Hydrauliikka: kooste teoriasta ja käsitteistä
|
|
- Sinikka Aili Hämäläinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 ENY-C003 / S-05 Hydrauliikka: kooste teoriasta ja käsitteistä Sovelletussa hydrodynamiikassa eli hydrauliikassa käsitellään veden virtausta putkissa ja avouomissa sekä maaperässä. Käsitteitä Rataviiva, virtaviiva Rataviivalla ymmärretään neste-elementin tai partikkelin kulkemaa todellista rataa. Virtaviiva on viiva, joka jokaisessa kohdassa antaa nopeuden suunnan, ts. jokaisessa virtaviivan pisteessä on ko. pisteessä vallitsevan nopeuden suunta tangentti virtaviivalle. Virtaustyypit - stationäärinen l. pysyvä virtaus: virtaus ei muutu ajan funktiona - epästationäärinen l. muuttuva virtaus: virtaus muuttuu ajan funktiona (esim. paineisku) - tasainen virtaus: virtaustekijät (paine, nopeus, tiheys) eivät muutu paikan mukaan - epätasainen virtaus: virtaus muuttuu paikan mukaan Virtaustila - Laminaarivirtauksessa neste liikkuu yhdensuuntaisia ratoja pitkin, jotka eivät risteile keskenään. Nesteosaset liikkuvat tietyssä pisteessä jatkuvasti likimain samalla nopeudella. Nestekerrosten välillä ei tapahdu sekoittumista. - Turbulenttivirtas on sisäisen kitkan sekä nesteen ja kiinteän pinnan välisen kitkan seurauksena syntyvä virtaustila, jossa partikkelin nopeus ja suunta poikkeavat sattumanvaraisesti keskimääräisistä arvoista. Turbulenttivirtauksessa neste liikkuu epäsäännöllisesti toisiaan leikkaavia ratoja pitkin. Virtaus on pyörteistä ja nestekerrokset sekoittuvat keskenään. - Laminaarisen ja turbulenttisen virtaustilan välillä on siirtymävyöhyke. Tietyn kriittisen nopeuden alapuolella virtaus on aina laminaarista. Nesteen nopeutta lisättäessä tullaan siirtymävyöhykkeeseen, jossa esiintyy joko laminaarista tai turbulenttista virtausta. Nopeutta edelleen kasvatettaessa muuttuu virtaustila täysin turbulenttiseksi. Avouomissa ja putkissa virtaus on yleensä turbulenttista. Maa- ja pohjavesien virtaus on laminaarista. Virtaustilan ilmaisee yksikötön suhdeluku, Reynoldsin luku, joka on putkille: Re= v D n = virtausnopeus [m/s] = putken halkaisija [m] = kinemaattinen viskositeetti [m /s]
2 Avouomissa ja muissa kuin ympyränmuotoisissa putkissa virtaustilaa luonnehtiva luku on muodossa Re= R = hydraulinen säde = A/p [m] A = uoman poikkipinta-ala [m ] p = ns. märkäpiiri [m] Kuva. Märkäpiiri p ja hydraulinen säde R Hydrauliikan perusyhtälöt ) Jatkuvuusyhtälö (Leonardo da Vinci) Hydrauliikassa voidaan usein käyttää keskimääräisiä virtausnopeuksia, jolloin putki- ja avouomavirtaukselle saadaan seuraava yksinkertainen jatkuvuusyhtälö (v=keskimääräinen nopeus poikkileikkauksen kohdalla) Q = = A v = A v Q Kuva. Jatkuvuusyhtälö: Av = Q = Av.
