Chapter 1. Preliminary concepts
|
|
- Emilia Saaristo
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Chapter 1 Preliminary concepts osaa kuvata Reynoldsin luvun vaikutuksia virtaukseen osaa kuvata virtauksen kannalta keskeiset aineominaisuudet ja tietää tai osaa päätellä näiden yksiköt osaa tarvittaessa selvittää annetun fluidin aineominaisuudet osaa selittää viskositeetin käsitteen ja kuvata matemaattisesti leikkausjännitysten ja leikkausnopeuksien välisen yhteyden osaa määrittää leikkausjännityksen yksinkertaisessa leikkausvirtauksessa osaa kuvata ja johtaa partikkelikiihtyvyyden virtauskentän avulla osaa kuvata ja johtaa fluidialkion deformaatiomuodot virtauskentän avulla
2 Chapter 2 Fundamental equations of compressible viscous flow Osaa kuvata systeemin säilyvän suureen muutosnopeuden kontrollitilavuuden avulla käyttäen Reynoldsin kuljetuslausetta Osaa käyttää jännitystensoria jännityskomponenttien kuvaamiseen Osaa johtaa jatkuvuus-, liikemäärä- ja energiayhtälöt massan, liikemäärän ja energian säilymisen periaatteista lähtien Osaa selittää jatkuvuus-, liikemäärä- ja energiayhtälöiden sekä niissä esiintyvien termien fysikaalisen taustan osaa yksinkertaistaa virtausmekaniikan perusyhtälöt kokoonpuristumattomissa virtaustilanteissa osaa tehdä vallitsevat yhtälöt dimensiottomiksi ja tunnistaa virtausmekaniikassa tyypilliset dimensiottomat parametrit ja näiden merkitykset osaa selittää, miten dimensiottomia yhtälöitä voidaan käyttää fysikaalisten ilmiöiden suhteellisen merkittävyyden arviointiin
3 Chapter 3 Solutions of the Newtonian viscous-flow equations Osaa yksinkertaistaa vallitsevat yhtälöt Couette- ja Poiseuille-tyyppisten virtausten tapauksessa Osaa ratkaista yksinkertaistetuista yhtälöistä nopeus- ja lämpötilajakauman sekä analysoida ratkaisuista keskeisiä suureita, kuten virtaama, leikkausjännitys ja lämpövuo Osaa luokitella virtaustilanteita niissä esiintyvien parametrien avulla Osaa selittää, mitä virtausratkaisun similaarisuus tarkoittaa, miten se näkyy käytännön virtaustilanteissa sekä miten se vaikuttaa tyypillisesti virtausongelman ratkaisuprosessiin Osaa yksinkertaistaa vallitsevat yhtälöt viruavan virtauksen tapauksessa Osaa selittää, miten viruava virtaus pallon ympäri kuvataan matemaattisena ongelmana ja kuvata saadun ratkaisun keskeiset ominaisuudet ja erot vastaavaan suuren Reynoldsin luvun virtaukseen
4 Chapter 4 Laminar boundary layers Osaa selittää ja perustella, mitä virtaussuureiden osalta voidaan olettaa rajakerroksessa. Osaa johtaa siirtymä- ja liikemääräpaksuuksien määritelmät ja selittää, mikä on näiden fysikaalinen merkitys. Osaa ratkaista tasolevyn rajakerrossuureiden (paksuudet, leikkausjännitys) kehittymisen arvatun nopeusprofiilin avulla. Osaa johtaa rajakerrosyhtälöt ottaen huomioon virtaussuureiden käyttäytymisen rajakerroksessa. Osaa selittää virtauksen irtoamisen ja ulkoisen painegradientin välisen yhteyden rajakerrosyhtälöiden avulla. Osaa johtaa Blasiuksen rajakerrosyhtälön sekä perustella johdossa käytetyt muuttujavalinnat Osaa ratkaista Blasiuksen rajakerrosyhtälön Osaa selittää, miten Blasius-ratkaisusta päästään tasolevyvirtauksen lämpötilajakaumaan Osaa perustella, miksi rajakerrosyhtälöitä voidaan käyttää vapaiden leikkausvirtausten kuvaamiseen Osaa selittää, miten suihkulle voidaan johtaa similaarimuotoinen yhtälö sekä kuvata suihkun keskeiset piirteet ratkaisun perusteella osaa kuvata differenssimenetelmän keskeisen ajatuksen ja selittää, mitä eroa on eksplisiittisellä ja implisiittisellä menetelmällä osaa ratkaista kaksiulotteisia rajakerrosvirtauksia differenssimenetelmää käyttäen osaa kuvata laadullisesti joitain kolmiulotteisen rajakerrosvirtauksen erityispiirteitä, kuten ristivirtaus ja nopeuden kiertyminen rajakerroksessa
