Tuulen nopeuden mittaaminen
|
|
- Pauli Toivonen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron Toni Kokkonen Sakke Juvonen Kansikuva: 1
2 Tiivistelmä Mittauksen tarkoitus on tutkia mittariin kohdistuvan ilman virtausnopeuden vaikutusta sauvan taipumaan. Sauvaan kiinnitettyyn vastelevyyn kohdistuu ilmavirran aiheuttama dynaaminen paine, jonka resultanttina vastelevyn keskipisteeseen kohdistuu virtauksen nopeudesta ja väliaineen (fluidin) tiheydestä riippuva voima. Voima aiheuttaa sauvaan sauvan materiaalista ja sauvan sekä varjostimen geometriasta riippuvan taivutusjännityksen ja venymän. Sauvan poikkipinnassa vaikuttavan venymän perusteella (havaitaan venymäliuskoilla) voidaan kalibroinnin jälkeen mitata ilmavirran vastelevyä kohtisuoraan vastaan kohdistuvaa virtauskomponentin nopeutta. Sisällysluettelo Tutkimuksen tavoite...3 Mittauksen teoreettinen periaate..3 Koejärjestely...6 Mittauksen suorittaminen...8 Kalibrointi tunnetuilla virtausnopeuksilla...8 Tuntemattoman virtausnopeuden mittaus..9 Tulosten ja virheiden käsittely.10 Lasketun tuulen nopeuden kokonaisvirheen arviointi 10 Lähteet 11 2
3 Tutkimuksen tavoite Ryhmämme tutkii ilman virtausnopeuden mittaamista metallisauvan taipuman avulla. Tavoitteena on rakentaa toimiva tuulennopeusmittari, joka mittaa tuulen nopeuden. Tuulennopeuden tavoitemittaustarkkuudeksi ryhmämme on asettanut ±1 m/s, mikä riittää mitatun tuulennopeuden asettamiseen Beaufortin asteikolle. Mittauksen teoreettinen periaate Mittaus perustuu virtaavan väliaineen (ilman) vaikutuksen mittaamiseen geometrialtaan ja aineominaisuuksiltaan tunnetun sauvan venymän avulla. Sauvan venymä mitataan venymäliuskalla sauvan virtauksenpuoliselta pinnalta sekä takapuolen pinnalta pituusakselin suuntaisesti. Kuvassa 1 esitetty venymäliuskojen asettelu ja mittauksen perusperiaate. Kuva 1 Mittauslaitteisto kahdella eri tuulennopeudella. Sauvan päädyssä oleva ohut vastelevy ei näy sivukuvakulmasta. Varjostimeen vaikuttavan patopaineen voimaresultantti vaikuttaa kohtisuorasti sauvan yläpään vastelevyn geometrisessä painopisteessä. Kun tunnetaan voimaresultantin ja sauvan tuennan (kohta, jossa vaikuttaa suurin venymä ja johon venymäliuskat asennetaan) välinen etäisyys ja sauvan materiaaliominaisuudet (sauvan materiaalin kimmomoduuli, poikkileikkauspinnan 3
4 jäyhyysmomentti), saadaan laskettua tuennassa vaikuttava venymä. Kääntäen, kun saadaan mitattua sauvan poikkileikkauksessa vaikuttava venymä, saadaan laskettua varjostimessa vaikuttava voima ja edelleen ilmavirran nopeus. Matemaattisesti tämä etenee seuraavasti: Newtonin vastuslailla saadaan vastelevyn painopisteessä laskettu voimaresultantti: v = virtauksen nopeus ja c v = vastelevyn muotokerroin. Sauvaa taivuttava taivutusmomentti saadaan kaavasta l =vastelevyn keskipisteen ja tuennan välinen etäisyys. Edellinen voidaan sijoittaa sauvan poikkileikkauksen x suuntaisen taivutusjännityksen lausekkeeseen I z = sauvan poikkileikkauksen jäyhyysmomentti ja y = venymäliuskan y koordinaatti. Kuva 2 Venymäliuskojen sijainti sauvan poikkileikkauksessa Hooken lailla saadaan jännityksen ja venymän välinen yhteys: 4
5 E = sauvan materiaalin kimmomoduuli. Näistä kaavoista saadaan seuraava yhtälö virtauksen nopeudelle Tuntematonta virtausnopeutta mitattaessa todellisilla venymillä edellä olevasta kaavasta ratkaistavaan nopeuteen lisätään kalibroinnin avulla määritetty keskimääräinen erotus v. Tämä erotus saadaan kalibrointipisteiden ja laskennallisen käyrän erotuksien keskiarvona. Kalibroinnista ja sen avulla määritetystä keskimääräisestä erotuksesta lisää Mittauksen suorittaminen osiossa. 5
6 Koejärjestely Mittarimme koostuu pystyssä olevasta ja alapäästä jäykästi tuetusta 50 cm pitkästä sauvasta, jonka yläpäähän on hitsattu kiinni kevyt neliönmuotoinen 30 cm x 30 cm vastelevy, johon mitattava ilmavirta kohdistaa voiman, jolloin sauva taipuu Sauvan alaosassa vastelevyn tason suuntaisesti, lähellä tuentaa, on kaksi tasaiseksi jyrsittyä sivua, joissa molemmissa on kiinni yksi venymäliuska niin, että ne ovat kohtisuorassa toisiaan kohti. Toinen venymäliuska mittaa venymää ja toinen puristusta. Tasainen tuulennopeus luodaan kolmitehoisen pöytätuulettimen avulla. Kuva 3 Mittauslaitteisto 6
7 Kuva 4 Koejärjestely Mittauslaitteistossa, sauvassa, kiinni olevista venymäliuskoista menevät johdot kuvan 5 mukaisesti virtapiirissä olevaan Wheatstonen siltaan. Virtapiirin jännite vahvistetaan vahvistimella ennen jännitelukeman siirtämistä A/D muuntimen kautta tietokoneelle, jossa jännitedataa käsitellään LabView ohjelmalla. 7
8 Kuva 5 Virtapiirin kytkennät Mittauksen suorittaminen Käsikäyttöisellä tuulimittarilla mitataan kalibroinnissa käytettävän pöytätuulettimen kaikilla kolmella tehoasteella tuottama ilman virtausnopeus. Virtaus kohdistetaan kohtisuoraan vastelevyä kohti ja mitataan sauvan venymät kolmella eri teholla. Venymäliuskoilla mitataan venymät sauvan varresta kummankin puolen sauvaa (toinen sivu puristuu, toinen venyy). Wheatstonen siltakytkennällä ja signaalivahvistimella saadaan AD konvertterille sopiva jännitesignaali. Tietokone lukee konvertterilta digitoidun vahvistetun jännitteen ja laskee sen perusteella venymäliuskoissa vaikuttavan todellisen venymän. Laskennallisen ja havaitun (todellisen) venymän arvoja vertailemalla voidaan laskea kompensointikerroin lopulliselle virtausnopeudelle. Mittarin kalibrointi on tärkeää. Kalibrointi tunnetuilla virtausnopeuksilla Kytkettyäsi koejärjestelyn kuva 4:n mukaisesti mittaa tuulettimen kaikki nopeudet ja niitä vastaavat (todelliset) venymät (LabView skripti). Näitä pisteitä käytetään keskimääräisen virheen laskemisessa silloin, kun todellista tuulennopeutta ei tunneta. 8