3 3 ) Energiayhtälö (Bernoulli) Bernoullin yhtälö kuvaa nesteen energiatilaa sisältäen paine-, potentiaali- ja kineettisen energian. Yleensä nämä energiatermit tarkastellaan tilavuuspainoyksikköä kohti: p g + z + v g = p g + z + v g + h f p/ z v /g h f = painekorkeus [m] = asemakorkeus [m] = nopeuskorkeus [m] (v = virtausnopeus) = kitkahäviö [m] Bernoullin yhtälössä termi h f ottaa huomioon että kaikessa liikkeessä syntyy kitkaa, ts. aktiivisesti vaikuttavat voimat herättävät passiivivoimia, kitkavoimia. Kitkavoimat vastustavat liikettä ja aiheuttavat energiahäviöitä pääasiassa muuttamalla mekaanista energiaa lämmöksi. 3) Impulssilause (Newton) Kappaleeseen vaikuttavien ulkoisten voimien resultantti on yhtä suuri kuin kappaleen liikemäärän muutosnopeus. Tarvitaan siis ulkoinen voima, mikäli virtauksen liikemäärää tai liikkeen suuntaa muutetaan. ( ) F = r Q v - v F = voima [N] v = virtausnopeus [m/s] Q = virtaama [m 3 /s] = nesteen tiheys [kg/m 3 ] Putkivirtaus Darcy-Weissbach yhtälö Yhteys energiahäviön ja keskinopeuden v välille, kun tarkastelun kohteena on stationäärinen, tasainen viskoosin nesteen virtaus putkessa, jonka halkaisija on d ja pituus l: l v h f = f d g Kaavassa f on kitkakerroin, joka riippuu Reynoldsin luvusta. Laminaarivirtauksessa kitkakertoimelle voidaan analyyttisesti johtaa arvoksi: f = 64 Re
4 4 Turbulentissa virtauksessa kitkakertoimen arvoille on kokeellista tietä saatu seuraavat lausekkeet: - hydraulisesti sileä alue log Re - hydraulisesti karkea alue f d = log 4 Ł k ł +. - siirtymäalue em. välillä f kd. 5 =- log + Ł 37. Re f ł k= putken karkeuskorkeus, joka kuvaa putken (halkaisija d) seinämän epätasaisuuksia. Moody (944) laati em. yhtälöiden perusteella kuvan mukaisen nomogrammin. Kuva 3 Moodyn käyrästö virtausvastuskertoimelle f Avouomavirtaus Avouomavirtaukselle luonteenomaista on vapaa vedenpinta, johon vaikuttaa ilmakehän aiheuttama paine. Vapaan vedenpinnan olemassaolo aiheuttaa, että virtauksen käsittely on merkittävästi hankalampaa kuin putkessa. On hankalaa luoda yleispäteviä malleja, koska poikkileikkauksen muoto ja karkeusominaisuudet alinomaa vaihtuvat. Näistä syistä avouomavirtausta joudutaan käsittelemään vielä enemmän kokeellisesta pohjalta kuin putkivirtauksen kyseessä ollen. Kitkahäviö avouomassa Yleinen menetelmä tasaisen virtauksen laskentaan perustuu Chezyn (755) kaavaan v = c RI C I = kerroin, jonka arvio riippuu uoman karkeudesta = uoman pituuskaltevuus
5 5 Käytännössä suosituimman kaavan aseman on saavuttanut irlantilaisen Manningin kaava (890) v = n R 3 I Kaavassa vastuskertoimen n suuruus riippuu mm. seuraavista uoman ominaisuuksista: - pohjan karkeus - kasvillisuus - poikkileikkauksen vaihtelut - uoman mutkaisuus - uoman liettyminen ja syöpyminen - uomassa olevat esteet - uoman koko ja muoto - syvyys ja virtaama Epätasaisen virtauksen käsittely Vapaan vedenpinnan olemassaolo tarkoittaa sitä, että avouomassa syvyys tyypillisesti vaihtelee. Tällöin kyseessä on epätasainen virtaus, jossa hidastumiset ja kiihtymiset seuraavat toisiaan (huom! virtaus voi muutoin olla stationääristä). Vesistöön rakentaminen ja uoman perkaaminen saattavat aiheuttaa varsin tuntuvia muutoksia vedenkorkeuksiin, joten näiden vaikutusten suuruus on ennakolta pystyttävä määräämään. Esimerkiksi, mikäli rakennetaan pato, vedenpinta kohoaa: vesisyvyys ja veden poikkileikkaus kasvaa ja kun Q pysyy vakiona, liike häiriintyy ja muuttuu epätasaiseksi - syntyy padotus. Mikäli uoman pohjaan kaivetaan kynnys, vedenpinta laskee ja syntyy alennus. Kuva 4 Epätasainen virtaus: esimerkkinä pato ja pohjakynnys Kitkan aiheuttama putoushäviö lasketaan kullakin jaksolla samoin kuin tasaisessa virtauksessa. Mikäli käytetään Manningin kaavaa, on kitkahäviö h = f A nlq m R 4 3 m kun A m ja R m ovat jakson keskimääräiset arvot. Vedenkorkeus uoman toisessa päässä ratkaistaan nyt iteroiden Bernoullin yhtälön avulla.