5 Chapter 5 The stability of laminar flows osaa kuvata lineaarisen stabillisuustarkastelun keskeisen ajatuksen osaa selittää, miten Orr-Sommerfeld -yhtälö johdetaan, mitä yhtälö kuvaa ja miten se eroaa Rayleigh-yhtälöstä osaa selittää, mitä tarkoittavat kitkallinen ja viskoosi epästabiilisuus ja mikä on näiden rooli käytännön virtaustilanteissa osaa selittää, miten transitio kehittyy ja miten eri tekijät (painegradientti, turbulenssiaste, pinnankarheus) vaikuttavat transitioon osaa arvioida transitiokohdan erilaisia korrelaatioita hyödyntäen
6 Chapter 6 Incompressible turbulent mean flow osaa selittää, mitä turbulenssi tarkoittaa ja miten turbulenssia käsitellään keskimääräisessä mielessä tilastollisena suureena osaa johtaa jatkuvuus- ja liikemääräyhtälön keskiarvosuureille osaa selittää, mitä Reynoldsin jännitystensori kuvaa ja mistä se seuraa osaa selittää turbulentin rajakerroksen rakenteen ja miten rakenne on johdettavissa perusoletuksista osaa selittää, miten hiekanjyväkarheuden vaikutus voidaan ottaa huomioon nopeusprofiilin muodossa osaa kuvata putki-, kanava- ja tasolevyvirtausten tyypillisten vastuskorrelaatioiden taustan ja miten turbulentin nopeusprofiilin perusteella voidaan arvioida seinämäjännitystä ja vastusta osaa selittää yleisellä tasolla, miten turbulenssia mallinnetaan käyttäen pyörreviskositeetin käsitettä
15. Rajakerros ja virtaus kappaleiden ympäri. KJR-C2003 Virtausmekaniikan perusteet
15. Rajakerros ja virtaus kappaleiden ympäri KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten virtaus käyttäytyy fluidiin upotetun kappaleen ympärillä ja erityisesti sen välittömässä läheisyydessä?
Lisätiedot4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet
4. Kontrollitilavuusajattelu ja massan säilyminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten partikkelisysteemiin liittyvän suuren säilyminen esitetään tarkastelualueen taseena ja miten massan
Lisätiedot0. Johdatus kurssiin. Ene Kitkallinen virtaus
0. Johdatus kurssiin Ene-39.4031 Kitkallinen virtaus Kurssin henkilökunta Vastuuopettaja: Tommi Mikkola tommi.mikkola@aalto.fi Assistentti: Petteri Peltonen petteri.peltonen@aalto.fi Tavoitteet ja sisältö
Lisätiedot0. Johdatus virtausmekaniikkaan ( , 1.11, 23 s.)
Kurssin keskeinen sisältö 0. Johdatus virtausmekaniikkaan (1.1-1.8, 1.11, 23 s.) Mitä virtaus on, miksi se on kiinnostavaa ja mitkä ovat siihen keskeisesti liittyvät käsitteet? Motivointi: Flows occur
LisätiedotMUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011
Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia
Lisätiedot7. Differentiaalimuotoinen jatkuvuusyhtälö. KJR-C2003 Virtausmekaniikan perusteet
7. Differentiaalimuotoinen jatkuvuusyhtälö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten lähestymistapaa pitää muuttaa, jos halutaan tarkastella virtausta lokaalisti globaalin tasetarkastelun
Lisätiedot11. Dimensioanalyysi. KJR-C2003 Virtausmekaniikan perusteet
11. Dimensioanalyysi KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten yksittäisen virtaustapauksen tuloksia voidaan yleistää tarkastelemalla ilmiöön liittyvien suureiden yksiköitä? Motivointi: dimensioanalyysin
LisätiedotKJR-C2003 MAE130A UCI ME336 UTSA Summer2015 Lecture 01 Mitä tarkoittaa fluidi?
