama virtausongelma voidaan mallintaa eri asetelmalla ja miten tämä on perusteltavissa dimensioanalyysillä? Motivointi: useissa käytännön
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien
LisätiedotChapter 1. Preliminary concepts
Chapter 1 Preliminary concepts osaa kuvata Reynoldsin luvun vaikutuksia virtaukseen osaa kuvata virtauksen kannalta keskeiset aineominaisuudet ja tietää tai osaa päätellä näiden yksiköt osaa tarvittaessa
LisätiedotDemo 5, maanantaina 5.10.2009 RATKAISUT
Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen
Lisätiedot11. Dimensioanalyysi. KJR-C2003 Virtausmekaniikan perusteet
11. Dimensioanalyysi KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten yksittäisen virtaustapauksen tuloksia voidaan yleistää tarkastelemalla ilmiöön liittyvien suureiden yksiköitä? Motivointi: dimensioanalyysin
LisätiedotSorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä
Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Yleista Sorptioroottorin jäähdytyskoneiston jäähdytystehontarvetta alentava vaikutus on erittän merkittävää
LisätiedotLuvun 12 laskuesimerkit
Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine
Lisätiedot4. Putkivirtaus 4. PUTKIVIRTAUS. 4.1 Virtauslajit ja Reynoldsin luku. 4.2 Putkivirtauksen häviöt
4. Putkivirtaus 4. PUTKIVIRTAUS Brnoullin yhtälön yhtydssä todttiin todllisssa virtauksssa syntyvän aina häviöitä, jotka muuttuvat lämmöksi. Putkivirtauksssa nämä häviät näkyvät painn laskuna virtaussuunnassa
LisätiedotTEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2
Aalto-yliopisto/Insinööritieteiden korkeakoulu/energiatalous ja voimalaitostekniikka 1(5) TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) Ilmaa komprimoidaan 1 bar (abs.) paineesta 7 bar
Lisätiedot(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.
Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)
LisätiedotHydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.
Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen
LisätiedotPHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
LisätiedotMUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011
Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut
A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi
LisätiedotPutkistovirtausmittauksia
Tiia Monto Työ tehty: 23.11.09 tiia.monto@jyu. 04075218560 Putkistovirtausmittauksia Assistentti: Arvostellaan: Abstract Työssä tutkittiin kuristuslaippaa, venturiputkea sekä pitot-putkea putkistovirtausmittauslaitteistolla.
LisätiedotPHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
LisätiedotLuento 16: Fluidien mekaniikka
Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla
Lisätiedoton radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
LisätiedotLuento 16: Fluidien mekaniikka
Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla
LisätiedotVirtaus ruiskutusventtiilin reiästä
Jukka Kiijärvi Virtaus ruiskutusventtiilin reiästä Kaasu- ja polttomoottorin uudet tekniset mahdollisuudet Polttomoottori- ja turbotekniikan seminaari 2014-05-15 Otaniemi Teknillinen tiedekunta, sähkö-
LisätiedotPERUSPERIAATTEET JA PUMPPUTYYPIT YLEISIMMÄT JUOKSUPYÖRÄTYYPIT
PERUSPERIAATTEET JA PUMPPUTYYPIT YLEISIMMÄT JUOKSUPYÖRÄTYYPIT Mikä on juoksupyörä? Juoksupyörä on keskipakopumpun tärkein osa. Kun juoksupyörä pyörii, se tuottaa nesteen siirtämistä eli pumppaamista varten
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
LisätiedotKon Hydraulijärjestelmät
Kon-41.4040 Hydraulijärjestelmät Hydraulijärjestelmän häviöiden laskenta Oheisten kuvien (2 5) esittämissä järjestelmissä voiman F kuormittamalla sylinterillä tehdään edestakaisia liikkeitä, joiden välillä
Lisätiedot,-xrt:lrw. Losses: apr,i"rio., : (f *) + pv2 and, apr*, : Kr*, L. Power: P:LpQ. Ef :*,,r(r'r f)*, -l,in(t* f),, Ensimmäinen välikoe. pv, g.o4.
Kul-34.3100 Introduction to Fluid Mechanics Ensimmäinen välikoe g.o4.2ot4 Muistathan, että perustelut ovat tärkeä osa laskua ja arvostelua! Properties of air density: pair : l.23kg/m3 (dynamic) viscosity:
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,
LisätiedotLuento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
LisätiedotLuento 10. Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit. BK60A0100 Hydraulitekniikka
Luento 10 Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit BK60A0100 Hydraulitekniikka 1 Yleistä Toimilaitteen liikenopeus määräytyy sen syrjäytystilavuuden ja sille tuotavan
LisätiedotSMG-4500 Tuulivoima. Kahdeksannen luennon aihepiirit. Tuulivoiman energiantuotanto-odotukset
SMG-4500 Tuulivoima Kahdeksannen luennon aihepiirit Tuulivoiman energiantuotanto-odotukset Tuulen nopeuden mallintaminen Weibull-jakaumalla Pinta-alamenetelmä Tehokäyrämenetelmä 1 TUULEN VUOSITTAISEN KESKIARVOTEHON
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
LisätiedotKAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
LisätiedotVenttiilin painehäviön mittaus
Lappeenrannan teknillinen yliopisto School of Energy Systems Energiatekniikan koulutusohjelma BH10A000 Energiatekniikan kandidaatintyö ja seminaari Venttiilin painehäviön mittaus Työn tarkastaja: Jari
LisätiedotLuvun 10 laskuesimerkit
Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän
LisätiedotTiivistimet. 1 Staattiset eli lepotiivistimet pyritään vuotamattomaan tiivistykseen. 2 Liiketiivistimet
Tiivistimet 1 Staattiset eli lepotiivistimet pyritään vuotamattomaan tiivistykseen 2 Liiketiivistimet 2.1 Kosketustiivistimet 2.2 Kosketuksettomat tiivistimet usein pienehkö vuoto hyväksytään pyörimisliike
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
LisätiedotMax. nostokorkeus Teho (kw) LVR3-7-220V 3 32 5 44 0,55 10 50Hz ~ 220 V G1. LVR3-7-380V 3 32 5 44 0,55 10 50Hz ~ 380 V G1
Kuvaus Virhehälytyksenestopumppu, jolla korvataan pienten vuotojen aiheuttama vedenhukka automaattisen sprinkleripumpun turhan käynnistymisen estämiseksi. Tekniset tiedot Tyyppi: Monivaiheinen keskipakopumppu
LisätiedotVAIHTOEHTO 4, PÄÄVESIJOHTO JA PÄÄJÄTEVESIVIEMÄRI YHTEISKÄYTTÖTUNNELISSA JÄTEVESIVIEMÄRISSÄ YKSI VÄLIPUMPPAUS
1 LIITE 2 VAIHTOEHTO 4, PÄÄVESIJOHTO JA PÄÄJÄTEVESIVIEMÄRI YHTEISKÄYTTÖTUNNELISSA JÄTEVESIVIEMÄRISSÄ YKSI VÄLIPUMPPAUS Mitoitus Vaihtoehdossa on selvitetty mahdollisuutta johtaa jätevedet yhteiskäyttötunneliin
LisätiedotLuento 5: Käyräviivainen liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,
LisätiedotMETALLILETKUJEN ASENNUSOHJEITA
METALLILETKUJEN ASENNUSOHJEITA METALLILETKUJEN ASENNUSOHJEITA Asennustapa A Asennustapa B Ø 12-100 Ø 125-300 2 Lasketaan kaavalla FS=2,3 r a=1,356 r Taivutussäde "r", kun asennus kuvan A mukaan Asennus
LisätiedotKinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike
Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin
LisätiedotSMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET
SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.
Lisätiedota) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
LisätiedotTehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.