6 6 Kuva 5 Epätasaisen virtauksen energia Ominaisenergia Edellä Bernoullin yhtälössä kokonaisenergia määriteltiin koostuvan liike-, paine- ja asemaenergian summana. Ominaisenergia määritellään paine- ja massayksikköä kohti ja vertailutasona pidetään uoman pohjaa. Avouomassa tämä merkitsee, että ominaisenergia on yksinkertaisesti vedensyvyyden ja nopeuskorkeuden summa: v Q E = y + = y + g ga Kullakin arvolla E E min on kaksi vedensyvyyttä, joilla virtaus voi tapahtua. Määrittelemällä Frouden luku v Fr = gh voidaan virtaus jakaa verkasvirtaukseen (Fr < ) ja kiitovirtaukseen (Fr > ). Käytännössä on suurta merkitystä kulkeeko sama vesimäärä alhaisella syvyydellä suurella nopeudella vai syvempänä hitaana virtauksena.
Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).
3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa
3. Bernoullin yhtälön käyttö. KJR-C2003 Virtausmekaniikan perusteet
3. Bernoullin yhtälön käyttö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mitä Bernoullin yhtälö tarkoittaa ja miten sitä voidaan käyttää virtausongelmien ratkaisemiseen? Motivointi: virtausnopeuden
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 1.9.2017 klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
Luku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
Luku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet
Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet Käsitteelliset tehtävät Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen?
Harjoitus 3: Hydrauliikka + veden laatu
Harjoitus 3: Hydrauliikka + veden laatu 14.10.015 Harjoitusten aikataulu Aika Paikka Teema Ke 16.9. klo 1-14 R00/R1 1) Globaalit vesikysymykset Ke 3.9 klo 1-14 R00/R1 1. harjoitus: laskutupa Ke 30.9 klo
(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi?
Tehtävä 1 Vettä (10 astetta) virtaa suorassa valurautaisessa (cast iron) putkessa, jonka sisähalkaisija on 100 mm ja pituus 70 m. Tilavuusvirta on 15 litraa minuutissa. (a) Osoita, että virtaus on turbulenttia.
Viikon aiheena putkivirtaukset
Viikon aiheena putkivirtaukset Tänään keskitytään putkivirtausten luonteeseen ja keskeisiin käsitteisiin Seuraavalla kerralla putkivirtausongelmien ratkaisemisesta Putkivirtausten käytännön relevanssi
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin
Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä
Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan
Luento 16: Fluidien mekaniikka
Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla
y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.
Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon
Luento 16: Fluidien mekaniikka
Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla
4. Putkivirtaus 4. PUTKIVIRTAUS. 4.1 Virtauslajit ja Reynoldsin luku. 4.2 Putkivirtauksen häviöt
4. Putkivirtaus 4. PUTKIVIRTAUS Brnoullin yhtälön yhtydssä todttiin todllisssa virtauksssa syntyvän aina häviöitä, jotka muuttuvat lämmöksi. Putkivirtauksssa nämä häviät näkyvät painn laskuna virtaussuunnassa
Luvun 12 laskuesimerkit
Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine
MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011
Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia
PHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
PHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
12. Mallikokeet. KJR-C2003 Virtausmekaniikan perusteet
12. Mallikokeet KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten sama virtausongelma voidaan mallintaa eri asetelmalla ja miten tämä on perusteltavissa dimensioanalyysillä? Motivointi: useissa käytännön
(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
Hydrologia. Pohjaveden esiintyminen ja käyttö
Hydrologia Timo Huttula L8 Pohjavedet Pohjaveden esiintyminen ja käyttö Pohjavettä n. 60 % mannerten vesistä. 50% matalaa (syvyys < 800 m) ja loput yli 800 m syvyydessä Suomessa pohjavesivarat noin 50
FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen
FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN
14. Putkivirtausten ratkaiseminen. KJR-C2003 Virtausmekaniikan perusteet
14. Putkivirtausten ratkaiseminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten erilaisia putkistovirtausongelmia ratkaistaan? Motivointi: putkijärjestelmien mitoittaminen sekä painehäviöiden
Virtaus ruiskutusventtiilin reiästä
Jukka Kiijärvi Virtaus ruiskutusventtiilin reiästä Kaasu- ja polttomoottorin uudet tekniset mahdollisuudet Polttomoottori- ja turbotekniikan seminaari 2014-05-15 Otaniemi Teknillinen tiedekunta, sähkö-
Venttiilin painehäviön mittaus
Lappeenrannan teknillinen yliopisto School of Energy Systems Energiatekniikan koulutusohjelma BH10A000 Energiatekniikan kandidaatintyö ja seminaari Venttiilin painehäviön mittaus Työn tarkastaja: Jari
Hydrologian perusteet ja maan vesitalous
Hydrologian perusteet ja maan vesitalous Hydrologian perusteita, johdanto (1/2) Luonnossa tapahtuu jatkuvaa veden kiertokulkua, joka käsittää joukon veden varastoitumisvaiheita ja niiden välisiä siirtymisvaiheita.
Aineskuljetus avouomassa
1 Aineskuljetus avouomassa Timo Huttula 1. Yleistä... 1 2. Virtausvastus... 2 3. Uoman eroosio ja sedimentin kuljetus... 2 3.1. Vallitsevat prosessit... 2 3.2. Hiukkasen laskeutumisnopeus... 3 3.3. Kriittinen
Nopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
Chapter 1. Preliminary concepts
Chapter 1 Preliminary concepts osaa kuvata Reynoldsin luvun vaikutuksia virtaukseen osaa kuvata virtauksen kannalta keskeiset aineominaisuudet ja tietää tai osaa päätellä näiden yksiköt osaa tarvittaessa
Demo 5, maanantaina 5.10.2009 RATKAISUT
Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
Rak Tulipalon dynamiikka
Rak-43.3510 Tulipalon dynamiikka 7. luento 14.10.2014 Simo Hostikka Palopatsaat 1 Luonnollisten palojen liekki 2 Palopatsas 3 Liekin korkeus 4 Palopatsaan lämpötila ja virtausnopeus 5 Ideaalisen palopatsaan
dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl
Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan
MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
Kitka ja Newtonin lakien sovellukset
Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka
5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
VISKOSITEETTI JA PINTAJÄNNITYS
VISKOSITEETTI JA PINTAJÄNNITYS 1 VISKOSITEETTI Virtaavissa nesteissä ja kaasuissa vaikuttaa kitkavoimia, jotka vastustavat hiukkasten liikettä toisiinsa nähden. Tämä sisäinen kitka johtuu hiukkasten välisestä
Luvun 10 laskuesimerkit
Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla
Avouomavirtauksen perusteet
WETS15 Avouomavirtaus 1 Avouomavirtauksen perusteet Timo Huttula 1. Johdanto...1. Avouomavirtaus...1.1. Avouomavirtauksessa vaikuttavista voimista...1.. Virtauksen luokitteluperusteet....3. Avouoman geometria...5
0. Johdatus virtausmekaniikkaan ( , 1.11, 23 s.)
Kurssin keskeinen sisältö 0. Johdatus virtausmekaniikkaan (1.1-1.8, 1.11, 23 s.) Mitä virtaus on, miksi se on kiinnostavaa ja mitkä ovat siihen keskeisesti liittyvät käsitteet? Motivointi: Flows occur
Hydrologia. Maanpinnan alaisten vesien jako
Hydrologia L7 Maavedet Maanpinnan alaisten vesien jako Maavesi, vedellä kyllästymätön vyöhyke juurivesi välivyöhyke kapillaarivesi Pohjavesi, vedellä kyllästetty vyöhyke 15/01/2013 WETA150 Hydrologia T.Huttula
9. Kitkaton virtaus ja potentiaaliteoria. KJR-C2003 Virtausmekaniikan perusteet
9. Kitkaton virtaus ja potentiaaliteoria KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten ja millä edellytyksillä virtausongelmaa voidaan yksinkertaistaa? Motivointi: Navier-Stokes yhtälöiden ratkaiseminen
4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet
4. Kontrollitilavuusajattelu ja massan säilyminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten partikkelisysteemiin liittyvän suuren säilyminen esitetään tarkastelualueen taseena ja miten massan
(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.
Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)
a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
KJR-C2003 MAE130A UCI ME336 UTSA Summer2015 Lecture 01 Mitä tarkoittaa fluidi?
KJR-C2003 MAE130A UCI ME336 UTSA Summer2015 Lecture 01 Mitä tarkoittaa fluidi? Intro Fluid Mechanics Mitkä lait pitää toteutua virtauksessa? Aineominaisuudet Viskositeetti, liukumattomuusehto Leikkausjännitys
On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).
TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima
KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän
Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
Pienten kaupunkipurojen hydraulinen mallinnus
HYDROSYS Pienten kaupunkipurojen hydraulinen mallinnus Tero Niemi Ympäristösuunnittelun tietotekniikka Lahden keskus Aalto-yliopiston teknillinen korkeakoulu Tavoitteena kehittää järjestelmä joka auttaa
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut
A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
(b) Määritä pumpun todellinen nostokorkeus, jos pumpun hyötysuhde on 65 %. 160 mm. 100 mm. 650 rpm. Kuva 1: Tehtävän asettelu.
Tehtävä 1 Kuvan keskipakopumppu pumppaa vettä (ρ = 998 kg/m 3 ) tilavuusvirralla 180 l/s. Pumpun pesän korkeus on mm. Oletetaan, että sisäänvirtauksessa absoluuttisella nopeudella ei ole tangentiaalista
VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen
VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä
Termodynamiikan suureita ja vähän muutakin mikko rahikka
Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,
Putkistovirtausmittauksia
Tiia Monto Työ tehty: 23.11.09 tiia.monto@jyu. 04075218560 Putkistovirtausmittauksia Assistentti: Arvostellaan: Abstract Työssä tutkittiin kuristuslaippaa, venturiputkea sekä pitot-putkea putkistovirtausmittauslaitteistolla.
29.03.2006 RATU rankkasateet ja taajamatulvat TKK:n vesitalouden ja vesirakennuksen hankeosien tilanne ja välitulokset T. Karvonen ja T.
29.3.26 RATU rankkasateet ja taajamatulvat TKK:n vesitalouden ja vesirakennuksen hankeosien tilanne ja välitulokset T. Karvonen ja T. Tiihonen RATU/TKK:n osuus Laaditaan kahdentyyppisiä malleja: * taajamavesien
15. Rajakerros ja virtaus kappaleiden ympäri. KJR-C2003 Virtausmekaniikan perusteet
15. Rajakerros ja virtaus kappaleiden ympäri KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten virtaus käyttäytyy fluidiin upotetun kappaleen ympärillä ja erityisesti sen välittömässä läheisyydessä?
Chapter 5. Life in the Slow Lane: The Low Reynolds-Number World
Chapter 5. Life in the Slow Lane: The Low Reynolds-Number World 1 Luento 5 10..017 Viskoosit nesteet Laminaarinen virtaus Turbulenssi Reynoldsin luku Pienten Reynoldsin lukujen maailma Kitkallinen virtaus
SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET
SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.
Kon HYDRAULIIKKA JA PNEUMATIIKKA
Sarja Kon-4.303 HYDRAULIIKKA JA PNEUMATIIKKA erusteet Päiän teemat Sarja Neste kuin neste, onko sillä äliä? Tilauusirta, miten ja miksi? Mihin tilauusirtaa taritaan? Onko tilauusirran ja aineen älillä
Rovaniemi T.Kilpiö, M.Talvensaari, I.Kylmänen 23.02.2009
LAUSUNTO 1 (2) Rovaniemi T.Kilpiö, M.Talvensaari, I.Kylmänen 23.02.2009 KOLLAJAN ALLAS Lausunto hankkeen vaikutuksista jääolosuhteisiin Iijoella Haapakosken voimalaitoksen yläpuolisella ns. luonnonuomalla
Sovelletun fysiikan pääsykoe
Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille
Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia
Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat
Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio
Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan
Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto
Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
Muunnokset ja mittayksiköt
Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?