KJR-C2003 MAE130A UCI ME336 UTSA Summer2015 Lecture 01 Mitä tarkoittaa fluidi? Intro Fluid Mechanics Mitkä lait pitää toteutua virtauksessa? Aineominaisuudet Viskositeetti, liukumattomuusehto Leikkausjännitys
LisätiedotKJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
Lisätiedoty 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.
Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon
LisätiedotKJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin
LisätiedotKJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 1.9.2017 klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
Lisätiedot9. Kitkaton virtaus ja potentiaaliteoria. KJR-C2003 Virtausmekaniikan perusteet
9. Kitkaton virtaus ja potentiaaliteoria KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten ja millä edellytyksillä virtausongelmaa voidaan yksinkertaistaa? Motivointi: Navier-Stokes yhtälöiden ratkaiseminen
LisätiedotViikon aiheena putkivirtaukset
Viikon aiheena putkivirtaukset Tänään keskitytään putkivirtausten luonteeseen ja keskeisiin käsitteisiin Seuraavalla kerralla putkivirtausongelmien ratkaisemisesta Putkivirtausten käytännön relevanssi
LisätiedotKertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet
Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet Käsitteelliset tehtävät Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen?
Lisätiedot(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.
Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)
Lisätiedot(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi?
Tehtävä 1 Vettä (10 astetta) virtaa suorassa valurautaisessa (cast iron) putkessa, jonka sisähalkaisija on 100 mm ja pituus 70 m. Tilavuusvirta on 15 litraa minuutissa. (a) Osoita, että virtaus on turbulenttia.
Lisätiedot3. Bernoullin yhtälön käyttö. KJR-C2003 Virtausmekaniikan perusteet
3. Bernoullin yhtälön käyttö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mitä Bernoullin yhtälö tarkoittaa ja miten sitä voidaan käyttää virtausongelmien ratkaisemiseen? Motivointi: virtausnopeuden
Lisätiedot12. Mallikokeet. KJR-C2003 Virtausmekaniikan perusteet
12. Mallikokeet KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten sama virtausongelma voidaan mallintaa eri asetelmalla ja miten tämä on perusteltavissa dimensioanalyysillä? Motivointi: useissa käytännön
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien
Lisätiedot0. Johdatus virtausmekaniikkaan. KJR-C2003 Virtausmekaniikan perusteet
0. Johdatus virtausmekaniikkaan KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mitä virtaus on, miksi se on kiinnostavaa ja mitkä ovat siihen keskeisesti liittyvät käsitteet? Motivointi: Flows occur
LisätiedotPHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
LisätiedotChapter 5. Life in the Slow Lane: The Low Reynolds-Number World
Chapter 5. Life in the Slow Lane: The Low Reynolds-Number World 1 Luento 5 10..017 Viskoosit nesteet Laminaarinen virtaus Turbulenssi Reynoldsin luku Pienten Reynoldsin lukujen maailma Kitkallinen virtaus
LisätiedotMATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN
MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN Matematiikka ja matematiikan soveltaminen, 4 osp Pakollinen tutkinnon osa osaa tehdä peruslaskutoimitukset, toteuttaa mittayksiköiden muunnokset ja soveltaa talousmatematiikkaa
LisätiedotPHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
LisätiedotDEE Tuulivoiman perusteet
DEE-53020 Tuulivoiman perusteet Aihepiiri 2 Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT
LisätiedotSMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET
SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT
LisätiedotLuku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
LisätiedotKuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
Lisätiedot14. Putkivirtausten ratkaiseminen. KJR-C2003 Virtausmekaniikan perusteet
14. Putkivirtausten ratkaiseminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten erilaisia putkistovirtausongelmia ratkaistaan? Motivointi: putkijärjestelmien mitoittaminen sekä painehäviöiden
LisätiedotLuku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
LisätiedotKULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
LisätiedotLuento 16: Fluidien mekaniikka
Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla
LisätiedotSMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET
SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.
LisätiedotFluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla
Tehtävä 1 Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla ( πy ) u(y) = U sin, kun 0 < y < δ. 2δ Tässä U on nopeus kaukana
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet
LisätiedotHydrauliikka: kooste teoriasta ja käsitteistä
ENY-C003 / S-05 Hydrauliikka: kooste teoriasta ja käsitteistä Sovelletussa hydrodynamiikassa eli hydrauliikassa käsitellään veden virtausta putkissa ja avouomissa sekä maaperässä. Käsitteitä Rataviiva,
Lisätiedot1 1 Johdanto Tassa muistiossa on tarkasteltu totuudenmukaisempien nopeuden, turbulenssin kineettisen energian ja dissipaation jakaumien kayttoa suutin
Teknillinen Korkeakoulu CFD-ryhma/ Sovelletun termodynamiikan laboratorio MUISTIO No CFD/TERMO-19-97 pvm 10 lokakuuta, 1997 OTSIKKO Suutinvirtauksen nopeusproilin vaikutus mallinnettaessa kaksiulotteista
LisätiedotMatemaattisesta mallintamisesta
Matemaattisesta mallintamisesta (Fysikaalinen mallintaminen) 1. Matemaattisen mallin konstruointi dynaamiselle reaalimaailman järjestelmälle pääpaino fysikaalisella mallintamisella samat periaatteet pätevät
LisätiedotDemo 5, maanantaina 5.10.2009 RATKAISUT
Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen
LisätiedotKatsaus virtauslaskennan kehitykseen. Seppo Laine lentotekniikan emeritusprofessori. CFD-päivä, Hanasaari 2013
Katsaus virtauslaskennan kehitykseen Seppo Laine lentotekniikan emeritusprofessori 2013 CFD-päivä, Hanasaari 2013 Sisältö Virtauksen laskeminen: eri menetelmiä menetelmien kehitys Transitio Automaattinen
LisätiedotPuukuitususpension putkistovirtaus, viskositeetti ja häviökorrelaatiomalli
Puukuitususpension putkistovirtaus, viskositeetti ja häviökorrelaatiomalli Pro Gradu-tutkielma Tapani Korhola Jyväskylän yliopisto, Fysiikan laitos 4.8.2010 Ohjaaja Markku Kataja Abstract We measured pressure
LisätiedotVirtaus ruiskutusventtiilin reiästä
Jukka Kiijärvi Virtaus ruiskutusventtiilin reiästä Kaasu- ja polttomoottorin uudet tekniset mahdollisuudet Polttomoottori- ja turbotekniikan seminaari 2014-05-15 Otaniemi Teknillinen tiedekunta, sähkö-
LisätiedotValomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.
Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin
LisätiedotEsim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).
3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa
Lisätiedot7 Lämmönsiirron laskenta ja yhtälöiden parametrisointi
191 7 Lämmönsiirron laskenta ja yhtälöiden parametrisointi 7.1 Energiayhtälö ja energiataseet Energiayhtälö (3.10) sisältää mahdollisuuden laskea monifaasivirtausta, koska mukana on faasien diffuusiosta
LisätiedotKon Simuloinnin Rakentaminen Janne Ojala
Kon 16.4011 Simuloinnin Rakentaminen Janne Ojala Simulointi käytännössä 1/3 Simulaatiomalleja helppo analysoida Ymmärretään ongelmaa paremmin - Opitaan ymmärtämään koneen toimintaa ja siihen vaikuttavia
LisätiedotVIRTAUSLASKENTA JA LÄMMÖNSIIRTO - sähköteknisten tuotteiden suunnittelujärjestelmän
Helsinki University of Technology CFD-group/ Laboratory of Applied Thermodynamics MEMO No CFD/TERMO-3-2 DATE: April 7, 2 TITLE VIRTAUSLASKENTA JA LÄMMÖNSIIRTO - sähköteknisten tuotteiden suunnittelujärjestelmän
LisätiedotLuvun 8 laskuesimerkit
Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20
LisätiedotKuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan
LisätiedotTransistori. Vesi sisään. Jäähdytyslevy. Vesi ulos
Nesteiden lämmönjohtavuus on yleensä huomattavasti suurempi kuin kaasuilla, joten myös niiden lämmönsiirtokertoimet sekä lämmönsiirtotehokkuus ovat kaasujen vastaavia arvoja suurempia Pakotettu konvektio:
LisätiedotVertaileva lähestymistapa järven virtauskentän arvioinnissa
Vertaileva lähestymistapa järven virtauskentän arvioinnissa Vertaileva lähestymistapa järven virtauskentän arvioinnissa Sisältö: 1. Virtauksiin vaikuttavat tekijät 2. Tuulen vaikutus 3. Järven syvyyden
LisätiedotLUKU 17 KOKOONPURISTUVA VIRTAUS
Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 17 KOKOONPURISTUVA VIRTAUS Copyright The McGraw-Hill Companies, Inc. Permission required for
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite
KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite Menestyminen nykypäivän poikkitieteellisissä työtehtävissä vaatii vahvan ymmärryksen eri insinöörialojen perusteista. Mekaniikan perusteiden ymmärtäminen
LisätiedotLuento 16: Fluidien mekaniikka
Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla
LisätiedotVirtaussimulointi Timo Siikonen
Virtaussimulointi Timo Siikonen c 2014 by Aalto University School of Engineering Department of Applied Mechanics Sähkömiehentie 4 FIN-00076 Aalto Finland ESIPUHE Tämän kurssin (Ene-39.4054) kirjallinen
Lisätiedot6 Turbulentin virtauksen laskenta
154 6 Turbulentin virtauksen laskenta 6.1 Turbulentti virtaus Ensimmäisessä luvussa kuvailtiin eräitä yksinkertaisia virtaustapauksia, joissa turbulenssin käsite tuli esille. Harva käsite on arkikielessä
LisätiedotKALLE VÄHÄTALO LEVYLÄMMÖNSIIRTIMEN VIRTAUKSEN JA LÄMMÖNSIIRRON MALLINNUS. Diplomityö
KALLE VÄHÄTALO LEVYLÄMMÖNSIIRTIMEN VIRTAUKSEN JA LÄMMÖNSIIRRON MALLINNUS Diplomityö Tarkastaja: professori Reijo Karvinen Tarkastaja ja aihe hyväksytty Luonnontieteiden tiedekunnan tiedekuntaneuvoston
LisätiedotJAAKKO ORMISKANGAS SUOLASULAN PUMPPAUS KAASU-NESTESUIHKUPUMPULLA. Diplomityö
JAAKKO ORMISKANGAS SUOLASULAN PUMPPAUS KAASU-NESTESUIHKUPUMPULLA Diplomityö Tarkastaja: professori Reijo Karvinen Tarkastaja ja aihe hyväksytty Teknisten tieteiden tiedekuntaneuvoston kokouksessa 13. tammikuuta
LisätiedotMateriaalien mekaniikka
Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
LisätiedotLuku 8 EXERGIA: TYÖPOTENTIAALIN MITTA
Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Copyright The McGraw-Hill Companies, Inc. Permission required
LisätiedotTarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:
8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv
Lisätiedot(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
LisätiedotHakemisto. Symbolit ja FLUENTin valikkokäskyt
303 Hakemisto Symbolit ja FLUENTin valikkokäskyt L 2 -normi, 133 Adapt, 30 All-Zones, 132 Body Force Weighted, 125 Boundary Conditions, 72, 180 Compute From, 132 Controls, 124 Coupled, 182 Database, 186
LisätiedotMitä ovat siirtoilmiöt?
Prosessi- ja ympäristötekniikan perusta 1 AINEEN-, LÄMMÖN- JA LIIKEMÄÄRÄNSIIRTO Kaisu Ainassaari, Piia Häyrynen Prosessi- ja ympäristötekniikka Ympäristö- ja kemiantekniikan tutkimusryhmä Lämmönsiirto
LisätiedotUUSI MENETELMÄ TULOILMALAITTEIDEN KUVAAMISEKSI AIKARIIPPUVASSA HUONEVIRTAUSTEN MALLINNUKSESSA - ESIMERKKINÄ RADIAALIHAJOTIN
Sisäilmastoseminaari 2015 1 UUSI MENETELMÄ TULOILMALAITTEIDEN KUVAAMISEKSI AIKARIIPPUVASSA HUONEVIRTAUSTEN MALLINNUKSESSA - ESIMERKKINÄ RADIAALIHAJOTIN Pekka Saarinen 1, Timo Siikonen 2, Tomas Brockmann
LisätiedotDissipatiiviset voimat
Dissipatiiviset voimat Luennon tavoitteena Mitä on energian dissipaatio? Ilmanvastus ja muita vastusvoimia, analyyttinen käsittely Toinen tärkeä differentiaaliyhtälö: eksponentiaalinen vaimeneminen Vaimennettu
LisätiedotRuiskuvalumuotin jäähdytys, simulointiesimerkki
Ruiskuvalumuotin jäähdytys, simuloiesimerkki School of Technology and Management, Polytechnic Institute of Leiria Käännös: Tuula Höök - Tampereen Teknillinen Yliopisto Mallinnustyökalut Jäähdytysjärjestelmän
LisätiedotKon HYDRAULIIKKA JA PNEUMATIIKKA
Sarja Kon-4.303 HYDRAULIIKKA JA PNEUMATIIKKA erusteet Päiän teemat Sarja Neste kuin neste, onko sillä äliä? Tilauusirta, miten ja miksi? Mihin tilauusirtaa taritaan? Onko tilauusirran ja aineen älillä
Lisätiedot5.6.3 Matematiikan lyhyt oppimäärä
5.6.3 Matematiikan lyhyt oppimäärä Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa
LisätiedotNumeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
LisätiedotLTP++ Virtausopin perusteet. Pauli Jaakkola
LTP++ Virtausopin perusteet Pauli Jaakkola 12. toukokuuta 2014 Sisältö lyhyesti Johdanto 1 0 Suureita 5 1 Perussuureita 9 2 Yksinkertaisia johdannaissuureita 15 3 Monimutkaisempia johdannaissuureita 19
LisätiedotKaasujäähdytteinen nopea reaktori Virtauskanavan painehäviö CFD-laskennalla
Lappeenrannan teknillinen yliopisto Teknillinen tiedekunta Energiatekniikan koulutusohjelma BH10A0201 Energiatekniikan kandidaatintyö ja seminaari Kaasujäähdytteinen nopea reaktori Virtauskanavan painehäviö
LisätiedotKun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.
DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla
LisätiedotTEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg
TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1
763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi
LisätiedotTässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen
KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen
LisätiedotLaskennallisen virtausmekaniikan ja lämmönsiirron jatkokurssi Timo Siikonen
Laskennallisen virtausmekaniikan ja lämmönsiirron jatkokurssi Timo Siikonen c 2014 by Aalto University School of Engineering Department of Applied Mechanics Sähkömiehentie 4 FIN-00076 Aalto Finland 1 Sisällys
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite 2018
KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite 2018 Menestyminen nykypäivän poikkitieteellisissä työtehtävissä vaatii vahvan ymmärryksen eri insinöörialojen perusteista. Mekaniikan perusteiden ymmärtäminen
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
LisätiedotLiikkeet. Haarto & Karhunen. www.turkuamk.fi
Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa
LisätiedotKohdeilmanvaihdon tehokkuuden parantaminen puhallussuihkujen avulla
Kohdeilmanvaihdon tehokkuuden parantaminen puhallussuihkujen avulla Raportti VAL B33 Ilpo Kulmala Julkaistu Työsuojelurahaston avustuksella Tampereella 5.9.998 VALMISTUSTEKNIIKKA (4) Raportin nimi A Työraportti
LisätiedotOhjeita fysiikan ylioppilaskirjoituksiin
Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään
LisätiedotMateriaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.