9 Tee seuraava jokaiselle pöytätuulettimen tehoasteelle: 1. mittaa virtausnopeus luotettavalla käsikäyttöisellä mittarilla 2. suuntaa tuuletin mahdollisimman kohtisuoraan kohti vastelevyä ja mittaa (todellinen) venymä 3. tallenna kalibrointipiste (ε,v) Kun olet saanut mitattua kaikki kalibrointipisteet (ε,v), laske keskimääräinen erotus v kalibrointipisteiden ja vastaavaa venymää vastaavien laskennallisten virtausnopeuksien v(ε) välillä. Tuntemattoman virtausnopeuden mittaaminen Laskennallinen virtausnopeus v(ε) kertoo matemaattista ideaalitapausta vastaavan virtausnopeuden. Koska mittausjärjestelmä ei ole ideaalinen, täytyy ideaalitapauksen kaavasta saatavaa virtauksen arvoa kompensoida kalibroinnin perusteella määritettävällä korjaustermillä v. Kalibroinnin jälkeen on mahdollista mitata todellinen likimääräinen virtausnopeus, kun korjaustermi v on saatu määritettyä. Mitattaessa tuntematonta virtausnopeutta virtausnopeus ratkaistaan kaavasta Mittausdataa voidaan tallentaa esimerkiksi v,t muodossa 9
10 Tulosten ja virheiden käsittely Virhelähteitä 1) virtaavan väliaineen tiheyden vaihtelu aiheuttaa sen, että painejakauma ei ole todellisuudessa sama vastelevyllä erityisesti eri lämpötiloissa 2) geometristen mittojen mittausvirheet 3) yksinkertaistavat oletukset laskennassa (todellinen tilanne monimutkaisempi) homogeeninen virtauskenttä sauvan poikkileikkauksen neliömomentin epätarkkuus tuennan jäykkyyden epätäydellisyys venymäliuskan sijainnin virhe poikkileikkauspinnan y akselin suhteen 4) asennusvirheet venymäliuskojen epätäydellinen kiinnittäminen Lasketun tuulen nopeuden kokonaisvirheen arviointi Kokonaisvirhettä arvioidaan kokonaisdifferentiaalilla kappaleessa Mittauksen teoreettinen periaate johdetusta nopeuden lausekkeesta: Nopeuden lausekkeesta jäyhyysmomentin I z, kimmomoduuli E ja vastelevyn muotokertoimen c v virhe voidaan olettaa likimain nollaksi, jolloin jäljellä olevilla suureilla kokonaisdifferentiaaliksi saadaan:, missä Δ termit kuvaavat suureiden virheitä. 10
11 Lähteet paper/3642/en/ 11
KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618. Koesuunnitelma
KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618 Koesuunnitelma Sisällysluettelo Sisällysluettelo 1 1 Tutkimusongelma ja tutkimuksen tavoit e 2 2 Tutkimusmenetelmät 3 5 2.1 Käytännön
LisätiedotPullon venymän mittaaminen KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt. Henri Järlström ja Olli Sarainmaa
Pullon venymän mittaaminen KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Henri Järlström 355690 ja Olli Sarainmaa 220013 Sisällysluettelo 1 Johdanto...2 2 Teoria...2 3 Tutkimusmenetelmät...3 3.1
LisätiedotKoesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila.
Kon c3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma Tuntemattoman kappaleen materiaalin määritys Janne Mattila Teemu Koitto Lari Pelanne Sisällysluettelo 1. Tutkimusongelma ja tutkimuksen
LisätiedotKoesuunnitelma Kimmokertoimien todentaminen
KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Koesuunnitelma Kimmokertoimien todentaminen Ryhmä S: Pekka Vartiainen 427971 Jari Villanen 69830F Anssi Petäjä 433978 Sisällysluettelo 1 Johdanto...
LisätiedotKuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
LisätiedotKone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C
Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja
LisätiedotKJR-C3004 KONE- JA RAKENNUSTEKNIIKAN LABORATORIOTYÖT KOESUUNNITELMA. Hiilikuituisen kajakkimelan varren jännitysprofiilin lineaarisuus
KJR-C3004 KONE- JA RAKENNUSTEKNIIKAN LABORATORIOTYÖT Hiilikuituisen kajakkimelan varren jännitysprofiilin lineaarisuus (ilman kuvia) RYHMÄ N KALLE KEKÄLÄINEN 355836 LAURI LINNONMAA 350103 TUOMO VILSKA
LisätiedotRyhmä T. Koesuunnitelma. Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004
Ryhmä T Koesuunnitelma Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004 Henri Makkonen 430450, Iivari Sassi 311582, Alexander Hopsu 429005 12.10.2015 Sisällys Tutkimusongelma ja tutkimuksen tavoite...
LisätiedotEne-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE
Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO TILAVUUSVIRRAN MITTAUS...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 MITTAUSJÄRJESTELY
LisätiedotKoesuunnitelma Alumiinin lämpölaajenemiskertoimen määrittäminen
KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Koesuunnitelma Alumiinin lämpölaajenemiskertoimen määrittäminen Ryhmä 3 Henri Palosuo Kaarle Patomäki Heidi Strengell Sheng Tian 1. Johdanto Materiaalin
LisätiedotKoesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)
Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen
LisätiedotKojemeteorologia (53695) Laskuharjoitus 1
Kojemeteorologia (53695) Laskuharjoitus 1 Risto Taipale 20.9.2013 1 Tehtävä 1 Erään lämpömittarin vertailu kalibrointistandardiin antoi keskimääräiseksi eroksi standardista 0,98 C ja eron keskihajonnaksi
LisätiedotDemo 5, maanantaina 5.10.2009 RATKAISUT
Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen
LisätiedotSMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2)
SMG-4500 Tuulivoima Kuudennen luennon aihepiirit Tuulivoimalan energiantuotanto-odotukset Aiheeseen liittyvä termistö Pinta-alamenetelmä Tehokäyrämenetelmä Suomen tuulivoimatuotanto 1 AIHEESEEN LIITTYVÄ
Lisätiedoty 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.
Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut
A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi
Lisätiedoton radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten
LisätiedotNESTEEN TIHEYDEN MITTAUS
NESTEEN TIHEYDEN MITTAUS AALTO-YLIOPISTO INSINÖÖRITIETEIDEN KORKEAKOULU KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Emma Unonius, Justus Manner, Tuomas Hykkönen 15.10.2015 Sisällysluettelo Teoria...
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi
LisätiedotKJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin
Lisätiedot(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi?
Tehtävä 1 Vettä (10 astetta) virtaa suorassa valurautaisessa (cast iron) putkessa, jonka sisähalkaisija on 100 mm ja pituus 70 m. Tilavuusvirta on 15 litraa minuutissa. (a) Osoita, että virtaus on turbulenttia.
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista
LisätiedotFysiikan laboratoriotyöt 3 Sähkömotorinen voima
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä
Lisätiedot(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
LisätiedotPalkin ominaistaajuuden määrittäminen venymäliuska anturin avulla. Ryhmä O Timo Huuskonen Santeri Koivisto Teemu Tero
Palkin ominaistaajuuden määrittäminen venymäliuska anturin avulla Ryhmä O Timo Huuskonen 297169 Santeri Koivisto 297428 Teemu Tero 294353 Koesuunnitelma: palkin ominaisvärähtelytaajuuden selvittäminen
LisätiedotLaskuharjoitus 1 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.
LisätiedotMateriaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.
JÄNNITYS-JAMUODONMUUTOSTILANYHTYS Materiaalimalleista Jännitys- ja muodonmuutostila ovat kytkennässä toisiinsa ja kytkennän antavia yhtälöitä sanotaan materiaaliyhtälöiksi eli konstitutiivisiksi yhtälöiksi.
LisätiedotKJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
LisätiedotKojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeteorologia Sami Haapanala syksy 03 Fysiikan laitos, Ilmakehätieteien osasto Tuulen nopeuen ja suunnan mittaaminen Tuuli on vektorisuure, jolla on siis nopeus ja suunta Yleensä tuulella tarkoitetaan
LisätiedotMUODONMUUTOKSET. Lähtöotaksumat:
MUODONMUUTOKSET Lähtöotaksumat:. Materiaali on isotrooppista ja homogeenista. Hooken laki on voimassa (fysikaalinen lineaarisuus) 3. Bernoullin hypoteesi on voimassa (tekninen taivutusteoria) 4. Muodonmuutokset
LisätiedotSwemaAir 5 Käyttöohje
SwemaAir 5 Käyttöohje 1. Esittely SwemaAir 5 on kuumalanka-anemometri lämpötilan, ilmanvirtauksen sekä -nopeuden mittaukseen. Lämpötila voidaan esittää joko C, tai F, ilmannopeus m/s tai fpm ja ilman virtaus
LisätiedotMotocrosspyörien melupäästömittaukset
Suomen Moottoriliitto ry. Juha Korhonen Jussi Kurikka-Oja Meluselvitysraportti 30.9.2014 30.9.2014 1 (8) SISÄLTÖ 1 LÄHTÖKOHDAT... 2 2 MELUPÄÄSTÖMITTAUKSET... 2 2.1 Mittausteoriaa... 2 2.2 Mittaustoiminta...
Lisätiedot33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
LisätiedotSEISOVA AALTOLIIKE 1. TEORIAA
1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus
LisätiedotPalkin taivutus. 1 Johdanto. missä S on. määritetään taivuttamalla. man avulla.
PALKIN TAIVUTUS 1 Johdanto Jos homogeenista tasapaksua palkkia venytetäänn palkin suuntaisella voimalla F, on jännitys σ mielivaltaisellaa etäisyydellää tukipisteestä, 1 missä S on palkin poikkileikkauksen
LisätiedotRAKENNEPUTKET EN 1993 -KÄSIKIRJA (v.2012)
RAKENNEPUTKET EN 1993 -KÄSIKIRJA (v.2012) Täsmennykset ja painovirhekorjaukset 20.4.2016: Sivu 16: Kuvasta 1.1 ylöspäin laskien 2. kappale: Pyöreän putken halkaisija kalibroidaan lopulliseen mittaan ja...
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 3.3.2016 Susanna Hurme Päivän aihe: Ristikon sauvavoimat (Kirjan luvut 6.1-6.4) Osaamistavoitteet: Ymmärtää, mikä on ristikkorakenne Osata soveltaa aiemmin kurssilla
LisätiedotSMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa.
SMG-4500 Tuulivoima Kolmannen luennon aihepiirit Tuulen teho: Betzin lain johtaminen Tuulen mittaaminen Tuulisuuden mallintaminen Weibull-jakauman hyödyntäminen ILMAVIRTAUKSEN ENERGIA JA TEHO Ilmavirtauksen
LisätiedotKJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 1.9.2017 klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
LisätiedotPYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS
1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan
LisätiedotFluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla
Tehtävä 1 Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla ( πy ) u(y) = U sin, kun 0 < y < δ. 2δ Tässä U on nopeus kaukana
Lisätiedot1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011
1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan
LisätiedotPUHDAS, SUORA TAIVUTUS
PUHDAS, SUORA TAIVUTUS Qx ( ) Nx ( ) 0 (puhdas taivutus) d t 0 eli taivutusmomentti on vakio dx dq eli palkilla oleva kuormitus on nolla 0 dx suora taivutus Taivutusta sanotaan suoraksi, jos kuormitustaso
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
LisätiedotLaskuharjoitus 2 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.
LisätiedotPalkin kimmokertoimen kokeellinen määrittäminen. KON-C3004 Eetu Veikkanen, Aino Salmi, Jarna Verho
Palkin kimmokertoimen kokeellinen määrittäminen KON-C3004 Eetu Veikkanen, Aino Salmi, Jarna Verho Sisällys 1. Johdanto... 3 2. Teoria ja laskennallinen mittaaminen... 3 2.1 Yleistä... 3 2.2. Taipumaviivan
LisätiedotTyö 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1
Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012
Lisätiedott osatekijät vaikuttavat merkittävästi tuloksen epävarmuuteen Mittaustulosten ilmoittamiseen tulee kiinnittää kriittistä
Mittausepävarmuuden määrittäminen 1 Mittausepävarmuus on testaustulokseen liittyvä arvio, joka ilmoittaa rajat, joiden välissä on todellinen arvo tietyllä todennäköisyydellä Kokonaisepävarmuusarvioinnissa
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet
KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla
LisätiedotMuutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin
LisätiedotVärähtelymittaus Tämän harjoituksen jälkeen:
Värähtelymittaus Tämän harjoituksen jälkeen: ymmärrät mittausvahvistimen käytön ja differentiaalimittauksen periaatteen, olet kehittänyt osaamista värähtelyn mittaamisesta, siihen liittyvistä ilmiöstä
LisätiedotMittaustekniikka (3 op)
530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)
LisätiedotTyö 5: Putoamiskiihtyvyys
Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista
LisätiedotPYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS
1 PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittausprojekti Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen
LisätiedotMaa-57.260. Kameran kalibrointi. TKK/Fotogrammetria/PP
Kameran kalibrointi Kameran kalibroinnilla tarkoitetaan sen kameravakion, pääpisteen paikan sekä optiikan aiheuttamien virheiden määrittämistä. Virheillä tarkoitetaan poikkeamaa ideaalisesta keskusprojektiokuvasta.
Lisätiedot2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv
2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LisätiedotMuuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].
FYS 102 / K6. MUUNTAJA 1. Johdanto Muuntajassa on kaksi eristetystä sähköjohdosta kierrettyä kelaa yhdistetty rautasydämellä ensiöpiiriksi ja toisiopiiriksi. Muuntajan toiminta perustuu sähkömagneettiseen
LisätiedotKertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet
Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet Käsitteelliset tehtävät Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen?
Lisätiedottutustuttaa materiaalien lujuusominaisuuksiin luentoja perusteellisemmin
FYSP102 / K2 KIMMOKERTOIMEN MÄÄRITYS Työn tavoitteita tutustuttaa materiaalien lujuusominaisuuksiin luentoja perusteellisemmin kerrata monia toistoja sisältävien laskujen sekä suoransovituksen tekemistä
Lisätiedot1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.
Fysiikan mittausmenetelmät I syksy 2013 Malliratkaisut 3 1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. b) Ulostulo- ja sisäänmenojännitteiden
LisätiedotTaso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora
Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen
LisätiedotPHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
LisätiedotKJR-C2002 Kontinuumimekaniikan perusteet, tentti
KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j
LisätiedotPOIKKIPINNAN GEOMETRISET SUUREET
1.10.018 POIKKIPINNAN GEOMETRISET SUUREET KOORDINAATISTON VALINTA: x akseli sauvan tai palkin akselin suuntainen akseli alaspäin akseli siten, että muodostuu oikeakätinen koordinaatisto Pintamomentti (pinnan
LisätiedotNimi: Muiden ryhmäläisten nimet:
Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,
LisätiedotTAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat
TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria,
LisätiedotVirhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.
Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita
Lisätiedot7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
LisätiedotSMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE
SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN
LisätiedotLaskuharjoitus 7 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan
LisätiedotEsim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).
3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa
LisätiedotMAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5
LisätiedotTyö 2324B 4h. VALON KULKU AINEESSA
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 2.3.2016 Susanna Hurme äivän aihe: Staattisesti määrätyn rakenteen tukireaktiot (Kirjan luvut 5.7 ja 6.6) Osaamistavoitteet: Ymmärtää, mitä tarkoittaa staattisesti
LisätiedotMittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
LisätiedotPuutavaran tukkimittarimittauksessa käytettävä tyvisylinterin pituus ja tarkastusmittauksen mittaussuunta
Puutavaran tukkimittarimittauksessa käytettävä tyvisylinterin pituus ja tarkastusmittauksen mittaussuunta Puutavaranmittauksen neuvottelukunnan suosituksen 12.10.2017 taustamateriaali Suositusta muutettu
LisätiedotPHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A)
PHYS-A1110 Laboratoriotyöosuus Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) Kurssin järjestelyt Miksi? Fysiikka on havaintoja ja niiden selittämistä / ennustamista
LisätiedotLuento 6: 3-D koordinaatit
Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 6: 3-D koordinaatit AIHEITA (Alkuperäinen luento: Henrik Haggrén, 16.2.2003, Päivityksiä: Katri Koistinen 5.2.2004
Lisätiedot761121P-01 FYSIIKAN LABORATORIOTYÖT 1. Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 2016
1 76111P-01 FYSIIKAN LABORATORIOTYÖT 1 Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 016 JOHDANTO Fysiikassa pyritään löytämään luonnosta lainalaisuuksia, joita voidaan mitata kokeellisesti ja kuvata
LisätiedotLABORAATIOSELOSTUSTEN OHJE H. Honkanen
LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen
LisätiedotOpetusmateriaali. Tutkimustehtävien tekeminen
Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.
LisätiedotDifferentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
LisätiedotFYSP101/K1 KINEMATIIKAN KUVAAJAT
FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan
LisätiedotELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ
FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää
LisätiedotKojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia, 3 op 9 luentoa, 3 laskuharjoitukset ja vierailu mittausasemalle Tentti Oppikirjana Rinne & Haapanala:
LisätiedotMitä on huomioitava kaasupäästöjen virtausmittauksissa
Mitä on huomioitava kaasupäästöjen virtausmittauksissa Luotettavuutta päästökauppaan liittyviin mittauksiin 21.8.2006 Paula Juuti 2 Kaupattavien päästöjen määrittäminen Toistaiseksi CO2-päästömäärät perustuvat
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 8.3.2016 Susanna Hurme Päivän aihe: Normaalivoiman, leikkausvoiman ja taivutusmomentin käsitteet (Kirjan luku 7.1) Osaamistavoitteet: Ymmärtää, millaisia sisäisiä
LisätiedotLuvun 10 laskuesimerkit
Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5
Lisätiedot4. Funktion arvioimisesta eli approksimoimisesta
4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,
LisätiedotL a = L l. rv a = Rv l v l = r R v a = v a 1, 5
Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei
LisätiedotDifferentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
LisätiedotSMG-4500 Tuulivoima. Kahdeksannen luennon aihepiirit. Tuulivoiman energiantuotanto-odotukset
SMG-4500 Tuulivoima Kahdeksannen luennon aihepiirit Tuulivoiman energiantuotanto-odotukset Tuulen nopeuden mallintaminen Weibull-jakaumalla Pinta-alamenetelmä Tehokäyrämenetelmä 1 TUULEN VUOSITTAISEN KESKIARVOTEHON
LisätiedotSUORAN PALKIN RASITUKSET
SUORAN PALKIN RASITUKSET Palkilla tarkoitetaan pitkänomaista rakenneosaa, jota voidaan käsitellä yksiulotteisena eli viivamaisena. Palkkia kuormitetaan pääasiassa poikittaisilla kuormituksilla, mutta usein
LisätiedotBMEP004 / Lapputyö 1. Nousukorkeuden määrittäminen eri hyppytekniikoille ja kahta eri menetelmää käyttäen
BMEP004 / Lapputyö 1. Nousukorkeuden määrittäminen eri hyppytekniikoille ja kahta eri menetelmää käyttäen Biomekaniikan tutkimusmenetelmien perusteet Liikuntabiologian laitos Jyväskylän yliopisto 1 JOHDANTO
LisätiedotA-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.
MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
Lisätiedot