Luento 2: Liikkeen kuvausta
Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1
763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi
Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen
KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen
Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
U P O N O R Y H D Y S K U N TA - J A Y M P Ä R I S T Ö T E K N I I K K A m i t o i t u s ta u l u k o t 04 I 2009 51028
U P O N O R Y H D Y S K U N TA - J A Y M P Ä R I S T Ö T E K N I I K K A m i t o i t u s ta u l u k o t 04 I 2009 51028 293 Mitoitustaulukot liitteet 1.1-9 294 m i t o i t u s ta u l u k o t Liite 1.1
Luvun 5 laskuesimerkit
Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2)
SMG-4500 Tuulivoima Kuudennen luennon aihepiirit Tuulivoimalan energiantuotanto-odotukset Aiheeseen liittyvä termistö Pinta-alamenetelmä Tehokäyrämenetelmä Suomen tuulivoimatuotanto 1 AIHEESEEN LIITTYVÄ
HYDRAULITEKNIIKKA. Lappeenrannan teknillinen yliopisto Konetekniikan osasto Mekatroniikan ja virtuaalisuunnittelun laboratorio
Lappeenrannan teknillinen yliopisto Konetekniikan osasto Mekatroniikan ja virtuaalisuunnittelun laboratorio Ko4210000 Mekatroniikan peruskurssi Kevät 2007 HYDRAULITEKNIIKKA SISÄLLYSLUETTELO 1 HYDRAULIIKAN
Laskuharjoitus 1 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.
on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis
Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa
Patorakenteiden periaatekuvia
Patorakenteiden periaatekuvia Piirrokset: Jari Kostet, MKJ Kuvat: Mikko Alhainen, Marko Svensberg, Marko Muuttola, Harri Hepo-Oja, Jarkko Nurmi, Reijo Orava, MKJ Patorakenteet Munkin ja tulvauoman sijoittaminen
g-kentät ja voimat Haarto & Karhunen
g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle
KJR-C2002 Kontinuumimekaniikan perusteet, tentti
KJR-C2002 Kontinuumimekaniikan perusteet, tentti 13.12.2017 1. Jos r θ on paikkavektori, niin mitä ovat r θ, esitksiä r θ ja r θ? Kätä Karteesisen koordinaatiston T θ θ r < j < j zθ θ k k z ja / θ < j
Järkäleen hydrauliikan painehäviön pienentäminen
Järkäleen hydrauliikan painehäviön pienentäminen Opinnäytetyö Teuvo Heikkinen Kone- ja tuotantotekniikan koulutusohjelma Kone- ja tuotesuunnittelu Savonia-ammattikorkeakoulu Julkaisutoiminta PL 6 (Microkatu
Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle.
1(4) Lappeenrannan teknillinen yliopisto School of Energy Systems LUT Energia Nimi, op.nro: BH20A0450 LÄMMÖNSIIRTO Tentti 13.9.2016 Osa 1 (4 tehtävää, maksimi 40 pistettä) Vastaa seuraaviin kysymyksiin
KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit
KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,
Nesteen ominaisuudet ja nestetilavuuden mallinnus
Kon-4.47 Hydraulijärjestelmien mallintaminen ja simulointi Nesteen ominaisuudet ja nestetilavuuden mallinnus Hydrauliikka on tehon siirtoa nesteen välityksellä. Jos yrit ymmärtämään hydrauliikkaa, on sinun
Liite F: laskuesimerkkejä
Liite F: laskuesimerkkejä 1 Lämpövirta astiasta Astiasta ympäristöön siirtyvää lämpövirtaa ei voida arvioida vain astian seinämien lämmönjohtavuuksilla sillä ilma seinämä ja maali seinämä -rajapinnoilla
l 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.
Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen
ELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia