15. Rajakerros ja virtaus kappaleiden ympäri. KJR-C2003 Virtausmekaniikan perusteet
|
|
- Kaarina Melasniemi
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 15. Rajakerros ja virtaus kappaleiden ympäri KJR-C2003 Virtausmekaniikan perusteet
2 Päivän anti Miten virtaus käyttäytyy fluidiin upotetun kappaleen ympärillä ja erityisesti sen välittömässä läheisyydessä? Motivointi: virtausta erilaisten kappaleiden ympäri ei voida yleistää kuin karkeasti, mutta kaikille yhteistä on rajakerroksen muodostuminen kappaleen pinnalle Young et al, kappaleet
3 Osaamistavoitteet Selittää, mitä rajakerros tarkoittaa ja mitä erilaiset rajakerrospaksuudet kuvaavat Määrittää tasolevyvirtaukselle rajakerrospaksuuden, leikkausjännityksen ja kitkavastuksen Selittää, miten painegradientti vaikuttaa rajakerroksen kehittymiseen ja virtauksen irtautumiseen
4 Miten virtauksia voidaan luokitella?
5 Miten virtauksia voidaan luokitella? Young et al (2012), Introduction to Fluid Mechanics, 5th edition
6 Miten virtauksia voidaan luokitella? Young et al (2012), Introduction to Fluid Mechanics, 5th edition
7 Mitä rajakerroksessa tapahtuu?
8 Mitä rajakerroksessa tapahtuu? Fundamentals of Boundary Layers, National Committee for Fluid Mechanics (Youtube/Barry Belmont)
9 Mitä rajakerroksessa tapahtuu? Young et al (2012), Introduction to Fluid Mechanics, 5th edition
10 Miten rajakerroksen paksuus määritellään?
11 Miten rajakerroksen paksuus määritellään? Siirtymäpaksuus Liikemääräpaksuus
12 Miten laminaari rajakerros käyttäytyy?
13 Miten laminaari rajakerros käyttäytyy? Blasiuksen ratkaisu Rajakerrosyhtälöt Similaarisuusoletus + algebraa + numeerinen ratkaisu
14 Miten laminaari rajakerros käyttäytyy? Prob Virtauksen hidastumisen ja siitä johtuvan virtauksen syrjäytymisen vuoksi virtaviivat tasolevyn ympärillä eivät ole täysin suoria. Oletetaan, että ilmaa virtaa tasolevyn ohi nopeudella 1 m/s. Määritä virtaviivan yhtälö sellaiselle virtaviivalle, joka leikkaa rajakerroksen reunan 4 metrin etäisyydellä tasolevyn etureunasta. Oleta virtaus laminaariksi. Young et al (2012), Introduction to Fluid Mechanics, 5th edition
15 Miten liikemäärätase yhdistää jännityksen ja paksuuden kehittymisen?
16 Miten liikemäärätase yhdistää jännityksen ja paksuuden kehittymisen? Young et al (2012), Introduction to Fluid Mechanics, 5th edition
17 Miten liikemäärätase yhdistää jännityksen ja paksuuden kehittymisen? Example 9.2 Approksimoidaan tasolevyn virtaus lineaarisella nopeusprofiililla siten, että u = Uy/ rajakerroksessa ja u=u sen ulkopuolella. Määritä liikemääräintegraaliteorian avulla leikkausjännitysjakauma seinällä. Vastaus: Blasius: Young et al (2012), Introduction to Fluid Mechanics, 5th edition
18 Miten turbulentti ja laminaari rajakerros eroavat?
19 Miten turbulentti ja laminaari rajakerros eroavat? Young et al (2012), Introduction to Fluid Mechanics, 5th edition
20 Miten turbulentti ja laminaari rajakerros eroavat? Young et al (2012), Introduction to Fluid Mechanics, 5th edition
21 Miten turbulentti ja laminaari rajakerros eroavat? Young et al (2012), Introduction to Fluid Mechanics, 5th edition
22 Miten paine vaikuttaa rajakerrokseen?
23 Miten paine vaikuttaa rajakerrokseen?
24 Miten paine vaikuttaa rajakerrokseen? Kitkaton painejakauma Kitkaton nopeusjakauma <0 >0 Young et al (2012), Introduction to Fluid Mechanics, 5th edition
25 Miten paine vaikuttaa rajakerrokseen? Kitkaton painejakauma <0 >0 Young et al (2012), Introduction to Fluid Mechanics, 5th edition
26 Miten paine vaikuttaa rajakerrokseen? Young et al (2012), Introduction to Fluid Mechanics, 5th edition
27 Mitä opimme?
28 Päivän anti Miten virtaus käyttäytyy fluidiin upotetun kappaleen ympärillä ja erityisesti sen välittömässä läheisyydessä?
29 Seuraavaksi kerraksi Tiistain luennon aiheena: Kappaleen vastus ja nostovoima, Young et al (2012): Miten kappaletta ympäröivä virtaus ja siihen kohdistuvat voimat liittyvät toisiinsa ja miten näitä voimia voidaan käsitellä? Motivointi: virtauksen aiheuttaman voiman määrittäminen on erittäin tyypillinen virtaustekninen ongelma HUOM! Torstaina ei ole luentoa. Tällä viikolla torstaiaamun laskutupa järjestetään normaalisti, mutta torstai-iltapäivänä ja perjantaina ei ole laskutupia.
14. Putkivirtausten ratkaiseminen. KJR-C2003 Virtausmekaniikan perusteet
14. Putkivirtausten ratkaiseminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten erilaisia putkistovirtausongelmia ratkaistaan? Motivointi: putkijärjestelmien mitoittaminen sekä painehäviöiden
9. Kitkaton virtaus ja potentiaaliteoria. KJR-C2003 Virtausmekaniikan perusteet
9. Kitkaton virtaus ja potentiaaliteoria KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten ja millä edellytyksillä virtausongelmaa voidaan yksinkertaistaa? Motivointi: Navier-Stokes yhtälöiden ratkaiseminen
7. Differentiaalimuotoinen jatkuvuusyhtälö. KJR-C2003 Virtausmekaniikan perusteet
7. Differentiaalimuotoinen jatkuvuusyhtälö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten lähestymistapaa pitää muuttaa, jos halutaan tarkastella virtausta lokaalisti globaalin tasetarkastelun
4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet
4. Kontrollitilavuusajattelu ja massan säilyminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten partikkelisysteemiin liittyvän suuren säilyminen esitetään tarkastelualueen taseena ja miten massan
Chapter 1. Preliminary concepts
Chapter 1 Preliminary concepts osaa kuvata Reynoldsin luvun vaikutuksia virtaukseen osaa kuvata virtauksen kannalta keskeiset aineominaisuudet ja tietää tai osaa päätellä näiden yksiköt osaa tarvittaessa
17. Pyörivät virtauskoneet. KJR-C2003 Virtausmekaniikan perusteet
17. Pyörivät virtauskoneet KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mikä on pyörivä virtauskone ja miten sen toimintaa ja suorituskykyä voidaan tarkastella opitun perusteella? Motivointi: pyörivät
12. Mallikokeet. KJR-C2003 Virtausmekaniikan perusteet
12. Mallikokeet KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten sama virtausongelma voidaan mallintaa eri asetelmalla ja miten tämä on perusteltavissa dimensioanalyysillä? Motivointi: useissa käytännön
3. Bernoullin yhtälön käyttö. KJR-C2003 Virtausmekaniikan perusteet
3. Bernoullin yhtälön käyttö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mitä Bernoullin yhtälö tarkoittaa ja miten sitä voidaan käyttää virtausongelmien ratkaisemiseen? Motivointi: virtausnopeuden
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin
MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011
Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia
0. Johdatus virtausmekaniikkaan. KJR-C2003 Virtausmekaniikan perusteet
0. Johdatus virtausmekaniikkaan KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mitä virtaus on, miksi se on kiinnostavaa ja mitkä ovat siihen keskeisesti liittyvät käsitteet? Motivointi: Flows occur
11. Dimensioanalyysi. KJR-C2003 Virtausmekaniikan perusteet
11. Dimensioanalyysi KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten yksittäisen virtaustapauksen tuloksia voidaan yleistää tarkastelemalla ilmiöön liittyvien suureiden yksiköitä? Motivointi: dimensioanalyysin
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 1.9.2017 klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet
Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet Käsitteelliset tehtävät Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen?
0. Johdatus virtausmekaniikkaan ( , 1.11, 23 s.)
Kurssin keskeinen sisältö 0. Johdatus virtausmekaniikkaan (1.1-1.8, 1.11, 23 s.) Mitä virtaus on, miksi se on kiinnostavaa ja mitkä ovat siihen keskeisesti liittyvät käsitteet? Motivointi: Flows occur
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.
Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon
Viikon aiheena putkivirtaukset
Viikon aiheena putkivirtaukset Tänään keskitytään putkivirtausten luonteeseen ja keskeisiin käsitteisiin Seuraavalla kerralla putkivirtausongelmien ratkaisemisesta Putkivirtausten käytännön relevanssi
0. Johdatus kurssiin. Ene Kitkallinen virtaus
0. Johdatus kurssiin Ene-39.4031 Kitkallinen virtaus Kurssin henkilökunta Vastuuopettaja: Tommi Mikkola tommi.mikkola@aalto.fi Assistentti: Petteri Peltonen petteri.peltonen@aalto.fi Tavoitteet ja sisältö
KJR-C2003 MAE130A UCI ME336 UTSA Summer2015 Lecture 01 Mitä tarkoittaa fluidi?
KJR-C2003 MAE130A UCI ME336 UTSA Summer2015 Lecture 01 Mitä tarkoittaa fluidi? Intro Fluid Mechanics Mitkä lait pitää toteutua virtauksessa? Aineominaisuudet Viskositeetti, liukumattomuusehto Leikkausjännitys
Luku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
PHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien
Luku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
PHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi?
Tehtävä 1 Vettä (10 astetta) virtaa suorassa valurautaisessa (cast iron) putkessa, jonka sisähalkaisija on 100 mm ja pituus 70 m. Tilavuusvirta on 15 litraa minuutissa. (a) Osoita, että virtaus on turbulenttia.
Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla
Tehtävä 1 Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla ( πy ) u(y) = U sin, kun 0 < y < δ. 2δ Tässä U on nopeus kaukana
WAKE-profiilin kehittelyä
Erkki Haapanen Sivu 1/22 4.2.2011 WAKE-profiilin kehittelyä Alkuprofiilina käytetään Bob Whiten profiilin BW22 koordinaatteja, jotka Tapio Linkosalo on ystävällisesti antanut käyttööni. Profiilin koordinaatteja
Virtaus ruiskutusventtiilin reiästä
Jukka Kiijärvi Virtaus ruiskutusventtiilin reiästä Kaasu- ja polttomoottorin uudet tekniset mahdollisuudet Polttomoottori- ja turbotekniikan seminaari 2014-05-15 Otaniemi Teknillinen tiedekunta, sähkö-
(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite
KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite Menestyminen nykypäivän poikkitieteellisissä työtehtävissä vaatii vahvan ymmärryksen eri insinöörialojen perusteista. Mekaniikan perusteiden ymmärtäminen
SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET
SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.
Demo 5, maanantaina 5.10.2009 RATKAISUT
Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET
SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT
Luento 16: Fluidien mekaniikka
Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla
Hydrauliikka: kooste teoriasta ja käsitteistä
ENY-C003 / S-05 Hydrauliikka: kooste teoriasta ja käsitteistä Sovelletussa hydrodynamiikassa eli hydrauliikassa käsitellään veden virtausta putkissa ja avouomissa sekä maaperässä. Käsitteitä Rataviiva,
(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.
Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)
Teemu Kinnunen. Insinöörityö. Vastuskertoimen määrittäminen
Teemu Kinnunen Insinöörityö Vastuskertoimen määrittäminen Metropolia Ammattikorkeakoulu Insinööri (AMK) Kone- ja tuotantotekniikka Insinöörityö 5.5.2011 Alkulause Tämä insinöörityö tehtiin Metropolia Ammattikorkeakoulu
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Syksy 2015 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 27.10.2015 1 / 8 Kangaslampi Lineaarialgebra ja differentiaaliyhtälöt
Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
DEE Tuulivoiman perusteet
DEE-53020 Tuulivoiman perusteet Aihepiiri 2 Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT
KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite 2018
KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite 2018 Menestyminen nykypäivän poikkitieteellisissä työtehtävissä vaatii vahvan ymmärryksen eri insinöörialojen perusteista. Mekaniikan perusteiden ymmärtäminen
Chapter 5. Life in the Slow Lane: The Low Reynolds-Number World
Chapter 5. Life in the Slow Lane: The Low Reynolds-Number World 1 Luento 5 10..017 Viskoosit nesteet Laminaarinen virtaus Turbulenssi Reynoldsin luku Pienten Reynoldsin lukujen maailma Kitkallinen virtaus
KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
TAMPEREEN AMMATTIKORKEAKOULU Kone- ja tuotantotekniikka Lentokonetekniikka
TAMPEREEN AMMATTIKORKEAKOULU Kone- ja tuotantotekniikka Lentokonetekniikka Tutkintotyö PIK-21:n HIDASLENTO-OMINAISUUKSIEN PARANTAMINEN SIIPIPROFIILIN MODIFIKAATIOLLA Työn ohjaaja Tampere 2007 Yliopettaja
Hydrologia. Pohjaveden esiintyminen ja käyttö
Hydrologia Timo Huttula L8 Pohjavedet Pohjaveden esiintyminen ja käyttö Pohjavettä n. 60 % mannerten vesistä. 50% matalaa (syvyys < 800 m) ja loput yli 800 m syvyydessä Suomessa pohjavesivarat noin 50
KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti
KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti Apulaisprofessori Konetekniikan laitos Statiikan välikoe 12.3.2018 Ajankohta ma 12.3.2018 klo 14:00 17:00 Salijako
Rak Tulipalon dynamiikka
Rak-43.3510 Tulipalon dynamiikka 7. luento 14.10.2014 Simo Hostikka Palopatsaat 1 Luonnollisten palojen liekki 2 Palopatsas 3 Liekin korkeus 4 Palopatsaan lämpötila ja virtausnopeus 5 Ideaalisen palopatsaan
782630S Pintakemia I, 3 op
782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan
2 Laskentahilan laatiminen
35 2 Laskentahilan laatiminen 2.1 Tarve Kaikessa numeerisessa simuloinnissa lähtökohtana on pukea tehtävä tietokoneen ymmärtämään muotoon. Tietokone ymmärtää vain lukuja ja ratkottaessa Navier- Stokes
Luento 16: Fluidien mekaniikka
Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla
Purjehdi Vegalla - Vinkki nro 2
Purjehdi Vegalla 1 1 Purjehdi Vegalla - Vinkki nro 2 Tuulen on puhallettava purjeita pitkin - ei niitä päin! Vielä menee pitkä aika, kunnes päästään käytännön harjoituksiin, joten joudutaan vielä tyytymään
Materiaalien mekaniikka
Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =
HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA
1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän
MS-A0103 / Syksy 2015 Harjoitus 2 / viikko 38 / Ennakot
Harjoitus 2 / viikko 38 / Ennakot Sekä tiistain 15.9. että torstain 17.9. luentoja pohjustavat ennakkotehtävät löytyvät MyCoursesin Tehtävät-osiosta. Lisätietoja itse tehtävissä. Tiedostoa viimeksi muokattu:
Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite 2016
KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite 2016 Menestyminen nykypäivän poikkitieteellisissä työtehtävissä vaatii vahvan ymmärryksen eri insinöörialojen perusteista. Mekaniikan perusteiden ymmärtäminen
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,
CHEM-A1410 Materiaalitieteen perusteet
CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.
Virtaussimulointi Timo Siikonen
Virtaussimulointi Timo Siikonen c 2014 by Aalto University School of Engineering Department of Applied Mechanics Sähkömiehentie 4 FIN-00076 Aalto Finland ESIPUHE Tämän kurssin (Ene-39.4054) kirjallinen
Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).
3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa
Vertaileva lähestymistapa järven virtauskentän arvioinnissa
Vertaileva lähestymistapa järven virtauskentän arvioinnissa Vertaileva lähestymistapa järven virtauskentän arvioinnissa Sisältö: 1. Virtauksiin vaikuttavat tekijät 2. Tuulen vaikutus 3. Järven syvyyden
TEKNISET TIEDOT TOIMINTAPERIAATTEET JA LÄPÄISYKUVAAJAT
M5 - G 1 vasta- ja vastusvastaventtiilit Vastusvastaventtiilejä käytetään pääasiassa, kun halutaan säätää sylinterin iskunnopeutta. Venttiilejä käytetään myös ilmanvirtauksen säätöön. Vastaventtiili säätää
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
1. Lähes neutraali rajakerros. 2. Epästabiili rajakerros. 3. Stabiili rajakerros
1. Lähes neutraali rajakerros 2. Epästabiili rajakerros 3. Stabiili rajakerros Lähes neutraali rajakerros Pintakerroksessa logaritminen tuuliprofiili Ekman-kerroksessa spiraali Pyörteiden koko l k z Vaihtokerroin
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 8.3.2016 Susanna Hurme Päivän aihe: Normaalivoiman, leikkausvoiman ja taivutusmomentin käsitteet (Kirjan luku 7.1) Osaamistavoitteet: Ymmärtää, millaisia sisäisiä
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
PHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet
SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa.
SMG-4500 Tuulivoima Kolmannen luennon aihepiirit Tuulen teho: Betzin lain johtaminen Tuulen mittaaminen Tuulisuuden mallintaminen Weibull-jakauman hyödyntäminen ILMAVIRTAUKSEN ENERGIA JA TEHO Ilmavirtauksen
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 1.3.2016 Susanna Hurme Päivän aihe: Jäykän kappaleen tasapaino ja vapaakappalekuva (Kirjan luvut 5.1-5.4) Osaamistavoitteet: 1. Ymmärtää, mitä tukireaktiot ovat
FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6
FYSI040 Fysiikan perusteet III / Harjoitus / 6 Laskuharjoitus 2. Halogeenilampun käyttöhyötysuhde on noin 6 lm/w. Laske sähköiseltä ottoteholtaan 60 watin halogenilampun tuottama: (a) Valovirta. (b) Valovoima
Eero-Matti Salonen Rakenteiden Mekaniikka, Vol. 36 Nro 1, 2003, s
ERÄS VIRTAUSMEKANIIKAN REUNAEHTO Eero-Matti Salonen Rakenteiden Mekaniikka, Vol. 36 Nro 1, 003, s. 15-1 TIIVISTELMÄ Artikkelissa tarkastellaan tiettyä virtausmekaniikan reunaehtoa, joka muodostuu annetusta
Rajoitetun kantaman ja pitkän kantaman luotien kehitys ja stabiliteettitarkastelut (RaKa-Stab vaihe 2, 44000 )
Rajoitetun kantaman ja pitkän kantaman luotien kehitys ja stabiliteettitarkastelut ( vaihe 2, 44000 ) Arttu Laaksonen Timo Sailaranta Aalto-yliopisto Insinööritieteiden korkeakoulu Raka-Stab Sisällysluettelo
Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali
Talousmatematiikan perusteet: Luento 18 Määrätty integraali Epäoleellinen integraali Motivointi Viime luennoilla opimme integrointisääntöjä: Tavalliset funktiotyypit (potenssi-, polynomi- ja eksponenttifunktiot)
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
PROTECTA FR BOARD ASENNUSOHJEET
PROTECTA FR BOARD ASENNUSOHJEET SISÄLLYS Kaapelit ja kourut kipsi-, kivi- tai betoniseinässä s. 2 kipsi-, kivi- tai betoniseinässä s. 2-3 Kupariputket kipsi-, kivi- tai betoniseinässä s. 3 Alupex-putket
havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä
FYSP0 / K3 DOPPLERIN ILMIÖ Työn tavoitteita havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä harjoitella mittausarvojen poimimista Capstonen kuvaajalta sekä kerrata maksimiminimi
3.4 Liike-energiasta ja potentiaalienergiasta
Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate
FYSA220/1 (FYS222/1) HALLIN ILMIÖ
FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys
ELEC-C7230 Tietoliikenteen siirtomenetelmät
A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2018 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto A! Yleistä Esitiedot:
KJR-C2002 Kontinuumimekaniikan perusteet, viikko 48/2017
KJR-C00 Kontinuumimekaniikan perusteet, viikko 48/017 1. Kilpailun aikana moottoripörän avaitaan lentävän matkan lätökulman ollessa. Mallinnetaan moottoripörä kuskeineen partikkeliksi (massa m) ja unodetaan
Liite F: laskuesimerkkejä
Liite F: laskuesimerkkejä 1 Lämpövirta astiasta Astiasta ympäristöön siirtyvää lämpövirtaa ei voida arvioida vain astian seinämien lämmönjohtavuuksilla sillä ilma seinämä ja maali seinämä -rajapinnoilla
EPÄSYMMETRISEN SIIPIPROFIILIN SUUNNITTELU ALISOONISEEN TUULITUNNELIIN
Energia- ja ympäristötekniikan osasto En2010200 Energiatekniikan kandidaatintyö ja seminaari Virtaustekniikan laboratorio Kevät 2007 EPÄSYMMETRISEN SIIPIPROFIILIN SUUNNITTELU ALISOONISEEN TUULITUNNELIIN
2 Lämmön johtuminen. 3 Lämmönsiirtoprosessit. pulta lämmöksi, josta pitää päästä eroon.
1 Johdanto Jokainen, tai ainakin suurin osa, tietokoneiden kanssa puuhastelevista ihmisistä törmää ennen pitkää johonkin asiaan tai pahimmassa tapauksessa ongelmaan, joka liittyy lämmönsiirtoprosesseihin.
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 2.3.2016 Susanna Hurme äivän aihe: Staattisesti määrätyn rakenteen tukireaktiot (Kirjan luvut 5.7 ja 6.6) Osaamistavoitteet: Ymmärtää, mitä tarkoittaa staattisesti
Ruiskuvalumuotin jäähdytys, simulointiesimerkki
Ruiskuvalumuotin jäähdytys, simuloiesimerkki School of Technology and Management, Polytechnic Institute of Leiria Käännös: Tuula Höök - Tampereen Teknillinen Yliopisto Mallinnustyökalut Jäähdytysjärjestelmän
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 2: Kaasujen kineettistä teoriaa Pe 26.2.2016 1 AIHEET 1. Maxwellin-Boltzmannin
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio
4. Putkivirtaus 4. PUTKIVIRTAUS. 4.1 Virtauslajit ja Reynoldsin luku. 4.2 Putkivirtauksen häviöt
4. Putkivirtaus 4. PUTKIVIRTAUS Brnoullin yhtälön yhtydssä todttiin todllisssa virtauksssa syntyvän aina häviöitä, jotka muuttuvat lämmöksi. Putkivirtauksssa nämä häviät näkyvät painn laskuna virtaussuunnassa
LUKU 17 KOKOONPURISTUVA VIRTAUS
Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 17 KOKOONPURISTUVA VIRTAUS Copyright The McGraw-Hill Companies, Inc. Permission required for
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
Putkistovirtausmittauksia
Tiia Monto Työ tehty: 23.11.09 tiia.monto@jyu. 04075218560 Putkistovirtausmittauksia Assistentti: Arvostellaan: Abstract Työssä tutkittiin kuristuslaippaa, venturiputkea sekä pitot-putkea putkistovirtausmittauslaitteistolla.