TYÖ 9d. FYSIKAALISEN HEILURIN HITAUSMOMENTTI Tehtävä Välineet Taustatietoja Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. Fysikaalisena heilurina on metrin teräsmittana,
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon
Lisätiedot766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4
766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
LisätiedotE 3.15: Maan pinnalla levossa olevassa avaruusaluksessa pallo vierii pois pöydän vaakasuoralta pinnalta ja osuu lattiaan D:n etäisyydellä pöydän
HARJOITUS 2 E 3.9: Fysiikan kirja luisuu pois pöydän vaakasuoralta pinnalta nopeudella 1,10 m/s. Kirja osuu lattiaan 0,350 sekunnin kuluttua. Jätä ilmanvastus huomiotta. Laske a) pöydän pinnan etäisyys
Lisätiedot1 1 Johdanto Tassa muistiossa esitetaan Teknillisessa korkeakoulussa kehitetylla FINFLO-virtausratkaisijalla konstruoitu pumppukayra Ahlstromin valmis
Teknillinen Korkeakoulu CFD-ryhma/ Sovelletun termodynamiikan laboratorio MUISTIO No CFD/TERMO-10-96 pvm 4lokakuuta, 1996 OTSIKKO Pumppukayran konstruointi Ahlstromin pumpulle LAATIJA(T) Juha Ojala TIIVISTELMA
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
LisätiedotKon HYDRAULIIKKA JA PNEUMATIIKKA
Sarja Kon-4.303 HYDRAULIIKKA JA PNEUMATIIKKA erusteet Päiän teemat Sarja Neste kuin neste, onko sillä äliä? Tilauusirta, miten ja miksi? Mihin tilauusirtaa taritaan? Onko tilauusirran ja aineen älillä
LisätiedotSMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE
SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Roottorin toimintaperiaate Roottorin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Tuulivoimalan tehonsäätö 1 TUULIVOIMALAN
LisätiedotSMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE
SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN
LisätiedotFYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen
FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
Lisätiedot3.4 Liike-energiasta ja potentiaalienergiasta
Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate
LisätiedotHYDRAULITEKNIIKKA. Lappeenrannan teknillinen yliopisto Konetekniikan osasto Mekatroniikan ja virtuaalisuunnittelun laboratorio
Lappeenrannan teknillinen yliopisto Konetekniikan osasto Mekatroniikan ja virtuaalisuunnittelun laboratorio Ko4210000 Mekatroniikan peruskurssi Kevät 2007 HYDRAULITEKNIIKKA SISÄLLYSLUETTELO 1 HYDRAULIIKAN
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet, tentti
KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j
Lisätiedot766323A-02 Mekaniikan kertausharjoitukset, kl 2012
766323A-02 Mekaniikan kertausharjoitukset, kl 2012 Gravitaatio, liikemäärämomentti, ellipsiradat T 1: Oleta, että Marsin kuu Phobos kiertää Marsia ympyrärataa pitkin. Ympyrän säde on 9380 km ja kiertoaika
LisätiedotValomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.
Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin
LisätiedotHarjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
LisätiedotDEE Tuulivoiman perusteet
DEE-53020 Tuulivoiman perusteet Aihepiiri 2 Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT
LisätiedotDYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Mekaniikan peruslait (liikelait). Liikemäärän momentin tase. Kappaleen massan vaikutusmitat. Jäykän
LisätiedotHammaspyöräpumput sarjat
Hammaspyöräpumput sarjat 2030-5030 Magneettikytketyt hammaspyöräpumput Hammaspyöräpumppusarjat 2030, 3030, 4030 ja 5030 on kehitetty sarjoista 3000 ja 8200. Pumppusarja kattaa tilavuusvirta-alueen 20 ml/min
LisätiedotTuulen nopeuden mittaaminen
KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2
LisätiedotSMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET
SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT
LisätiedotTKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.
1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on
LisätiedotHydrologia. Pohjaveden esiintyminen ja käyttö
Hydrologia Timo Huttula L8 Pohjavedet Pohjaveden esiintyminen ja käyttö Pohjavettä n. 60 % mannerten vesistä. 50% matalaa (syvyys < 800 m) ja loput yli 800 m syvyydessä Suomessa pohjavesivarat noin 50
LisätiedotKitka ja Newtonin lakien sovellukset
Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
LisätiedotKerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
Lisätiedot