JÄNNITYS-JAMUODONMUUTOSTILANYHTYS Materiaalimalleista Jännitys- ja muodonmuutostila ovat kytkennässä toisiinsa ja kytkennän antavia yhtälöitä sanotaan materiaaliyhtälöiksi eli konstitutiivisiksi yhtälöiksi.
LisätiedotOppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä
LisätiedotOppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata
LisätiedotKUULAKEKOREAKTORIN SYDÄMEN JÄÄHDYTEVIR- TAUKSEN CFD-MALLINNUS CFD-MODELLING OF COOLANT FLOW IN PEBBLE BED REACTOR CORE
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta LUT Energia BH10A0200 Energiatekniikan kandidaatintyö ja seminaari KUULAKEKOREAKTORIN SYDÄMEN JÄÄHDYTEVIR- TAUKSEN CFD-MALLINNUS CFD-MODELLING
LisätiedotSMOOTHED PARTICLE HYDRODYNAMICS VIRTAUSMEKANIIKAN SIMULAATIOISSA JOONAS KORHONEN 14. ELOKUUTA 2016 PRO GRADU -TUTKIELMA OHJAAJAT: KEIJO MATTILA
SMOOTHED PARTICLE HYDRODYNAMICS VIRTAUSMEKANIIKAN SIMULAATIOISSA JOONAS KORHONEN 14. ELOKUUTA 2016 FYSIIKAN LAITOS PRO GRADU -TUTKIELMA OHJAAJAT: TOPI KÄHÄRÄ KEIJO MATTILA Tiivistelmä Tässää opinnäytetyössä
LisätiedotPROSESSISUUNNITTELUN SEMINAARI. Luento 5.3.2012 3. vaihe
PROSESSISUUNNITTELUN SEMINAARI Luento 5.3.2012 3. vaihe 1 3. Vaihe Sanallinen prosessikuvaus Taselaskenta Lopullinen virtauskaavio 2 Sanallinen prosessikuvaus Prosessikuvaus on kirjallinen kuvaus prosessin
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 1.3.2016 Susanna Hurme Päivän aihe: Jäykän kappaleen tasapaino ja vapaakappalekuva (Kirjan luvut 5.1-5.4) Osaamistavoitteet: 1. Ymmärtää, mitä tukireaktiot ovat
Lisätiedot,-xrt:lrw. Losses: apr,i"rio., : (f *) + pv2 and, apr*, : Kr*, L. Power: P:LpQ. Ef :*,,r(r'r f)*, -l,in(t* f),, Ensimmäinen välikoe. pv, g.o4.
Kul-34.3100 Introduction to Fluid Mechanics Ensimmäinen välikoe g.o4.2ot4 Muistathan, että perustelut ovat tärkeä osa laskua ja arvostelua! Properties of air density: pair : l.23kg/m3 (dynamic) viscosity:
LisätiedotAiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio
Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan
LisätiedotLuento 3: Liikkeen kuvausta, differentiaaliyhtälöt
Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka
LisätiedotLENTOTEKNIIKAN JATKO OPINTO OHJE VUODEN 2005 TUTKINTOSÄÄNNÖN MUKAAN OPISKELEVILLE
Sivu 1 TEKNILLINEN KORKEAKOULU Konetekniikan osasto 22.10.2006 LENTOTEKNIIKAN JATKO OPINTO OHJE VUODEN 2005 TUTKINTOSÄÄNNÖN MUKAAN OPISKELEVILLE 1. OHJEEN TARKOITUS Ohjeen tarkoituksena on antaa jatko
LisätiedotNumeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
LisätiedotLuku 5 KONTROLLI- TILAVUUKSIEN MASSA- JA ENERGIA-ANALYYSI
Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 5 KONTROLLI- TILAVUUKSIEN MASSA- JA ENERGIA-ANALYYSI Copyright The McGraw-Hill Companies,
Lisätiedot4. Käyrän lokaaleja ominaisuuksia
23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa
Lisätiedot